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Abstract
In this paper, we investigate the capability of the universal Kriging (UK) model for single-objective global optimization
applied within an efficient global optimization (EGO) framework. We implemented this combined UK-EGO framework and
studied four variants of the UK methods, that is, a UK with a first-order polynomial, a UK with a second-order polynomial,
a blind Kriging (BK) implementation from the ooDACE toolbox, and a polynomial-chaos Kriging (PCK) implementation.
The UK-EGO framework with automatic trend function selection derived from the BK and PCK models works by building
a UK surrogate model and then performing optimizations via expected improvement criteria on the Kriging model with
the lowest leave-one-out cross-validation error. Next, we studied and compared the UK-EGO variants and standard EGO
using five synthetic test functions and one aerodynamic problem. Our results show that the proper choice for the trend
function through automatic feature selection can improve the optimization performance of UK-EGO relative to EGO. From
our results, we found that PCK-EGO was the best variant, as it had more robust performance as compared to the rest of
the UK-EGO schemes; however, total-order expansion should be used to generate the candidate trend function set for high-
dimensional problems. Note that, for some test functions, the UK with predetermined polynomial trend functions performed
better than that of BK and PCK, indicating that the use of automatic trend function selection does not always lead to the
best quality solutions. We also found that although some variants of UK are not as globally accurate as the ordinary Kriging
(OK), they can still identify better-optimized solutions due to the addition of the trend function, which helps the optimizer
locate the global optimum.

Keywords Efficient global optimization · Single-objective · Surrogate model · Universal Kriging

1 Introduction

Recent rapid advances in computing power and technology
have fostered an increased use of computational optimiza-
tion methods in solving engineering design optimization
problems. The typical goal of engineering design opti-
mization is to maximize the performance of an engineer-
ing system thereby achieving the optimum output. Design
optimization might also reveal important information that
is useful in the overall design process. In spite of such
advancements, real-world computationally expensive opti-
mization problems remain rather difficult, if not impossible,
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to be solved via traditional optimization methods. This dif-
ficulty might be caused by the nonavailability of gradient
information, high computational costs, or failed simulations
that return no results. To overcome these challenges, one
must resort to modern and advanced optimization methods
that are specifically designed to solve real-world problems.
Here, the surrogate model is an invaluable tool that assists
in optimization when one function evaluation is computa-
tionally expensive. In engineering design optimization, a
surrogate model is frequently used for global optimization,
in which the goal is to find the global optimum of a given
optimization problem. Among surrogate models, the Krig-
ing model (Krige 1951; Sacks et al. 1989; Simpson et al.
2001) is arguably one of the most popular surrogate mod-
els for optimization due to its interpolation capability and
flexibility. The versatility of the Kriging method has fos-
tered a wide use of the method in solving numerous many
real-world problems not just limited to optimization. More
specifically, Kriging has been used for aerodynamic opti-
mization (Jeong et al. 2005), structural optimization (Sakata
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et al. 2003; Forsberg and Nilsson 2005), and uncertainty
quantification (Dwight and Han 2009; Shimoyama et al.
2013), to name a few. In this paper, we specifically focus
on the application of Kriging for optimization; however,
we note that Kriging is also applicable for uncertainty
quantification problems that involve optimization, such as
the quantification of upper and lower bounds of output
uncertainty as presented by Swiler et al. (2009).

One advantage of Kriging is that it directly provides the
estimation error; very few surrogate models offer estima-
tion error. Estimation errors are useful in achieving such
goals as refining the surrogate model’s global accuracy
or efficiently guiding the optimization process that bal-
ances exploration and exploitation. The efficient global
optimization (EGO) framework solves optimization prob-
lems by using a metric called expected improvement (EI)
that relies on both prediction and error measures provided
by the Kriging model (Jones et al. 1998). Recent research
involving EGO-based methods includes bootstrapped Krig-
ing that implements EGO using an improved estimator of
the Kriging predictor variance through bootstrapping (Klei-
jnen et al. 2012) and an EGO implementation with a fully
Bayesian approach (Benassi et al. 2011). Moreover, an
EI-based model equipped with constraint handling was pro-
posed to efficiently handle constrained problems (Parr et al.
2012). Further, aside from single-objective EGO, multi-
objective EGO implementations are also available (Jeong
and Obayashi 2005; Knowles 2006; Keane 2006). Here,
the underlying principle of multiobjective EGO implemen-
tations is similar to that of single-objective EGO, with
some modifications required such that it can be used to
handle multiobjective optimization problems. Apart from
deterministic optimization, the EGO framework has also
been refactored such that it can solve robust optimization
problems (Ur Rehman et al. 2014; Ur Rehman and Lange-
laar 2015). EGO is also applicable to parallel optimization
problems with such modifications as the use of multiple
surrogates (Viana et al. 2013).

From the viewpoint of the Kriging model itself, the
original EGO framework and its variants frequently use OK
as their backbone. Universal Kriging (UK) (Matheron 1969)
has yet to become a widely accepted tool for optimization
because of its difficulty predicting the underlying trend in
the surface to be approximated (Kersaudy et al. 2015). To
address this problem, methods that automatically select a
suitable trend function have been proposed. Among the
first of these is the blind Kriging (BK) method, which
performs Bayesian forward selection to identify a set
of trend functions that can increase the approximation
capabilities of Kriging (Joseph et al. 2008). BK tries to
avoid an improper polynomial trend function that might
result in disastrous approximations. Further, BK has been
successfully implemented and shown to perform better than

OK in such applications as turbomachinery design (Bellary
et al. 2016). As studied by Joseph et al. (2008) and
Couckuyt et al. (2012), BK also showed better performance
versus that of OK in several computer experiments, such
as piston slap and sealing experiments. Finally, BK has
been implemented in MATLAB as the ooDACE toolbox
and can be downloaded online (Couckuyt et al. 2014);
however, note that the performance of BK shows only
minimal improvements or none at all versus that of
OK if enough data is available to cover the problem
domain (Couckuyt et al. 2012). In addition to BK, trend
function selection methods using a genetic algorithm (GA)
have been proposed (Zhao et al. 2011; Liang et al. 2014);
such approaches have been called dynamic Kriging. These
dynamic Kriging methods originally use Kriging variance
as their objective functions (Zhao et al. 2011), but such
approaches have been criticized because the magnitude
of Kriging variance decreases linearly with the number
of trend functions included (i.e., under the assumption of
constant hyperparameters) (Liang and Zhu 2013). Note
that dynamic Kriging with error estimations predicted
using cross-validation was proposed to overcome this
problem (Liang et al. 2014). Aside from the standard
monic polynomial form, orthogonal polynomials can also
be used as trend function for UK. As an example, a UK
method with polynomial chaos expansion (PCE) (Wiener
1938; Xiu and Karniadakis 2002) as the trend function
was developed for uncertainty quantification and sensitivity
analysis (Schobi et al. 2015; Kersaudy et al. 2015). The
polynomial-chaos-Kriging (PCK) method is an algorithm
that combines the capabilities of PCE and Kriging within
the framework of UK. Instead of using a heuristic
optimization procedure such as GA, PCK uses the least-
angle-regression (LARS) algorithm to choose the most
influential orthogonal polynomial function set. There are
two distinct ways to implement PCK that is, either
sequential or optimal-PCK, where the former builds the
PCE and UK sequentially and the latter builds a new
UK model at each iteration of the LARS algorithm.
PCK has been applied to various engineering problems,
including structural reliability problems and rare event
estimations (Schöbi and Sudret 2014; Schöbi et al. 2016).
The success of BK and the PCK algorithm in creating a
metamodel has motivated us to investigate their capabilities
when coupled with the EGO framework to solve expensive
optimization problems. Although BK has been used before
for optimization, it is not yet implemented within the
iterative global optimization strategy of EGO. The goal of
our investigation is to further encourage the application of
UK in solving expensive real-world optimization problems.

In this paper, we propose an EGO method based on the
UK method with a polynomial trend; we call our combined
approach the UK-EGO algorithm. Our method is a further
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extension and formal implementation of the UK method
with a single-objective EGO framework. Similar to original
EGO, we utilize the EI metric to guide the optimization
process. Here, EI strikes a balance between exploration
and exploitation of the design space; however, rather than
directly using a constant trend function as in EGO, in our
UK-EGO approach, we first exploit the possible trend in
the response surface before applying EI-based optimization.
The main contribution of our paper lies in the use of UK
for EGO. More specifically, we study and compare the
performance of BK from the ooDACE toolbox (Couckuyt
et al. 2014), PCK, and UKwith fixed first- and second-order
polynomial sets, all applied to the UK-EGO framework on
synthetic and real-world test problems.

In addition to this introductory section, we structure
the remainder of our paper as follows: in Section 2, we
explain the fundamentals of the UK surrogate model;
in Section 3, we provide details and the framework
of our proposed method; in Section 4, we present our
computational results for algebraic test problems and a
real-world aerodynamic problem; finally, we provide our
conclusions and suggestions for future work in Section 5.

2 Universal Kriging surrogate model

In this section, we describe the fundamentals of the
UK surrogate model; our discussion is focused more on
explaining the UK. We also explain UK with automatic
trend function selection (i.e., BK and PCK). For the
following explanation of Kriging surrogate model, we
primarily refer to the works of Sacks et al. (1989) and Jones
(2001).

2.1 Basics

The goal of building a UK surrogate model within an
optimization context is to approximate the relationship
between the input x = {x1, x2, . . . , xm}T , where m is
the dimensionality of the decision variables, and output of
interest y = f (x) as a realization of the stationary Gaussian
process Y (x). This can be obtained by approximating the
true function with the following UK model:

Y (x) =
P−1∑

i=0

αiΨi(x) + Z(x), (1)

where Ψ (x) = {Ψ0(x), . . . , ΨP−1(x)}T is a collection
of regression, or trend, functions (usually polynomials),
α = {α0(x), . . . , αP−1(x)}T is the vector of corresponding
regression coefficients, and Z is a stochastic process
that models the deviation from the global model. If the

regression function is a constant, then the given UK simply
becomes an OK.

The Kriging model assumes that a slight difference
between the locations of two points corresponds to a
small difference between their objective functions. This
assumption is modeled by a statistical correlation between
the two sets of variables. Although several correlation
models are available, in this paper, we model the
correlation between Z(x(i)) and Z(x(j)) using the Gaussian
autocorrelation function as follows:

Rij = corr[Z(x(i)), Z(x(j))] = exp

(
−

m∑

k=1

θk |x(i)
k − x

(j)
k |2

)
, (2)

where θ = {θ1, . . . , θm} is the vector of hyperparameters
to be estimated. Note that exponent 2 in the right-
hand side term can also be set as one of the tunable
hyperparameters; however, for simplicity, we assume that
the value of this exponent is constant. Besides the Gaussian
autocorrelation function, other types of correlation function
can also be employed for constructing a Kriging model.
For example, Stein (2012) recommends the use of a
Matérn class function instead of a Gaussian autocorrelation
function, since Gaussian autocorrelation function makes a
strong smoothness assumption, which might be unrealistic
for real-world processes. However, in this paper, we use
a Gaussian autocorrelation function since it is probably
the most widely applied autocorrelation function for the
construction of Kriging models within the context of
engineering design optimization.

The approximation starts by collecting n observa-
tions in the design space X = {x(1), . . . , x(n)}T and
their corresponding responses y = {y(1), . . . , y(n)}T =
{f (x(1)), . . . , f (x(n))}T to form the experimental design
(ED). The UK predictor is defined as

f̂ (x) = Ψ (x)T α + r(x)T R−1(y − Fα), (3)

with the mean-squared error of the Kriging prediction ŝ2(x)

calculated as

ŝ2(x) = σ 2(1− (r(x)T R−1r(x))+ (F T R−1r(x) − Ψ (x))T (F T R−1F )−1

(F T R−1r(x) − Ψ (x))). (4)

Here, R is an n × n matrix with (i, j) entry as
corr[Z(x(i)), Z(x(j))] , r(x) is the correlation vector
between x and X with (i, 1) entry as corr[Z(x(i)), Z(x)],
and F = {Ψ (x(1)), . . . , Ψ (x(n))}T is the n × P size matrix
of regression functions. Coefficients α are obtained by the
generalized least-squares (GLS) procedure defined as

α = (F T R−1F )−1F T R−1y. (5)
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To calibrate the Kriging model, hyperparameters θ must
be estimated (denoted as θ̂ ), which can be achieved by
maximizing the likelihood function

L(α, σ 2, θ) = 1
√

(2πσ 2)n/2|R(θ)| exp
(

− 1

2

(y − Fα)T R(θ)−1(y − Fα)

σ 2

)
,

(6)

where the optimal estimate of α is obtained through the
least squares procedure, as in (5). The maximum likelihood
estimates of the Kriging variance σ̂ 2 is

σ̂ 2(θ) = 1

n
(y − Fα)T R(θ)−1(y − Fα). (7)

The likelihood function can be further simplified by
substituting (5) into (6) and taking the natural logarithm
of both sides. The simplified likelihood function is then
defined as

ln(L(α, σ̂ 2, θ)) ≈ −n ln(σ̂ 2(θ)) − ln (|R(θ)|). (8)

Optimizing the likelihood function is difficult; therefore,
a global optimizer such as a GA followed by the local search
such as a Broyden-Fletcher-Goldfarb-Shanno (BFGS) is
typically used. In this paper, we set the bounds of θ for
optimizing the likelihood function to [10−3, 103] with a
logarithmic scale.

In practice, we always normalize the decision space to [-
1,1] so that the Legendre polynomials can be used as trend
functions. On the other hand, we normalize the function
value according to

ỹ = y − μ(y)

σ (y)
, (9)

where μ(y) and σ(y) are the mean and standard deviation
of the function values of the current ED, respectively.

2.2 Automatic trend function selection for universal
Kriging

The most frequently used type of functions for UK approx-
imation are polynomials. More specifically, multivariate
polynomials from one-dimensional monic polynomials are
widely used. In general, the trend function should be prop-
erly selected to create an accurate UK approximation, which
is crucial, since the wrong/incorrect choice could result
in disastrously inaccurate approximations. Another polyno-
mial form that can be used is the orthogonal polynomial,
as used in the PCK approximation. Below, we describe the
BK (Joseph et al. 2008) and PCK methods (Schobi et al.
2015; Kersaudy et al. 2015), which both use an automatic
trend function selection procedure to determine the most
important polynomial terms given the current ED. We start
by explaining the types of polynomials that can be employed
for UK approximation.

2.2.1 Choice of polynomials

In this paper, we use the standard monic and Legendre poly-
nomials as trend functions for BK and PCK, respectively.
The monic polynomials used in BK (denoted as φ(x)) are
nonorthogonal, whereas the PCK approximation employs
the orthogonal Legendre polynomials. The Legendre poly-
nomials are a sequence of polynomials that are orthogonal
with respect to the L2 inner product on interval [−1, 1],
mathematically defined as follows
∫ 1

−1
ψi(x)ψj (x)dx = 2

2i + 1
δij , (10)

where ψ(x) is the one-dimensional Legendre polynomial,
and δij is 1 if i = j and 0 if i �= j .

Legendre polynomials can also be obtained via the Gram-
Schmidt process on monic polynomials with respect to the
L2 inner product. Table 1 depicts the first few Legendre
polynomials in comparison with monic polynomials in the
[−1, 1] domain.

Consider the index set ζ = {ζ1, . . . , ζm}, where
ζi = 0, 1, 2, . . ., and multi-index set A ⊂ N

m, to
extend the polynomial trend function for multivariable
approximations, we can use tensor-product expansion
that includes all combinations of the one-dimensional
polynomial. All of the Ψi(x) in (1) are multidimensional
polynomials as the products of the one-dimensional
polynomials, which can be constructed by using either
monic or one-dimensional orthogonal polynomials. The
multidimensional polynomials are then defined as

Ψζ (x) = ψ
(i)
ζ1

(x1) × . . . × ψ
(m)
ζm

(xm) (11)

for the one-dimensional Legendre polynomials, or

Ψζ (x) = φ
(i)
ζ1

(x1) × . . . × φ
(m)
ζm

(xm) (12)

for the monic polynomials.
The polynomial terms can then be expanded by using the

tensor-product operator of order p, that is

Ap ≡ {ζ ∈ N
m : ζj ≤ p, j = 1, . . . , m}. (13)

Here, we use a fixed p value for each dimension, although
p can differ for each dimension. Besides tensor-product

Table 1 Sequence for monic and Legendre polynomials up to the fifth
order

p Monic (φ(x)) Legendre (ψ(x))

0 1 1

1 x x

2 x2 1
2 (3x2 − 1)

3 x3 1
2 (5x3 − 3x)

4 x4 1
8 (35x4 − 30x2 + 3)

5 x5 1
8 (63x5 − 70x3 + 15x)
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expansion, total-order expansion that preserves the basis of
polynomials up to a fixed total-order specification can be
used as an alternative to the tensor-product operator. The
index set for the total-order expansion of order p is defined
as

Ap ≡ {ζ ∈ N
m : ||ζ || ≤ p}, (14)

where ||ζ || = ζ1 + . . . + ζm.
To further reduce the number of terms, a hyperbolic

scheme (Blatman and Sudret 2011) can be defined as

Ap,ν ≡ {ζ ∈ N
m : ||ζ ||ν ≤ p}, (15)

where

||ζ ||ν ≡
(

m∑

i=1

ζ ν
i

) 1
ν

, (16)

and ν is a scalar in the range (0, 1]. Here, the value of ν

determines the number of polynomial terms to be retained.
The BK implementation available via the ooDACE

toolbox limits the candidate trend function set to only
two-factor interactions, although the value of p can be
set higher than two. Therefore, for example, the special
cases considering linear effects, quadratic effects, and two-
factor interactions would result in 2m2 candidate features
(excluding the constant term), which is similar to the
tensor-product expansion but with higher-factor interactions
eliminated from the candidate feature set. Since ooDACE
implements this method to generate the polynomial trend
function, in this paper, we also compare the performance of
BK and PCK with this trend function generation method to
provide a fair comparison between the two UK methods.

In this paper, a trend function set with a defined value
of p indicates that the trend function set has a polynomial
term with maximum order p, however, the cardinality of the
candidate trend function set differs for each trend function
generation method, even with the same value of p. In this
regard, applying tensor-product, total-order expansion, or
an expansion with maximum two-factor interactions will
generate a trend function set with different cardinality for
the same value of p.

2.2.2 Blind Kriging

For the explanation of BK, we primarily refer to the
works of Joseph et al. (2008) and Couckuyt et al. (2012).
BK employs automatic trend function selection from the
candidate set via Bayesian forward selection, and then
selects the best UK model that yields the lowest leave-one-
out cross-validation (LOOCV) error. The BK model itself
is particularly useful when the cardinality of the candidate
trend function set exceeds the available sample size by
providing only the relevant polynomial trend function set.

Let us consider a trend function in the form of the
following linear model

g(x) = α0Ψ0(x) +
r∑

i=1

αiΨi(x) +
t∑

i=1

βibi(x), (17)

where r + 1 is the size of existing trend functions, b(x) =
{b1(x), . . . , bt (x)} is the set of candidate functions, and
β = {β1(x), . . . , βt (x)}T is the vector of corresponding
coefficients. Here, α have already been determined, and
the task is to select new terms to be included in the trend
functions. In the explanation that follows, the candidate
trend function considers only linear effects, quadratic
effects, and two-factor interactions; however, it is also
possible to build candidate sets with such higher-order
effects and interactions.

As explained in Joseph et al. (2008), the sample data
is scaled to the interval [1, 3]. The encoded samples for
the linear and quadratic effects can then, respectively, be
defined as

xjl =
√
3√
2
(xj − 2),

xjq = 1√
2
(3(xj − 2)2 − 2). (18)

Other terms, such as two-factor interaction terms, can
be constructed as the products of these basic terms. To
simultaneously estimate the t effects from a Bayesian
standpoint, a Gaussian prior distribution is then introduced
for β(x),

β ∼ N (0, τ 2K), (19)

where K is a (t + 1) × (t + 1) diagonal matrix. The
construction of matrix K is defined below. First, the
correlation function is assumed to has a product correlation
structure of r(h) = ∏m

i=1 ri(hi). If we define li as the vector
with element lij = 1 if βi includes the linear effect of
factor j and 0 otherwise, and q i as the vector with element
qij = 1 if βi includes the quadratic effect of factor j and 0
otherwise, the matrix K can then be defined as

K =

⎡

⎢⎢⎢⎢⎢⎣

kl1
l · kq1

q 0 . . . 0

0
. . . 0

...
... 0

. . . 0

0 . . . 0 klt+1
l · kqt+1

q

⎤

⎥⎥⎥⎥⎥⎦
. (20)

where vectors kl and kq are respectively defined as

kl = 3 − 3r(2)

3 + 4r(1) + 2r(2)
,

kq = 3 − 4r(1) + r(2)

3 + 4r(1) + 2r(2)
. (21)
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From this, the posterior mean of β can then be estimated as

β̂ = τ 2

σ 2
KM ′

cR
−1(y − Mα),

var(β̂) = τ 2
(

K − τ 2

σ 2
KM ′

cR
−1McK

)
, (22)

where Mc is the model matrix of all candidate terms and M

is the model matrix of all terms in the existing trend function
of the ED.

The output of this procedure is the set of coefficients
β, which denotes the importance of the associated trend
function given the current experimental design. Based on β,
we can extract the most promising feature to be included
in the trend functions. The BK algorithm can then be
summarized as follows:

1. Build an initial design of experiments X and y.
2. Perform Bayesian forward selection using the candidate

set A.
3. Build a new UK model at each iteration of the

Bayesian forward selection algorithm with the current
polynomial trend function set.

4. Compute the LOOCV error for each UK surrogate
model.

5. Select the UK surrogate model that has the lowest
LOOCV error as the final surrogate model.

To ensure optimal implementation of BK, we used
several value of p and then selected the optimal value of
p, i.e., the one with the lowest LOOCV error. Further, we
used the ooDACE toolbox (Couckuyt et al. 2014) to create
the BK surrogate model. Again, note that the ooDACE
toolbox creates the candidate trend function set with only
the maximum two-factor interactions included.

2.2.3 Polynomial-Chaos-Kriging

In our explanation of PCK, we primarily refer to the works
of Schobi et al. (2015) and Kersaudy et al. (2015). The use
of an orthogonal polynomial trend function for UK was first
proposed by Schobi et al. (2015). The type of orthogonal
polynomials used in PCK depends on the assigned input
probability distribution. When we want to use PCK for
an optimization problem, Legendre polynomials are the
most appropriate due to the bounded and uniform search
domain of the optimization problem. Here, the PCK can be
built using one of two approaches, that is, either sequential
PCK or optimal PCK. The simplest and fastest approach
is sequential PCK, which directly uses the trend function
returned by pure LARS-PCE (Blatman and Sudret 2011).
The sequential approach assumes that the set of trend
functions returned by pure PCE approximation and LARS
is also the optimal set for the PCK surrogate model. An
optimal but more expensive approach is to build a new PCK

at each iteration of the LARS algorithm. In this paper, we
use the optimal PCK to ensure a high-quality PCK surrogate
model at each EGO iteration.

An important part of obtaining the trend function set
Ψ (x) for PCK is to make use of the LARS algorithm. LARS
is especially useful when the dimensionality of a problem
is high since LARS works by identifying a set of the
most influential terms to be incorporated into the regression
scheme (Blatman and Sudret 2011). Here, one must first
prepare an a priori set of polynomial terms, and the LARS
algorithm automatically selects the subset of terms that
yields the lowest leave-one-out error. Also, note that LARS
is especially useful for our application that involves EGO in
high dimensions, which we describe later. For a specified
prediction, the LARS algorithm is summarized as follows:

1. Build the candidate polynomial set A of degree p.
2. Set coefficients α0, ..., αP−1 to 0 and initial residual

vector ε(0) = y.
3. Select polynomial Ψζ (j1) that is most correlated with y.
4. Move coefficient αζ (j1) in the direction of predictor

Ψζ (j1) until the current residual ε(1) = y −
α̂ζ (j1)Ψζ (j1) (X ) is perfectly correlated with Ψζ (j1) and
another predictor Ψζ (j2) .

5. Move jointly {αζ (j1) , αζ (j2)}T in the direction defined
by their joint least-squares coefficient until some other
predictor Ψζ (j3) has high correlation with the current
residual.

6. Repeat steps 3-5 above until min(P, n − 1) is achieved.

The LARS algorithm is combined with UK to create
an optimal UK surrogate model based on the orthogonal
polynomial (Schobi et al. 2015; Kersaudy et al. 2015).
With this method, the trend function coefficients for each
possible term are calculated using GLS given the selected
polynomials. The difference between PCK and LARS-PCE
is that a new UK is built at each iteration of the LARS
algorithm instead of the pure PCE approximation. Using
this approach, the process of building the polynomial set
takes the correlation of residuals given by the kernels into
account. The algorithm for building a PCK surrogate model
can then be defined as follows:

1. Build the initial design of experiments X and y.
2. Perform the LARS algorithm using defined candidate

set A.
3. Build a new PCK model at each iteration of the LARS

algorithm with the current polynomial set.
4. Compute the LOOCVerror for each PCK surrogate model.
5. Select the PCK surrogate model with the lowest

LOOCV error as the final surrogate model.

Similar to the pure LARS-PCE approach, we tested
different values of p to identify the best possible
combination of polynomial sets for PCK. Here, we used
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either: the tensor product, total order expansion, or the
expansion with maximum two-factor interactions to build
the candidate polynomial set. In our research, we developed
our own PCK code by modifying the OK code detailed
by Forrester et al. (2008) as a basis.

BK and optimal PCK can improve the quality of
the UK surrogate model, though we have the additional
computational cost of building the UK model itself. The
high computational cost primarily stems from the need to
train the hyperparameters at each iteration of the Bayesian
forward selection or LARS algorithm. The computational
cost significantly increases if several values of p are
tested to further discover the polynomial set with the
lowest LOOCV error. It is worth noting that in real-
world applications, the computational cost to construct UK
with automatic trend function selection can be considered
negligible when compared to the simulation cost of high-
fidelity models. However, acceleration of hyperparameters
training benefits our study, since we need to repeat the
experiment multiple times. Therefore, it is necessary to
accelerate this process without sacrificing the accuracy
of the UK surrogate model. To deal with this issue, we
developed a simplified GA+BFGS strategy to select the
trend function and optimize the hyperparameters for PCK.
The simplified GA+BFGS strategy employs a GA on
the first iteration, while applying BFGS on subsequent
iterations using the optimum hyperparameters from each
previous iteration as its initial solution. This approach led
to the acceleration of the construction process for PCK
while returning a similar LOOCV error as compared to
the exhaustive GA+BFGS strategy that employs GA+BFGS
at every iteration of the BK/PCK algorithm. However, we
only applied our proposed hyperparameter optimization
strategy to the PCK model since we used the third-party
ooDACE code to build the BK surrogate model. We used
the exhaustive GA+local search strategy of ooDACE to train
the hyperparameters of OK to ensure the best quality BK
surrogate model for our work. The details of the simplified
GA+BFGS strategy and results from numerical experiment
are explained in detail in Appendix A.

3 Universal Kriging for efficient global
optimization

3.1 Framework

The primary contribution of this paper is to investigate
the capabilities of UK in EGO to solve single-objective
optimization problems given the constraint of a limited
budget. More specifically, we studied the implementation
of UK with a fixed predefined polynomial set (first- and
second-order polynomial built using total-order expansion)

and the methods with automatic trend function selection
incorporated into the EGO framework. Here, UK with
a fixed predefined polynomial set uses the Legendre
polynomials. On the other hand, BK and PCK employ
multidimensional polynomials from monic and Legendre
polynomials, respectively. We investigated two types of
UK with automatic trend function selection, that is, BK
and PCK. For convenience, we refer to our UK-EGO
implementation that employ BK and PCK as BK-EGO and
PCK-EGO, respectively. Since the key difference between
standard EGO and these two models lies only in the type of
Kriging model employed, we refer to the original paper on
EGO for the main algorithm of the optimizer (Jones et al.
1998). All EGO variants explained in our paper use the EI
as the metric to be optimized, that is

E[I (x)] = (ymin − f̂ (x))�

(
ymin − f̂ (x)

ŝ(x)

)

+ŝ(x)ϕ

(
ymin − f̂ (x)

ŝ(x)

)
, (23)

where ymin is the best solution identified so far, and �(.)
and ϕ(.) are the cumulative distribution and probability
density functions of the standard normal distribution,
respectively. Here, EI can be evaluated by using the error
function as

E[I (x)] = (ymin − f̂ (x))

[
1

2
+ 1

2
erf

(
ymin − f̂ (x)

ŝ(x)
√
2

)]

+ŝ(x)
1√
2π

exp

[
−(ymin − f̂ (x))2

2ŝ(x)2

]
. (24)

The next sample to be added to the ED is then found by
maximizing the EI, that is,

arg max
x

E[I (x)]. (25)

Optimization using the EI metric takes advantage of the
prediction and mean-squared error of the Kriging model
when searching for the optimum point of the surrogate
model. EI-based optimization ensures a balance between
exploration and exploitation of Kriging based search.
Therefore, EI-based optimization has a higher likelihood
to escape from local or false optima versus that of simple
prediction-based search; however, if either BK or PCK is
used as a surrogate model, the algorithm must be modified
slightly. Note that since the difference between all EGO
variants considered in our paper hinges on the choice of
surrogate model and not on the specific criterion to be
optimized, other criteria such as entropy improvement or
bootstrapped EI, are also directly applicable to the UK
surrogate model. Nonetheless, we suggest that more studies
be conducted to further explore when different criteria are
used with the PCK surrogate model.
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EGO works by first preparing initial ED X and y. A
Kriging surrogate model (i.e., UK or OK) is then built using
this initial dataset. After the Kriging surrogate model has
been built, the solution with the maximum EI value is then
searched using a global and/or local optimizer. This new
solution is then evaluated and added to the ED. At each EGO
iteration, the minimum objective value and corresponding
solution are recorded. This process is then repeated until the
computational budget is exhausted or no further change is
observed in the optimum value.

The overall algorithm of EGO with UK is similar to
standard EGO with OK with the key difference being the
surrogate model used. EGO with UK of first- and second-
order polynomials is relatively straightforward to perform,
that is, one just constantly employs UK with either the
first- or the second-order polynomial at each EGO iteration.
Both BK-EGO and PCK-EGO have an additional step in
which UK is built through an automatic trend function
selection procedure before a new solution is added. The
final polynomial set for BK and PCK is found by choosing
the polynomial set with the lowest LOOCV error eLOO

from various values of p, where this polynomial set is
denoted as Apmin

. Next, the BK or PCK surrogate model
with the lowest LOOCV error is selected. This chosen
surrogate model is then searched by maximizing EI to
identify the next solution to be added. This step is then
repeated until the computational budget is exhausted. From
the above, BK/PCK-EGO algorithm is summarized as
Algorithm 1.

In our paper, we optimize the EI metric using a hybrid
combination of GA and BFGS, where BFGS uses the final
solution found by the GA as its initial solution. The key
advantage of using the BK-EGO and PCK-EGO method is
that each surrogate model is a Kriging model, meaning that
each surrogate model has an uncertainty structure that can
be employed for EI-based optimization.

The LOOCV method assists in the process of selecting
the best surrogate model for the BK-EGO and PCK-
EGO that hopefully yields the lowest actual error. One
key advantage of using LOOCV error is that it can be
analytically calculated within a Kriging framework, as
described in detail by Dubrule (1983). The LOOCV error
can then be directly plugged into any error metric, where in
this paper we opt for the root mean squared error (RMSE)
as the error metric, that is,

eLOO =
√√√√1

n

n∑

i=1

(f (x(i)) − f̂ (−i)(x(i)))2, (26)

where f̂ (−i) is the Kriging prediction with the sample i is
removed from the original ED.

4 Optimization performance analysis on test
problems

As the core of our work, we studied the performance
of various UK schemes to optimize several synthetic
test functions and aerodynamic problem within the EGO
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Table 2 Specific test problems
considered in our study No. Problem Variables domain Nint Nupd Optimum value

1 Branin [0, 1]2 20 10 0.39788

2 Sasena [0, 5]2 20 20 −1.4565

3 Hosaki [0, 5]2 12 10 −2.3458

4 Hartman-6 [0, 1]6 60 25 −3.32237

5 Borehole (min.) See Appendix B 40 10 7.8198

framework. Experiments on synthetic functions is necessary
since they are cheap to evaluate, which allows us to
perform numerous independent runs so the results can be
analyzed statistically. On the other hand, studies focused
on real-world problem are necessary to further assess the
performance of EGO with UK. In this paper, the real-
world problem considered is the aerodynamic efficiency
optimization of a transonic airfoil.

Mathematical expressions for the given synthetic test
problems are detailed in Appendix B, while the variables
domain, initial sample size Nint , number of updates Nupd ,
and true global optimum values are shown in Table 2. The
first function is the Branin function, which has three global
optima, and is relatively easy to solve via EGO in spite of its
relatively complex trend. The second problem is the Sasena
function, which exhibits a complex trend with one global
optimum and three local optima. The third function is the
Hosaki function, which features a highly nonlinear trend
with one local optimum and one global optimum. Next,
the Hartman-6 function is a challenging problem given the
difficult location of its optimum solution. In this paper,
we use a log-type transformation y �→ − log(−y) for the
Hartman-6 function. Finally, the last artificial test function
is the minimization of the eight-dimensional borehole
problem. For the Hosaki and borehole problems, we set
the initial sample size lower than 10 × m rule to make
the problem more difficult, since we cannot observe clear
performance differences between all algorithms using the
10× m rule on these two functions. In general, we set Nupd

to 10 except for the Sasena and Hartman-6 problems since
it takes longer to converge to the near-optimum location on
these two functions.

For the PCK-EGO, we implemented two methods to
generate the candidate polynomial sets for the higher-
dimensional problems. The first method here is the total-
order expansion as it is used in the original PCK algorithm.
The second method uses the same candidate generation
method as suggested in the original implementation of BK
in the ooDACE toolbox, which limits the trend function up
to the two-factor interaction. A fairer comparison of PCK-
EGO and BK-EGO can be achieved if the initial candidate
trend function is the same, which is why we implemented

these two methods to generate candidate trend function sets
for PCK.

For the two-dimensional problems, we utilized tensor-
product expansion with pmax = 4 to construct the candidate
polynomial set for PCK and BK; note that the candidate
trend function size was the same for BK and PCK since
the given problems are two-dimensional. Conversely, the
candidate polynomial set of PCK for higher-dimensional
problems was constructed using total-order expansion and
the maximum two-factor interactions, with pmax = 3
and pmax = 2 for the Hartman-6 and borehole problem,
respectively. For the ooDACE implementation of BK,
we used the tensor product with maximum two-factor
interactions for high-dimensional problem; hence we used
it as is. To properly take the stochastic nature of the EGO-
based algorithm into account, the results shown in this paper
were obtained by averaging the results from 20 different
runs, each with a different set of latin hypercube sampling
(LHS) samples. These 20 different sets are identical for all
EGO variants to ensure that we make a fair comparison
between all algorithms.

We monitored the performance of the optimizer by using
the improvement metric defined as

I = |f (xopt ) − f (xbest )|
|f (xopt )| , (27)

where f (xopt ) and f (xbest ) represent the true optimum
solution of a given problem and the current best optimum.
Here, the lower the value of I , the better the performance of
the optimizer.

Besides analyzing the optimization performance, we also
analyze the approximation quality of OK and UK with the
initial sample set. Our goal here is to investigate whether the
approximation quality of the initial sample set has a clear
relationship with the performance of the EGO. The quality of
our surrogate model is measured using RMSE calculated as

RMSE =
√√√√ 1

nv

nv∑

i=1

(f (x(i)) − f̂ (x(i)))2, (28)

where nv is the number of validation samples, which we
fixed at 100.000.
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4.1 Studies in synthetic test problems

We present our optimization results in Figs. 1, 2, 3, 4
and 5. For all test functions, we depicted median I at
each update of the optimization process and the boxplot
of I at the end of each search update. The plot of
median convergence essentially depicts the capability of
the optimizer in approaching the true optimum value of
the function. Here, the faster the decay of I , the faster
the optimizer locates the true optimum. On the other
hand, the boxplots show the quality of solutions at the
final iteration. As such, there is the possibility that an
optimization algorithm scheme has a slow convergence of I ,
but is able to identify a satisfactory solution at the end of the
search, or vice versa. Therefore, it is important to analyze
these two aspects to obtain a complete understanding of the
performance of the various optimization methods that we
considered in this paper. We also depict the RMSE of the
initial surrogate models obtained from OK and various UK
schemes for all functions.

For convenience, we denote EGO with OK, UK with
first-order polynomial (i.e., UK-1st), UK with second-order

polynomials (i.e., UK-2nd), BK, and PCK as EGO, EGO-
1st, EGO-2nd, BK-EGO, and PCK-EGO, respectively.
For the higher-dimensional problem, we also compared
PCK that uses total-order expansion (i.e., PCK-TO) and
maximum two-factor interactions (i.e., PCK-TF). We
denote the PCK-EGO with total-order expansion and tensor
product with maximum two-factor interactions as PCK-
EGO(TO) and PCK-EGO(TF), respectively. Note that, for
the boxplot results of the Hartman-6 and borehole problems,
to further improve the readability, we abbreviated BK-EGO,
PCK-EGO(TO), and PCK-EGO(TF) to B.EG., P.EG(TO),
and P.EG(TF), respectively. For the borehole problem we
did not include the UK with second order polynomial
since the polynomial size exceeded the sample size for this
problem.

For the two-dimensional functions, in general, both BK-
EGO and PCK-EGO exhibited fast convergence of median
I relative to standard EGO. This is evident for the Branin
and Hosaki functions in which both variants of UK-EGO
with automatic trend function selection outperformed all
other schemes. The use of first-order polynomials as trend
functions was not sufficient to assist EGO for the Branin

Fig. 1 Results obtained from
various EGO schemes for the
Branin function: a Convergence
of the median, b boxplot, and c
RMSE from the initial surrogate
models
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Fig. 2 Results obtained from
various EGO schemes for the
Hosaki function: a Convergence
of the median, b boxplot, and c
RMSE from the initial surrogate
models
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and Hosaki function; for the Hosaki function this worsened
the optimization process. EGO-2nd was particularly useful
for the Branin function but not for the Hosaki function,
although its performance was still lower than both BK-
EGO and PCK-EGO. The observed convergence behavior
was more complex for the Sasena function; analysis of
boxplots reveals that there was no significant difference
between the qualities of final solutions for EGO, EGO-1st,
BK-EGO, and PCK-EGO, with EGO-2nd emerging as the
clear winner for the Sasena function. This result is in stark
contrast with results obtained for the Branin and Hosaki
functions in which BK-EGO and PCK-EGO surpassed the
other methods. Even so, the fact that BK-EGO and PCK-
EGO exhibited faster convergence versus that of EGO on
early updates indicates that there was still a beneficial effect
observed when UK with automatic trend function selection
was employed for the Sasena function.

For the Hartman-6 function, it was very difficult to
achieve a very low I value due to the highly nonlinear and
complex nature of the response surface. We observe that
all UK-EGO schemes were unable to perform better than
standard EGO for the Hartman-6 function. Results for the
Hartman-6 function indicate that the addition of a trend

to model the surface of a function with no polynomial-
like trend produced a poorer optimized solution compared
to standard OK. For the borehole problem, even though
the statistics for the final solutions show that there was no
significant difference between EGO and PCK-EGO(TO),
we observe that BK-EGO and PCK-EGO(TO) were faster
than EGO in discovering locations near the optimum point.
The fact that BK-EGO became quite stagnant near the
end of the search indicates that it was unable to further
exploit the global optimum of the borehole function. One
fact worth noting is that EGO with a first-order polynomial
outperformed the other methods starting from the very
first iteration until the end of the search for the borehole
problem. Therefore, using a first-order polynomial proves to
be more than sufficient to improve the performance of UK-
EGO relative to standard EGO for the borehole problem.
This suggests that using automatic trend function selection
does not always automatically lead to the best optimization
performance.

On the Hartman-6 and borehole problem, the poor
performance of PCK-EGO(TF) indicates that the initial
candidate trend function also had a profound effect
on the performance of PCK-EGO. Since BK-EGO and
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Fig. 3 Results obtained from
various EGO schemes for the
Sasena function: a Convergence
of the median, b boxplot, and c
RMSE from the initial surrogate
models
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PCK-EGO(TF) use the same index of the candidate
set, performance differences between the two might be
attributed to the different types of polynomials and the trend
function selection method.

The RMSE results from the initial surrogate models
show that the use of UK with automatic trend function
selection (i.e., BK and PCK) does not automatically
lead to improvements in approximation quality. For the
Branin function in which the problem’s surface can be
well approximated with a polynomial, PCK demonstrated
significant improvements in terms of accuracy; however,
other functions featured a non-polynomial-like surface that
posed a challenge for a polynomial-based response surface
as that of the UK. We observe that sometimes using UK
with a predefined trend function (i.e., first- or second-
order polynomial) can produce a better approximation than
that produced by BK and PCK, as in the case of Sasena,
Hartman-6, and borehole problem. In high-dimensional
problems, we also observe that the PCK-TO performed
better than that of the PCK-TF.

Analyzing the relationship between the RMSE and the
optimization performance, we observe that, in general,
achieving a lower RMSE is closely correlated to better
optimization performance. This is clear on such problems
as Branin, Sasena, and borehole function in which
PCK-EGO, EGO-2nd, and EGO-1st exhibited the best
optimization performance, respectively. Especially in the
Branin function, the relationship between the RMSE and
the optimization performance is very clear. The RMSE
is also useful for excluding poor performed surrogate
models in terms of optimization, as it can be observed
in the Hartman-6 function. However, as demonstrated in
the Hosaki function, this was not always the case; the
association between RMSE for the initial samples and
optimization performance is not as clear for the Hosaki
function. The fact that both BK-EGO and PCK-EGO
performed better than EGO on the Hosaki problem in
spite of a nonstatistically significant difference of RMSE
results indicates that BK-EGO and PCK-EGO can better
predict the global optimum location of the Hosaki function
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Fig. 4 Results obtained from various EGO schemes for the Hartman-6
function: a Convergence of the median, b boxplot, and c RMSE from
the initial surrogate models

as compared to OK. Therefore, surrogate models that are
less accurate in the entire design space can produce better-
optimized solutions than OK, thus indicating that they can
better predict where the optimum lies.

4.2 Studies in aerodynamic design optimization

Having finished our study on synthetic problems, we
next focus our analysis on the capabilities of UK-EGO
in real-world optimization problems. The problem we
consider in this paper is transonic airfoil optimization
in inviscid flow using class shape transformation (CST)
airfoil parameterization (Kulfan 2008) and an Euler CFD
solver. This problem was previously studied by Ray and
Tsai (2004) in the context of multiobjective optimization
and by Palar et al. (2016) in the context of a real-world
application of multiobjective surrogate-based memetic
algorithms.

For this specific real-world problem, we used low-
fidelity inviscid Euler code to obtain the aerodynamic
coefficients. Although this inviscid solver is rarely used in
real-world airfoil optimization problems, it is representative
of this real-world aerodynamic optimization problem in
terms of the response surface’s complexity. Moreover, the
use of a low-fidelity solver allows us to collect results
from several optimization runs to then perform a statistical
analysis of our results. The objective here is to minimize
the ratio of the drag-to-lift coefficient (Cd/Cl) as a function
of CST shape parameterization. We used a 16 variable
CST to represent the airfoil shape and therefore act as
decision variables. To set the upper and lower bounds for
optimization, we first fit the RAE 2822 airfoil geometry
with CST parameterization to identify the initial CST
parameters. These initial parameters were then varied within
±20% of their initial values to serve as decision variables.
Here, the design conditions for optimization are M =
0.8 and AoA = 2◦, where M and AoA are the Mach
number and angle of attack, respectively. The number of
initial samples was 40 with 15 additional samples, where
LHS was used to generate 10 different sets of initial
samples. We intentionally set the initial sample size to a
low value (i.e., 2.5m=40) to simulate a high-dimensional
optimization problem with sparse initial sampling points,
with an additional 15 enriched samples to seek the optimum
solution. The enlarged geometry and CFD mesh of the RAE
2822 airfoil used in our simulation are shown in Fig. 6.
Here, the value of Cd/Cl obtained from CFD simulation for
the datum airfoil was 0.0732.

Next, we set two values of pmax to construct BK and
PCK for this problem, i.e., pmax = 1 and pmax =
2. We also compared our results with a PCK-EGO that
uses maximum two-factor interactions for trend function
generation. Moreover, we also compared our results with
the UK that directly uses the coefficient magnitude to
build an optimum UK surrogate model (i.e., the frequentist
viewpoint) (Couckuyt et al. 2012), which we denoted
as UK-1st(F). In this paper, the frequentist viewpoint
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Fig. 5 Results obtained from
various EGO schemes for the
borehole problem: a
Convergence of the median, b
boxplot, and c RMSE from the
initial surrogate models
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ranks the polynomial terms according to their coefficients
which are estimated via GLS. Following this step, multiple
Kriging models are then constructed according to this
ranking; the Kriging model of lowest LOOCV error is
then selected. Clearly, this can only be done if the number
of polynomial term is lower than the number of samples
available.

Firstly, using a different set of LHS generated initial
samples and 200 validation samples, we analyzed the
approximation quality of the various UK schemes in the
given aerodynamic function. Our results, which we present
in Fig. 7, show that all choices of nonconstant trend
function produced surrogate models with inferior quality as
compared to the standard OK. Among UK variants, PCK

Fig. 6 Baseline airfoil used in
this paper: a original RAE 2822
and CST approximation and b
inviscid mesh for the CFD
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Fig. 7 RMSE results from OK and various UK schemes on the airfoil
problem

with total-order expansion of pmax = 1 produced the best
approximation. PCK was also generally better than BK
in approximating the aerodynamic function. Further, PCK
surrogate models with total-order expansion were also better
than PCK with maximum two-factor interaction in terms
of approximation error. The fact that the approximation
worsened again for all types of BK and PCK when pmax

was set to two indicates that higher values of pmax does
not ensure a better approximation quality. This essentially
means that the LOOCV scheme failed to detect the proper
trend function for the UK approximation; thus, it is
probably better to limit pmax to avoid poor approximation.
Nonetheless, all UK variants with automatic trend function
selection produced-higher quality surrogate models versus
that of UK-1st(F). These results show that using the
automatic trend function selection procedure to build a
UK is more beneficial than directly using the order from
the coefficients magnitude to approximate this problem’s
landscape. By considering the fact that we have a similar
trend function set for UK-1st, PCK-1st(TO), and UK-1st(F),
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Fig. 8 Mean convergence of the optimum solutions for the airfoil
problem with comparisons to BK and PCK
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Fig. 9 Mean convergence of the optimum solutions for the airfoil
problem with comparisons to UK-EGO with a fixed trend function and
frequentist ordering

the low RMSE value of PCK-1st(TO) can be attributed to
the success of the LARS algorithm itself, though we note
that the RMSE was still higher than that of OK.

In further explaining our results, we separate the
convergence plots into two figures to avoid a too convoluted
view. We also separate this plot such that it is easier for us to
investigate the effects of different UKmethods (i.e., BK and
PCK) and the benefit of automatic trend function selection
as compared to UK with fixed polynomial trend functions.
Note that Figs. 8 and 9 show the convergence plot of the
mean value and not the median; we use this approach here
because we only performed our experiments 10 times due
to the costly function evaluation; hence plotting the mean
makes more sense. The boxplot of best solutions at the end
of the search are depicted in Fig. 10.
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Fig. 10 Boxplot of the optimum solutions at the final iteration on the
airfoil problem
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4.2.1 Comparing blind Kriging
with polynomial-chaos-Kriging and the effect of pmax

We first analyze and compare the performance of BK-EGO
and PCK-EGO relative to standard EGO. We also analyze
the effect that pmax had on the performance of PCK-EGO
and BK-EGO, as well as the effect that candidate trend
function set had on PCK-EGO. Our results are shown in
Fig. 8; we observe that a proper choice of trend function
for UK can improve the performance of our EGO-based
optimization. Here, PCK-EGO(TO) with pmax = 1 was
the best performer for the airfoil problem surpassing EGO
with OK. The success of PCK-EGO(TO) with pmax = 1
here indicates the linearity or almost linear behavior of
relationship between the objective function and decision
variables. More specifically, PCK-EGO-1st(TO) was the
only UK variant that outperformed standard EGO with OK
for this problem.

We also observe here a significant difference between
performances of BK-EGO and PCK-EGO, where all
variants of the latter outperformed the former. We also
observe a notable effect when total-order expansion was
used to build the candidate trend function for PCK-EGO.
This trend of better performance for PCK-EGO with total-
order expansion is similar to our results for the borehole
and Hartman-6 problems. We note here that PCK-EGO
achieved its optimum performance on a high-dimensional
problem if the candidate trend function set was constructed
through total-order expansion, that allowed interactions of
higher than two factors to be included in the scheme. The
poor performance of BK-EGO here can be attributed to
the polynomial trend function type, trend function selection
scheme, and most likely the choice of the candidate trend
function set.

Finally, the effect of pmax was profound in this
example, with the performance of BK-EGO and PCK-
EGO deteriorating when the value of pmax was set to two.
This trend indicates that applying a candidate polynomial
set with a higher order does not automatically lead to a
better optimization process, even with an automatic trend
function selection procedure. This is also true when we
want to find a better-optimized solution versus that of
the one identified by standard EGO with OK. Here, the
success of PCK-EGO-1st(TO) can be attributed to at least
two factors, that is, the LARS algorithm and the correct
choice of the candidate trend function set. To investigate
whether the LARS algorithm yielded better performance
for PCK-EGO-1st(TO) as compared to EGO with OK, we
further compared the performance of PCK-EGO-1st(TO)
with EGO with all first order polynomial functions and the
frequentist viewpoint.

4.2.2 Comparing polynomial-chaos-Kriging with Universal
Kriging based on a frequentist viewpoint and fixed trend

Our results are shown in Fig. 9. For clarity, we again
show the performance of all PCK-EGO results with total-
order expansion and maximum two-factor interactions.
Here, we observe that PCK-EGO with LARS had better
performance as compared to the PCK-EGO with all
first-order polynomial functions or with frequentist trend
function ordering. When building the intermediate UK
surrogate models, the LARS algorithm considers the
correlation between the residuals from the kernels. This is
the primary difference between PCK with LARS and the
one with a simple frequentist scheme, that does not consider
this residual when building the intermediate surrogate
models. In this sense, we can see that, for the aerodynamic
problem, the LARS algorithm successfully selected the
important first-order polynomial that was then able to guide
the optimization process to discover the optimum solution
even when the cardinality of the candidate set was lower
than the sample size.

If we again observe the RMSE plot in Figure 7,
there is a clear correlation between the RMSE and the
optimization performance for the airfoil problem. However,
there are some exceptions, the extremely poor optimization
performance of BK-EGO-2nd was not observed in the
RMSE plot, since the mean and median RMSE values of
BK-2nd were still lower than those of UK-1st(F) in which
the EGO-1st(F) exhibited better performance than that of
BK-EGO-2nd. Moreover, PCK-EGO-1st(TO), which was
the best performer for this problem, had even higher mean
and median RMSE values as compared to standard OK.

4.3 Remarks from the test problems

Based on the results of the tests on the synthetic and
real-world problems, we can make several remarks and
recommendations regarding the application of UK for EGO-
based optimization:

1. The PCK-EGO was the best variant among all UK-
based EGO methods. Furthermore, our investigation
showed that EGO with UK had the highest performance
when the landscape of the problem exhibited a trend
that could be effectively captured by a polynomial. The
UK variants with automatic trend function selection
(i.e., BK and PCK) were able to outperform both
OK and UK with a fixed trend function on problems
exhibiting polynomial or slightly nonlinear trends, such
as the Branin and Hosaki functions. Meanwhile, all UK-
EGO variants failed to outperform standard EGO for
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problems with highly nonlinear trends and problems
in which no clear polynomial trend exists (e.g., the
Hartman-6 function).

2. For high-dimensional problems, using total-order
expansion is the best choice when one wishes to apply
PCK-EGO. Our results signify that there is a poten-
tial for improvement when UK is used for EGO-based
optimization, albeit with the warning that UKwith auto-
matic trend function selection does not automatically
lead to a better optimization process.

3. UK surrogate models with evidently lower and higher
approximation error versus that of OK indicates a good
and poor surrogate for EGO, respectively. However, UK
surrogate model with similar or slightly lower quality
versus that of OK can also perform better or at least
similar to the OK when applied within EGO algorithm.
This is mainly due to the addition of trend function
that aids the process of locating the optimum point by
providing a good direction for optimization.

4. Although a proper choice of trend function for UK
can result in better-optimized solutions, care should
be taken when employing UK in solving real-world
problems. It is obvious that an improper selection
of trend function can result in an inferior optimized
solution as compared to standard OK. Note that this
is also true when UK with automatic trend function
selection is employed.We observe that when addressing
real-world optimization, PCK-EGO with pmax = 1
and total-order expansion was the best variant of all,
whereas increasing pmax only worsened performance as
compared to that of OK.

Based on points 1 and 2, we therefore recommend
the use of PCK-EGO with total-order expansion-generated
polynomial trend for solving expensive single-objective
optimization problems. We have observed so far that
this method ensures a robust performance of EGO-based
search when seeking the optimum solution as compared
to other UK-EGO algorithms. Regarding points 3 and 4,
we recommend carefully performing a preliminary analysis
of the problem’s complexity before solving the problem.
If possible, one should analyze the degree of nonlinearity
and interaction between variables in the problem being
tackled. Note that UK with automatic basis selection (i.e.
BK and PCK) provides a tool for such interpretation
from the given trend function. Nonetheless, our personal
recommendation is to use a variance-based sensitivity
analysis tool (Sobol method) since it can measure the effect
of interactions besides the main effect (Sobol 1993). As
suggested by Couckuyt et al. (2012), using an independent
test set is also helpful. For example, one can construct a

UK model with this independent test set to compare the
error performance of various UK and OK implementations,
for additional information besides the LOOCV error.
We believe that these are important steps for successful
implementation of UK-EGO algorithms.

5 Conclusions

In this paper, we investigated the capabilities of UK in
assisting optimizations using the EGO framework. Our
primary objective was to analyze the potential benefits and
pitfalls of UK when used to solve expensive simulation-
based optimization problems; secondarily, we investigated
the computational aspects of UK with automatic trend
function selection. We first explained the UK surrogate
model and EGO, stressing the automatic trend function
selection methods for UK, which are BK and PCK.

The capabilities of UK coupled with EGO were then
investigated via five test problems and one real-world
engineering (i.e., aerodynamic) problem. More specifically,
we studied four variants of UK, each of which was
compared with OK: these were (1) UK with a first-order
polynomial, (2) UK with a second-order polynomial, (3)
BK, and (4) PCK. EGO with PCK was the best variant
tested, as it was able to perform better than or at least
similarly to (or slightly worse than) EGO with OK. PCK-
EGO was not necessarily the best for all test functions,
but it was more robust than the other UK schemes. In
general, PCK-EGO was better and more robust than BK in
several instances of test problems; however, it proved to be
much better to equip PCK-EGO with total-order expansion-
generated candidate polynomial sets to ensure optimum
performance for high-dimensional problems. For the real-
world problem, determining the candidate polynomial set
for automatic trend function selection also needed careful
consideration, since PCK-EGO was able to perform better
than EGO with OK only with a proper choice of its
candidate polynomial set. Based on our investigations, a
UK surrogate model that is more accurate than OK in its
initial iteration was able to produce an optimized solution
with better quality; however, we also found that a surrogate
model that is less accurate in modeling the entire design
space was able to produce a better-optimized solution versus
that of OK. This phenomenon occurred because in spite of
its global accuracy, this approach was able to point out the
locations of the global optimum better than standard OK.

Although in this paper we only considered unconstrained
functions, extending our work to constrained problems is
relatively straightforward; here, the constraint surrogate
model would also be constructed using the UK surrogate

2393



P. S. Palar, K. Shimoyama

model. As for our future work, we plan to develop other
criteria aside from just LOOCV error identification when
choosing a suitable UK surrogate model for EGO. We
include this as future work because LOOCV error favored
surrogate models that were globally accurate, whereas for
optimization, a surrogate model that is locally accurate
near the optimum region is more desirable. We believe that
more real-world studies are needed to further investigate
the capability of UK-EGOs in solving various real-world
problems. Finally, there is potential for parallelization since
both BK and PCK construct multiple Kriging models that
can be exploited for such task.
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Appendix A: Trend function selection
and hyperparameter optimization
strategy for PCK

We propose a sequential hyperparameter optimization
strategy based on BFGS at each iteration of the UK
construction process that utilizes the optimum solution from
the previous iteration. This strategy can be applied to both
BK and PCK since both methods work by scanning from
the provided polynomial set. Regardless, our strategy uses
the optimum solution obtained in the previous iteration
as the initial solution for the BFGS search in the current
iteration. Our primary motivation for applying this strategy
is that the likelihood function for one iteration might change
only slightly relative to the previous iteration, indicating the
proximity of the global optimum hyperparameter locations.
Further, in our strategy, a GA is only used in the first
iteration to find the optimum hyperparameters of the OK
before adding more trend functions. Here, we utilize a
GA with a population size of 100 and a maximum of
200 generations followed by BFGS search. This exhaustive
search is used only in the first iteration since the accuracy
of the hyperparameters’ optimization procedures that follow
relies on the accuracy of the OK hyperparameters. After the
final trend function is identified, our GA+BFGS approach is
then applied again with this final trend function to search for
possible higher values of the likelihood. We call our strategy
here the simplified GA+BFGS strategy as opposed to the
exhaustive GA+BFGS strategy.

To verify the performance of our simplified GA+BFGS
strategy, we compared its performance with the exhaustive
GA+BFGS strategy using five test functions mentioned in
Appendix B. In this study, we set sample size to 20, 60,
and 40 for the two-dimensional problems, Hartman-6, and
borehole problem, respectively. We generally used Ns =

10×m, where Ns is the sample size, to generate the sample
set, with the only exception being the borehole problem in
which we set the sample size to 40 to make the optimization
problem more difficult. We also compared our simplified
GA+BFGS strategy with the simple BFGS strategy that
employs a one-shot strategy with a random initial solution at
each UK iteration. More specifically here, we compared the
lowest LOOCV errors resulting from these three strategies.

For all five test functions, we observe from Fig. 11
that the error performances of the UK for the exhaustive
GA+BFGS and simplified GA+BFGS strategies are similar
to one another. We observe that the performance of the
simple BFGS strategy was not as good as that of the
other two strategies. All strategies performed approximately
the same for the Hartman-6 problem; this problem is
a highly nonlinear and difficult problem in which the
UK did not perform better than the standard OK in
terms of approximation quality, thus explaining why UK
hyperparameter tuning minimally affects LOOCV error.
The lower performance of the simple BFGS strategy here
signifies that the discovery of the optimum of a likelihood
function for the UK is sensitive to the choice of the initial
point.

The time required to train the hyperparameters using
these simplified and exhaustive strategies on a two-
dimensional function with p = 4 was approximately 3
and 40 seconds, respectively, on a computer with Intel®
Xeon(R) E5-1630 v4 8 core CPU @ 3.70GHz equipped
with MATLAB. This indicates that our simplified strategy
can perform similarly to the exhaustive strategy in only
7.5% of the time required by the exhaustive approach.

Appendix B: Test functions

1. Branin function (two variables).

f1(x) =
(

b2 − 5.1

4π2
b21 + 5

π
b1 − 6

)2

+10

[(
1 − 1

8π

)
cos (b1) + 1

]
, (29)

where b1 = 15x1 − 5, b2 = 15x2, and x1, x2 ∈ [0, 1]2.
2. Sasena function (two variables).

f (x) = 2 + 0.01(x2 − x2
1)

2 + (1 − x1)
2 + 2(2 − x2)

2

+7sin (0.5x1) sin (0.7x1x2).

x1 ∈ [0, 5], x2 ∈ [0, 5]. (30)

3. Hosaki function (two variables)

f (x) =
(
1 − 8x1 + 7x2

1−(7/3)x3
1 + (1/4)x4

1

)
x2
2e

−x1 .

x1 ∈ [0, 5], x2 ∈ [0, 5]. (31)
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Fig. 11 Comparing the LOOCV
error for PCK with
hyperparameters tuned using
various strategies on the:
a Branin, b Sasena, c Hosaki,
d Hartman-6, and e borehole
problems
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4. Hartman-6 function (six variables)

f (x) = −
4∑

i=1

ciexp

⎧
⎨

⎩−
n∑

j=1

Aij (xj − Pij )
2

⎫
⎬

⎭ ,

x = (x1, x2, . . . , xn)
T , xi ∈ [0, 1] (32)

where

c = [1.0, 1.2, 3, 3.2]T . (33)

A =

⎡

⎢⎢⎣

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

⎤

⎥⎥⎦ (34)

P = 10−4

⎡

⎢⎢⎣

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

⎤

⎥⎥⎦

(35)
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Table 3 The input variables and their input ranges for the borehole test
function

Random variable Uncertainty range

rw [0.05; 0.15]

r [100; 50000]

Tu [63700; 115600]

Hu [990; 1100]

Tl [63.1; 116]

Hl [700; 820]

L [1120; 1680]

Kw [9855; 12045]

5. Borehole function (eight variables)

f (x) = 2πTu(Hu − Hl)

ln(r/rw)
(
1 + 2LTu

ln(r/rw)r2wKw
+ Tu

Tl

) (36)

where the input variables are defined as shown in
Table 3.

Appendix C: Boxplot

For the boxplots, the bottom and top of each box represent
the lower quartile Q1 (i.e., 25%) and upper quartile Q3
(i.e., 75%), respectively. The line between the top and
bottom of the box represents the median (i.e., 50%). Further,
the whiskers below and above the box are drawn from
Q1 − 1.5 IQR and Q3 + 1.5 IQR, where IQR represents
the interquartile range (i.e., Q3-Q1). Observations that lie
beyond the whisker length are identified as outliers. Finally,
the circle denotes the mean of the observations.

References

Bellary SAI, Samad A, Couckuyt I, Dhaene T (2016) A comparative
study of Kriging variants for the optimization of a turbomachinery
system. Eng Comput 32(1):49–59

Benassi R, Bect J, Vazquez E (2011) Robust Gaussian process-based
global optimization using a fully Bayesian expected improvement
criterion. In: International conference on learning and intelligent
optimization. Springer, pp 176–190

Blatman G, Sudret B (2011) Adaptive sparse polynomial chaos
expansion based on least angle regression. J Comput Phys
230(6):2345–2367

Couckuyt I, Forrester A, Gorissen D, De Turck F, Dhaene T (2012)
Blind Kriging implementation and performance analysis. Adv Eng
Softw 49:1–13

Couckuyt I, Dhaene T, Demeester P (2014) ooDACE toolbox: a
flexible object-oriented Kriging implementation. J Mach Learn
Res 15(1):3183–3186

Dubrule O (1983) Cross validation of Kriging in a unique
neighborhood. J Int Assoc Math Geol 15(6):687–699

Dwight RP, Han Z-H (2009) Efficient uncertainty quantification using
gradient-enhanced Kriging. AIAA paper 2276:2009

Forrester A, Sobester A, Keane A (2008) Engineering design via
surrogate modelling: a practical guide. Wiley, New York

Forsberg J, Nilsson L (2005) On polynomial response surfaces and
Kriging for use in structural optimization of crashworthiness.
Struct Multidiscip Optim 29(3):232–243

Jeong S, Obayashi S (2005) Efficient global optimization (EGO) for
multi-objective problem and data mining. In: 2005 IEEE congress
on evolutionary computation, vol 3, IEEE, pp 2138–2145

Jeong S, Murayama M, Yamamoto K (2005) Efficient optimization
design method using Kriging model. J Aircr 42(2):413–420

Jones DR (2001) A taxonomy of global optimization methods based
on response surfaces. J Glob Optim 21(4):345–383

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimiza-
tion of expensive black-box functions. J Glob Optim 13(4):455–
492

Joseph VR, Hung Y, Sudjianto A (2008) Blind Kriging: a new method
for developing metamodels. J Mech Des 130(3):031102

Keane AJ (2006) Statistical improvement criteria for use in
multiobjective design optimization. AIAA J 44(4):879–891

Kersaudy P, Sudret B, Varsier N, Picon O, Wiart J (2015)
A new surrogate modeling technique combining Kriging and
polynomial chaos expansions-application to uncertainty anal-
ysis in computational dosimetry. J Comput Phys 286:103–
117

Kleijnen JP, van Beers W, Van Nieuwenhuyse I (2012) Expected
improvement in efficient global optimization through boot-
strapped Kriging. J Glob Optim 54(1):59–73

Knowles J (2006) ParEGO: a hybrid algorithm with on-line land-
scape approximation for expensive multiobjective optimization
problems. IEEE Trans Evol Comput 10(1):50–66

Krige D (1951) A statistical approach to some mine valuation and
allied problems on the Witwatersrand

Kulfan BM (2008) Universal parametric geometry representation
method. J Aircr 45(1):142–158

Liang H, Zhu M (2013) Comment on Metamodeling method using
dynamic Kriging for design optimization. AIAA J 51(12):2988–
2989

Liang H, Zhu M, Wu Z (2014) Using cross-validation to design trend
function in Kriging surrogate modeling. AIAA J 52(10):2313–
2327

Matheron G (1969) Les cahiers du centre de morphologie
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Schöbi R, Sudret B, Marelli S (2016) Rare event estimation using
polynomial-chaos Kriging. ASCE-ASME Journal of Risk and
Uncertainty in Engineering Systems, Part A: Civil Engineering
page D4016002

2396



On efficient global optimization via universal Kriging surrogate models

Schobi R, Sudret B, Wiart J (2015) Polynomial-chaos-based Kriging.
Int J Uncertain Quantif 5(2):171–193

Shimoyama K, Kawai S, Alonso JJ (2013) Dynamic adaptive sampling
based on Kriging surrogate models for efficient uncertainty
quantification. In: 15th AIAA non-deterministic approaches
conference, pp 2013–1470

Simpson TW, Mauery TM, Korte JJ, Mistree F (2001) Kriging models
for global approximation in simulation-based multidisciplinary
design optimization. AIAA J 39(12):2233–2241

Sobol IM (1993) Sensitivity estimates for nonlinear mathematical
models. Math Model Comput Exp 1(4):407–414

Stein ML (2012) Interpolation of spatial data: some theory for Kriging.
Springer, Berlin

Swiler L, Paez T, Mayes R, Eldred M (2009) Epistemic uncertainty
in the calculation of margins. In: AIAA structures, structural
dynamics, and materials conference. Palm Springs CA

Ur Rehman S, Langelaar M (2015) Efficient global robust optimization
of unconstrained problems affected by parametric uncertainties.
Struct Multidiscip Optim 52(2):319–336

Ur Rehman S, Langelaar M, van Keulen F (2014) Efficient Kriging-
based robust optimization of unconstrained problems. J Comput
Sci 5(6):872–881

Viana FA, Haftka RT, Watson LT (2013) Efficient global optimization
algorithm assisted by multiple surrogate techniques. J Glob Optim
56(2):669–689

Wiener N (1938) The homogeneous chaos. Am J Math 60(4):897–936
Xiu D, Karniadakis GE (2002) The Wiener-Askey polynomial

chaos for stochastic differential equations. SIAM J Sci Comput
24(2):619–644

Zhao L, Choi K, Lee I (2011) Metamodeling method using
dynamic Kriging for design optimization. AIAA J 49(9):2034–
2046

2397


	On efficient global optimization via universal Kriging surrogate models
	Abstract
	Abstract
	Introduction
	Universal Kriging surrogate model
	Basics
	Automatic trend function selection for universal Kriging
	Choice of polynomials
	Blind Kriging
	Polynomial-Chaos-Kriging


	Universal Kriging for efficient global optimization
	Framework

	Optimization performance analysis on test problems
	Studies in synthetic test problems
	Studies in aerodynamic design optimization
	Comparing blind Kriging with polynomial-chaos-Kriging and the effect of pmax 
	Comparing polynomial-chaos-Kriging with Universal Kriging based on a frequentist viewpoint and fixed trend

	Remarks from the test problems

	Conclusions
	Acknowledgements
	Appendix  A: Trend function selection and hyperparameter optimization strategy for PCK
	Appendix B: Test functions
	Appendix  B: Test functions
	Appendix C: Boxplot
	Appendix  C: Boxplot
	References


