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Abstract Topology optimization combined with optimal
design of electrodes is used to design piezoelectric micro-
grippers. Fabrication at micro-scale presents an important
challenge: due to non-symmetrical lamination of the struc-
tures, out-of-plane bending spoils the behavior of the grip-
pers. Suppression of this out-of-plane deformation is the
main novelty introduced in this work. In addition, a robust
approach is used to control length scale in the whole domain
and to reduce sensitivity of the design to small fabrica-
tion errors. Geometrically non-linear modeling is used for
the in-plane deformations whereas out-of-plane motions are
modeled by a linear, un-coupled plate model to save compu-
tational time. Model and resulting designs are validated by
subsequent 3D geometrically non-linear modeling.

Keywords Topology optimization · Unimorph · Large
displacements · Energy interpolation · Piezoelectric
effect · Electrode profile

� D. Ruiz
David.Ruiz@uclm.es

O. Sigmund
sigmund@mek.dtu.dk

1 Departamento de Matemáticas, ETSII,
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1 Introduction

The conceptual tool of topology optimization has played a
very important role in the development of structural design.
Nevertheless, its use is not restricted only to this field: com-
pliant mechanisms (Sigmund 1997; Frecker et al. 1997;
Jonsmann et al. 1999), dynamics (Dı́az and Kikuchi 1992;
Pedersen 2000), extremal materials (Sigmund and Torquato
1997) and band gaps (Sigmund and Jensen 2003; Jensen
and Sigmund 2011), among others, are fields where its
contribution has been crucial.

The topology optimization method has been widely used
in the optimal design of MEMS (micro-electromechanical
systems), where the size of the devices typically is smaller
than 1mm. Sigmund (1997) presented optimal design of
compliant mechanisms topologies based on the topology
optimization method, where optimized mechanisms were
fabricated at macro and micro-scale. Concerning piezoelec-
tric effects, Silva et al. (1997) presented a procedure based
on topology optimization and homogenization methods to
optimize unit cells for piezocomposites. Sigmund (2001a, b)
optimized thermal and electrothermal microactuators com-
posed of one and two materials, respectively. Maute and
Frangopol (2003) suggested a methodology for the design
of MEMS under stochastic loads and boundary conditions.
Recently, Donoso and Sigmund (2016) developed a system-
atic method where a passive gap-phase was included in the
optimization process of modal filters for fixed host structure
in order to ensure manufacturability and realizability.

The nature of the actuation of the mechanisms in this
study is the piezoelectric effect. In the last decades there
has been a big development in the subject of topology opti-
mization in piezoelectric materials. The first work where the
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topology optimization method was used to optimize piezo-
electric structures was Sigmund et al. (1998), that optimized
the unit cell of structures for improving piezoelectric fea-
tures. Regarding piezoelectric actuators, Silva and Kikuchi
(1999) presented a method to design in-plane actuators by
optimizing the host structure, but fixing the piezoelectric
material layer. Kögl and Silva (2005) presented optimiza-
tion of piezoelectric layers with a three-layer model, with
two piezoelectric films symmetrically bonded to the host
structure. Carbonari et al. (2007) and Luo et al. (2010) opti-
mized the host structure and the piezoelectric distribution
simultaneously. The inclusion of a third variable, the spatial
distribution of the control voltage (related to the polarization
of the piezoelectric layers) in the optimization problem, was
presented in Kang and Tong (2008a) and improved in Kang
and Tong (2008b) by introducing an interpolation scheme
in the tri-level actuation voltage term. Further results were
presented in Kang et al. (2011, 2012) for in-plane and
out-of-plane piezoelectric transducers, respectively.

In prior works (Ruiz et al. 2016a, b) some of the authors
have presented a systematic procedure to design static
microtransducers and modal filters, respectively. In both
works the host structure (including the piezoelectric layer)
and polarization profile of the electrodes are optimized
simultaneously, considering that both piezoelectric films are
perfectly bonded to the top and bottom of the host struc-
ture. However, trying to realize this reveals an important
obstacle: it is hard to fabricate piezoelectric layers sym-
metrically in the micro scale (Kucera et al. 2014), hence
only one piezoelectric film can be deposited on the top
of the host structure. This fact is not a problem when the
transducer is working as a sensor, since the deformation is
produced by an external force. However, when the device
is working as actuator it moves in-plane, but also out-of-
plane deformation appears, making it challenging to design
a genuine microgripper-type actuator. The objective of the
present work is to design a piezoelectrically actuated micro-
gripper including constraints on the out-of-plane bending
of the structure in some points of interest. In addition, and
having manufacturability in mind, the so-called robust for-
mulation (Sigmund 2009; Wang et al. 2011) is applied to
the problem with two purposes: first to control the minimum
length scale in both solid and void regions; and second to
minimize sensitivity to fabrication errors.

Concerning the physical behavior of the device, we make
the assumption that the out-of-plane bending is small but not
negligible, meaning that it can be treated by classical linear
elasticity plate theory. However, the in-plane displacements
are expected to be large and a non-linear model is manda-
tory. Geometrical non-linearities in topology optimization
were first dealt with in Buhl et al. (2000) using the total
Lagrangian formulation. This was soon after extended to
compliant mechanism design in Bruns and Tortorelli (2001)

and Pedersen et al. (2001). The robust design of large
displacement compliant mechanisms is shown in Lazarov
et al. (2011), where the goal is achieved by adding random
variations that model possible geometry errors.

Geometrically non-linear topology optimization is prone
to numerical instabilities produced by excessive distortions
in low stiffness regions. Wang et al. (2014) suggested an
interpolation scheme that uses linear modeling in the (fic-
titious) void domain. This scheme is also applied here. In
early works (Buhl et al. 2000) and (Pedersen et al. 2001)
authors avoided the numerical instability by ignoring nodes
surrounded by low density elements in the Newton-Raphson
convergence criterion. Bruns and Tortorelli (2001) circum-
vented the issue by removing and reintroducing low density
elements during the optimization procedure. Removal of
low density elements may come at the risk of hindering
structure to grow in low density regions and hence may be
better suited for more shape oriented topology optimization
approaches like (Zhang et al. 2017).

The paper is organized as follows. In Section 2 the nature
of the problem is briefly described and the discrete formula-
tion is shown. Section 3 is devoted to the robust formulation.
In Section 4 we present the numerical implementation of
the problem, where the algorithm used to get the optimal
designs is described. The optimized microgrippers obtained
by solving the discrete problem are shown and validated in
Comsol Multiphysics in Section 5. Finally, in Section 6 the
conclusions of this work are presented.

2 Topology optimization of large displacement
piezoelectric microgripper

As design domain � we consider a rectangular plate
clamped at its left side. On the top surface, the host struc-
ture is perfectly bonded with a piezoelectric layer (that is
sandwiched between two electrodes) of negligible stiffness
compared to the plate.

The polarization of the piezoelectric layer is obtained
through the application of an input voltage over the elec-
trodes. This voltage generates an electric field that produces
a mechanical stress over the piezoelectric material, which
in turn deforms the host structure. The unsymmetrical con-
figuration of the layers of the plate causes bending of the
structure, that disturbs the in-plane behavior and needs to be
suppressed. The multilayered structure is shown in Fig. 1.
Three passive areas are defined in the design domain. Two
of these areas are solid regions (black color) that belong to
the jaws. The third one is a void region (white color) and
represents an empty gap between the jaws. The output of the
gripper is modeled by a spring of stiffness kout (that depends
on the application). The 3d depiction of design domain and
the dimensions are shown in Fig. 2.
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Fig. 1 Top and side view of the piezoelectric device

The aim of the problem is the maximization of the
in-plane deformation along the y-axis u1 while the defor-
mations over the z-axis u2 and u3 must be suppressed.
The bending is canceled in two points in order to avoid
the rotation of the jaws over the y-axis. This suppression
is controlled by adding two constraints which relate the

Fig. 2 Design domain

optimized and the canceled displacements. In addition, a
volume constraint is used to control the amount of material
used.

The optimization problem involves two design variable
fields. χs is a characteristic function, χs ∈ {0, 1}, that rep-
resents the structure layout (χs = 1) and void (χs = 0),
as usual. χp is also a characteristic function such that χp ∈
{−1, 0, 1}, meaning negative, null or positive polarity. Since
the topology optimization problem lacks classical solutions,
the characteristic functions χs and χp need to be relaxed
into density variables ρs ∈ [0, 1] and ρp ∈ [−1, 1]. As
usual, after the relaxation of the variables, the domain is
discretized in ne finite elements with two variables per ele-
ment. The role of the electrode is crucial here, only the
parts of the structure that are being covered by electrode, i.e.
χp = −1 or χp = 1, are electrically affected and therefore
subjected to piezoelectric forces.

Since the out-of-plane deformation is expected to be
small, it can be studied separately from the in-plane one (the
problems are decoupled), and then the optimization problem
involves two equilibrium equations. The in-plane displace-
ments are modeled using a geometrically non-linear model.
The out-of-plane displacements are modeled using classical
linear elasticity. The formulation of the problem written as
a topology optimization problem becomes:

max
ρs ,ρp

: u1(ρs , ρp)

s.t. : Rip(ρs , ρp,Uip) = 0

Rop(ρs , ρp,Uop) = 0

u1 = LT
1 Uip

u2 = LT
2 Uop

u3 = LT
3 Uop(

u2

u1

)2

− ε2
d ≤ 0

(
u3

u1

)2

− ε2
d ≤ 0

1T ρs

V
− 1 ≤ 0

ρs ∈ [0, 1]
ρp ∈ [-1, 1],

(1)

where ρs and ρp represent the structure layout and the
polarization profile respectively, u1 is the in-plane displace-
ment to be maximized, u2 and u3 are the out-of-plane
displacements to be suppressed, L1, L2 and L3 are vectors
of zeros with 1 in the output degree of freedom of interest,
V is the maximum volume, εd is a small value that relates
the displacements to be suppressed and the ones to be opti-
mized, and Rip and Rop are the global residual vectors of
the structural equilibrium equations for the in-plane and out-
of-plane cases, respectively. For the sake of brevity, from
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now on the subscripts “ip” and “op” refer to the in-plane and
the out-of-plane cases, respectively. The residual vectors are
defined as follows:

Rip = Fpiezo
ip − Fint

ip = 0

Rop = Fpiezo
op − Fint

op = 0,
(2)

where (Fpiezo
ip ,Fpiezo

op ) and (Fint
ip ,Fint

op ) are the global piezo-
electric and internal force vectors, respectively. Capital
letters are used for global vectors and matrices, that are
obtained by assembling the elemental contributions rep-
resented with lowercase letters. The expressions of the
different terms in (2) are further elaborated in the next
subsection.

2.1 Continuous material approach and finite element
model

The original formulation of the problem involves integer
variables which need to be relaxed into density variables.
The well-known SIMP approach (Solid Isotropic Mate-
rial with Penalization, Bendsøe and Sigmund (1999) and
Bendsøe and Sigmund (2003)) is used for this purpose. The
Young’s modulus of each element depends on the element
density as follows:

Ee = (ρ̄se)
p(E0 − Emin) + Emin, (3)

where E0 is the Young’s modulus of the base material,
Emin > 0 is a small value used to avoid singularities
in the stiffness matrix and p is the penalization exponent
(typically p = 3).

The discrete formulation of the problem has been pre-
sented in Section 2. For the in-plane case bilinear elements
with 8 degrees of freedom are used and for the out-of-plane
case, Kirchhoff elements with 12 degrees of freedom per
element are used. The in-plane displacements are expected
to be large in comparison with the size of the domain. Ped-
ersen et al. (2001) showed that displacements over 2% of
the domain size require geometrical non-linearity to model
the deformation field.

In order to model the in-plane deformation, the total
Lagrangian finite element formulation is used. The Green-
Lagrange strain tensor can be expressed as:

E = 1

2
(F FT − I),

where I is the unit tensor and F is the deformation gradient,
defined by a 2 × 2 matrix:

F = ∂u/∂y =
⎡
⎢⎣

∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

⎤
⎥⎦

The expression for the work conjugate stress tensor (the
second Piola-Kirchhoff stress tensor) is:

S = ∂φ(Uip)

∂E
,

where φ(Uip) is the in-plane stored elastic energy density
that will be defined in the next subsection.

The expression for the element internal force fint
ip pre-

sented in (2) is:

fint
ip = ∂

∫
�

φed�

∂uip

,

where uip is the element displacement vector for the in-
plane case.

Due to the non-symmetrical laminate, the piezoelectric
force generates a moment that makes the plate bend and an
initial strain that extends or contracts the plate. All expres-
sions for the computations of both the flexural and the
extensional components, can be found in Gibbs and Fuller
(1992). In addition, the same powerlaw dependence Re =
ρ

p
se as used for the Young’s modulus interpolation (3) is used

for the piezoelectric force generation. It is easy to see that
the value of the interpolation Re is very small in void regions
and takes the value Re = 1 in the solid ones. This is a realis-
tic way to model the force produced in these elements, since
there is no electrode in the void regions (Ruiz et al. 2016b).

In the equilibrium configuration, the residual vector for
each case must be 0, this means that the global vectors of
internal forces must be equal to the piezoelectric forces. We
can rewrite the equilibrium equation for each motion case
as follows:

Rip = Fpiezo
ip − Fint

ip = Fpiezo
ip −

∫
�

Bip(Uip)S d�

Rop = Fpiezo
op − Fint

op = Fpiezo
op − KopUop,

where Kop is the global out-of-plane stiffness matrix
obtained by assembling the element stiffness matrices and
Bip is the in-plane non-linear strain displacement matrix.
The Newton-Raphson method is used to solve the non-linear
system:

Kt�Uip = Rip,

where Kt is the tangent stiffness matrix defined as:

Kt = −∂Rip

∂Uip

and the nodal displacement vector is updated by Uip =
Uip + �Uip. The detailed computations of the tangent
matrix and the nodal force vectors can be found on
Zienkiewicz et al. (2014) and are not stated here.
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2.2 Energy interpolation scheme

The Saint-Venant-Kichhoff model is used to represent the
behavior of the hyperelastic material. The stored elastic
energy density is expressed as follows:

φ = 1

2
λE2

kk + μEijEij =
1

8
λ(Ic − 3)2 + μ

4
(I 2

c − 2IIc − 2Ic + 3),

where Eij are the components of the non-linear strain ten-
sor, λ and μ are the Lamé parameter, Ic = tr(C) is the
first invariant of C = FT F and IIc = (

tr(C)2 − tr(C2)
)
/2

is the second invariant of C. The Lamé parameters can
be expressed in function of the Young’s modulus and the
Poisson’s ratio: λ = νE(1 − ν2) and ν = E/ (2(1 + ν)).

In Wang et al. (2014) an energy interpolation scheme is
used to alleviate the issue of distorted and ill-converged void
region mesh. The paper suggests basing the analysis in the
solid region on the non-linear stored energy and the analysis
in the void regions on linear stored energy, thereby elimi-
nating mesh distortion and ill-convergence issues in the low
density domain. The energy interpolation form for element
e is


e(ue) = [
(γeue) − 
L(γeue) + 
L(ue)]Ee,

where Ee is the Young’s modulus for element e, ue is
the elemental displacement vector for the element, 
(·) is
the stored elastic energy density, 
L(·) is the stored elas-
tic energy density under small deformation, both with unit
Young’s modulus. Finally, γe is the interpolation factor that
takes the value γe = 1 if the element is solid and γe = 0 if it
is void. This interpolation scheme assumes that the Young’s
modulus is separable from the energy functional. In order to
differ between void and solid regions a smoothed Heaviside
projection is used:

γe = tanh(β1ρ0) + tanh
(
β1(ρ̄

p
se − ρ0)

)
tanh(β1ρ0) + tanh

(
β1(1 − ρ0)

) ,

where ρ̄se is the physical density, which will be introduced
in the next section, β1 models the smoothness of the pro-
jection and ρ0 is a low-density threshold. For non-void
domains ρ̄

p
se > ρ0 the element is hence modeled as a

standard non-linear element with geometrically non-linear
contribution.

3 Robust topology optimization formulation

This section is devoted to the robust formulation of the prob-
lem. This approach, that was presented in Sigmund (2009)
and Wang et al. (2011), consists in the use of three differ-
ent projections with two goals. The first one is controlling
the minimum length scale in both, solid and void regions

hence avoiding the appearance of hinges. The second is the
robustness toward small manufacturing errors, that are very
common in the fabrication at micro-scale.

The robust approach proposes the use of three different
projections: eroded, intermediate and dilated. The expres-
sion for a smoothed threshold projection based on the tanh

function is

ρ̄se = tanh(β0η) + tanh
(
β0(ρ̃se − η)

)
tanh(β0η) + tanh

(
β0(1 − η)

) ,

where β0 is a tuning parameter representing the smoothness
of the projection and η is the threshold which can take val-
ues between 0 and 1. The filtered densities ρ̃se are projected
to 1 if these values are bigger than the threshold and to 0 if
not. The filtered densities ρ̃ are expressed as:

ρ̃se =
∑

j∈Ne
w(xj )vjρsj∑

j∈Ne
w(xj )vj

,

where xj is the center of element j , vj is the volume of the
element j , Ne is the neighborhood of element e within a
certain filter radius r specified by Ne = {j | ||xj −xe|| ≤ r},
and w(xj ) = r − ||xj − xe||.

The use of three different physical realizations requires
the solution of three sets of equilibrium equations. Follow-
ingly, each realization presents three different in-plane and
out-of-plane displacements which all must be included in
the optimization problem. From now on, for the sake of
simplicity, we introduce the superscript q for indicating pro-
jection, with e meaning erode, i intermediate and d dilate.
The robust topology optimization formulation is written:

max
ρs ,ρp

: min
q=e,i,d

{uq

1(ρ̄
q
s , ρp)}

s.t.:

Rq
ip(ρ̄

q
s , ρp, U

q
ip) = 0

u
q

1 = LT
1 U

q
ip

Rq
op(ρ̄

q
s , ρp, U

q
op) = 0

u
q

2 = LT
2 U

q
op

u
q

3 = LT
3 U

q
op(

u
q

2

u
q

1

)2

− ε2
d ≤ 0

(
u

q

3

u
q

1

)2

− ε2
d ≤ 0

1T ρ̄d
s

V ∗
d

− 1 ≤ 0

ρs ∈ [0, 1]
ρp ∈ [-1, 1]
q ≡ e, i, d;

where V ∗
d is the maximum volume bound over the dilated

design. This value is computed at the beginning of the
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optimization and is then updated every 20 iterations. The
expression for this constraint is

V ∗
d = V ∗

Vi

Vd,

with Vi and Vd being the volume for the intermediate and
dilated designs and V ∗ the maximum volume prescribed
for the intermediate design. Unlike the equilibrium equa-
tions and the rest of the constraints, the volume constraint is
only enforced on the dilated design, according to the method
proposed by Wang et al. (2011).

The max-min objective function proposed above is not
differentiable. In order to alleviate this issue the problem is
reformulated using the so-called bound formulation:

min
ρs ,ρp

: β

s.t.:

−u
q

1 ≤ β

Rq
ip(ρ̄

q
s , ρp, U

q
ip) = 0

u
q

1 = LT
1 U

q
ip

Rq
op(ρ̄

q
s , ρp, U

q
op) = 0

u
q

2 = LT
2 U

q
op

u
q

3 = LT
3 U

q
op(

u
q

2

u
q

1

)2

− ε2
d ≤ 0

(
u

q

3

u
q

1

)2

− ε2
d ≤ 0

1T ρ̄d
s

V ∗
d

− 1 ≤ 0

ρs ∈ [0, 1]
ρp ∈ [-1, 1]
q ≡ e, i, d;

where β is an additional bound variable that does not
depend on the design variables ρs and ρp and resolves
non-differentiability issue with the max-min function.

4 Numerical implementation

A gradient-based method, the MMA (Method of Moving
Asymptotes (Svanberg 1987)), has been used to solve the
optimization problem. This method requires information
about the objective function, the constraints and the sen-
sitivities of both. The adjoint method is used to compute
the sensitivities of the objective function with respect to
the structure density vector ρs and the polarization profile
vector ρp. First the derivative with respect to the struc-

tural density of element e are found using adjoint sensitivity
analysis as

∂u
q

1

∂ρse

= λT
∂Rq

ip

∂ρse

with

Ktλ =
(

∂u
q

1(Uq
ip, ρs , ρp)

∂Uq
ip

)
= L1, (4)

where the tangent matrix Kt is computed at the converged
solution. The right term in (4) is the constant vector L1. The
chain rule must be used to compute the derivatives of the
equilibrium equation:

∂Rq
ip

∂ρse

= ∂rqip
∂ρse

= −∑
j∈Ne

⎛
⎝∂

(
fint,q
ip,j − fpiezo,q

ip,j

)
∂ρ̄

q
sj

+
∂

(
fint,q
ip,j − fpiezo,q

ip,j

)
∂γ

q
j

∂γ
q
j

∂ρ̄
q
sj

⎞
⎠ ∂ρ̄

q
sj

∂ρ̃sj

∂ρ̃sj

∂ρse
.

Due to the many load cases and realizations involved,
indexing above has become quite involved. Information
about the nature of the force (internal or piezoelectric) and
the threshold (eroded, intermediate or dilated) is indicated
as superscripts, separated by a comma. Information about
the motion case (in-plane or out-of-plane) and the element
number (j ) is shown in the subscript, also separated by a
comma.

In the same way, the derivative of the cost with respect to
the polarization profile is:

∂u
q

1

∂ρpe

= λT
∂Rq

ip

∂ρpe

with the adjoint vector λ again coming from the solution of
(4).

Finally, the derivative of the residual vector is

∂Rq
ip

∂ρpe

= ∂rq
ip

∂ρpe

= −∂(fint,q
ip − fpiezo,q

ip )

∂ρpe

The sensitivities of u
q

2 and u
q

3 are also computed using
the adjoint method. However, since the out-of-plane prob-
lem is linear, these computations are straight forward and
are not stated here. Similarly, the volume fraction depends
linearly on the physical structure density, and the derivatives
are computed using the chain rule.

The complete process algorithm looks like:
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1. Selection of the dimensions of the plate and the prop-
erties of the materials that will be used. Boundary
conditions and the parameters εd and kout must be
chosen.

2. Initialize the design variables ρs and ρp.
3. Compute the physical densities ρ̄

q
s by filtering the struc-

tural density and then projecting with three different
thresholds.

4. Solve the finite element problem for the three different
physical densities.

(a) For the linear out-of-plane case.
(b) For the non-linear in-plane case.

5. Extract the displacements u
q

1 , u
q

2 and u
q

3 and compute
the constraints.

6. Compute the sensitivities of the objective function and
the constraints.

7. Update design variables based on MMA.
8. Until convergence update the parameters β0 and V ∗

d and
go back to step 3.

At this point it is important to remark that thanks to the
symmetry of the problem only half of the domain needs to
be simulated and optimized.

Fig. 3 Structure variable ρ̄s (left) and electrode profile ρp (right) for
the three different projections. kout = 1 × 103N/m

5 Examples

The multilayered structure, whose dimensions are shown in
Fig. 1, is formed in a host layer of silicon with thickness
t = 5μm and a piezoelectric layer of PZT-5H with thickness
tp = 500nm. The Young’s modulus is E0 = 130GPa for
silicon, the stiffness of the piezoelectric layer is neglected.
In order to avoid singularities in the stiffness matrix, we
fix Emin = 10−9E0. The Poisson’s ratio is ν = 0.28 for
both materials. The piezoelectric constant for PZT-5A is
d31 = 190pm/V and the input voltage is Vin = 500V.
We fix the relationship between the suppressed and opti-
mized displacement to εd = 0.05. The stiffness of the spring
that models the output is kout = 1 × 103N/m. Concern-
ing the filter and the projection, the radius filter is set to
r = 8μm and δη = 0.30, ensuring a minimum length scale
of 7.2μm (Wang et al. 2011) and (Qian and Sigmund 2013)
for the intermediate design. Threshold projection values of
η = 0.7, 0.5 and 0.3 are hence assigned to the eroded ρ̄e

s ,
intermediate ρ̄i

s and dilated ρ̄d
s designs, respectively. The

value of the sharpness parameter β0 is increased during the
iterative process, starting with β0 = 1 and doubling each
20 iterations until it reaches β0 = 16. Finally, we fix the

Fig. 4 Structure variable ρ̄s (left) and electrode profile ρp (right) for
the three different projections. kout = 5 × 102N/m
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Fig. 5 Structure variable ρ̄s (left) and electrode profile ρp (right) for
the three different projections. kout = 5 × 103N/m

parameters of the energy interpolation scheme to β1 = 500
and ρ0 = 0.01 (Wang et al. 2014).

The optimized designs for the first example are given
in Fig. 3. Three different thresholds are shown: the
intermediate (top), also called the blueprint design which

Fig. 6 Evolution of the output displacement with the output stiffness
for the blueprint design

Fig. 7 Evolution of the output force with the output stiffness for the
blueprint design

is the one that will be fabricated, the eroded (middle) and
the dilated (bottom). The structural layout ρ̄s is shown
in Fig. 3 (left), where black and white means solid and
void areas, respectively. There is no microstructure (gray),
which means that the projection method is working prop-
erly. Figure 3 (right) shows the electrode profile ρp. Orange
and cyan represent the sign of the polarization profile, pos-
itive or negative respectively. The whole structure, except
for the jaws, is being covered by electrode. The value of
the in-plane displacement in the blueprint design is u1 =
13.9μm. The values of the out-of-plane displacements are
u2 = 0.44μm and u3 = 0.69μm.

In Fig. 4 the stiffness of the spring is changed to kout =
5 × 102N/m while the rest of the parameters stay fixed. The
value of the displacement in the blueprint design is u1 =
18μm.

Finally, in Fig. 5, the stiffness of the spring is set to
kout = 5 × 103N/m and the value of the optimized displace-
ment is u1 = 6μm.

In Figs. 6 and 7 the response of the three optimized grip-
pers depending on the output stiffness kout is shown. In both
figures the in-plane equilibrium equation is solved for dif-
ferent values of the stiffness of the spring. In the first case
the values of u1 versus kout are plotted for the blueprint

Fig. 8 Optimized microgripper for kout = 1 × 103N/m with con-
straints over the bending at the jaws (left) and without the constraint
(right)
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design. When the stiffness takes the value kout = 0N/m, the
displacement obtained is the so-called free displacement.
As expected, the device designed for the lowest stiffness
(red color) shows the biggest free displacement, and vice
versa. In the second case, the values of force applied at the
end of the jaws versus kout are plotted. When the stiffness
takes a big value, the displacement at this point tends to zero

Fig. 9 Comparison of deformations between the grippers presented in
Fig. 8

Fig. 10 Meshed 3D realization of the optimized gripper

and the resulting force is called blocking force. The device
designed for the biggest stiffness (blue color) presents the
biggest blocking force. These two parameters, free displace-
ment and blocking force, define the behavior of the gripper.
Notice that the best design (the highest displacement in the
first case, and the force applied in the second one) for the
three different stiffness’s, is the one corresponding to the
designed spring.

In order to further illustrate the potential of our approach,
Fig. 8 presents two other optimized microgrippers. Figure 8
(left) shows the one optimized for kout = 1 × 103N/m and
Fig. 8 (right) shows the same example but removing the con-
straints over the out-of-plane displacements. The topologies
are quite similar, actually the in-plane displacement u1 is
13.9μm for the first case and 15μm for the second one, but
the out-of-plane displacements u2 and u3 are very different.
When these displacements are constrained their values in
the optimized design are u2 = 0.44μm and u3 = 0.69μm.

Fig. 11 Deformation of the optimized gripper shown in Fig. 8 (left)
modeled using Comsol Multiphysics
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Table 1 Comparison of displacements obtained with Comsol Multi-
physics and Matlab for the optimized gripper from Fig. 8 (left)

u1 u2 u3

Comsol 13.80μm 0.34μm 0.96μm

Matlab 13.93μm 0.44μm 0.69μm

When both constraints are removed from the optimization
problem, the two displacements change to u2 = 8.4μm and
u3 = 12.8. In such a case, and taking into account the size
of the plate, the in-plane and out-of-plane problems are not
decoupled. In this simulation the model used is not the most
appropriate, but anyway, the objective of the present work is
showing that the optimization problem proposed is able to
suppress the out-of-plane bending produced at the jaws.

Figure 9 presents the deformation of the grippers com-
mented on above. The device optimized with out-of-plane
constraints is shown in Fig. 9 a. In this example it is easy to
check that the out-of-plane deformation is in general small,
which is represented with yellow color. Figure 9b shows
the deformation of the gripper without the constraints. In
this case the jaws are blue colored, which means that this
part of the structure is the one with the biggest out-of-plane
deformation.

5.1 Verification with Comsol Multiphysics

Arguably, the validity of the simplifying linearity assump-
tion for the out-of-plane deformation can be question and
the optimization could potentially take adavntage of flaws in
the model. Hence, this subsection presents a corroboration
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Fig. 12 Deformation of the gripper optimized without out-of-plane
deformation constraints from Fig. 8 (right) modeled using Comsol
Multiphysics

Table 2 Comparison of displacements with Comsol Multiphysics and
Matlab for the gripper optimized without out-of-plane deformation
constraints from Fig. 8 (right)

u1 u2 u3

Comsol 16.10μm 10.10μm 15.70μm

Matlab 15.00μm 8.40μm 12.80μm

of the model using the commercial software Comsol Multi-
physics. The gripper is modeled with a fully geometrically
non-linear, three-dimensional finite element model using no
simplifying assumptions. The domain is discretized with
42202 quadratic tetrahedral elements and 247424 degrees of
freedom, as shown in Fig. 10. The mesh of the piezoelectric
layer is finer due to the smaller thickness.

The deformed gripper is shown in Fig. 11. Resulting
displacements are shown in Table 1 which also shows the
corresponding displacements obtained from the simplified
finite element model used in the optimization. As can be
seen from the table, the differences between using full
three-dimensional modeling and two-dimensional decou-
pled plate modeling (with in-plane and out-of-plane motion
cases decoupled and linear out-of-plane modeling) are small
enough to consider the latter accurate enough.

For comparison, Fig. 12 depicts the deformation of
the gripper optimized without out-of-plane deformation
constraints from Fig. 8 (right). The displacement values
obtained with Comsol Multiphysics and Matlab are shown
is Table 2. For this case, remarkably larger discrepancies
between the two models are observed. This partly shows
that the suggested simplified linear out-of-plane model-
ing is inadequate and partly that in-plane and out-of-plane
displacements couple when considering large out-of-plane
motions. On the other hand, the two verification examples
confirm that for cases with small out-of-plane motions, as
dictated by the imposed out-of-plane motion constraints, the
simplified and much cheaper and more efficient approach is
fully justified.

6 Conclusions

In this work piezoelectric microgripper-type actuators are
designed by topology optimization. The main novelty intro-
duced is the suppression of out-of-plane bending caused
by unsymmetrical lamination of the piezoelectric actuator.
This goal is achieved by adding a constraint for each point
where the out-of-plane deformation needs to be canceled.
The difficulty arising by only placing one film of piezo-
electric material is a real limitation when fabricating at the
micro-scale. If the suppression of the out-of-plane deforma-
tion is not taken into account, the bending of the gripper
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jeopardizes functionality. From an optimization point of
view it is not possible to suppress the bending in the whole
domain. This problem is overcome by suppressing the
bending only in four points of interest, placed at the jaws.

The modeling of the in-plane and out-of-plane defor-
mation is different. For the former, the displacements are
large compared to the size of the gripper and a geometri-
cally non-linear model (we assume large displacements but
small strains) is used. For the latter, displacements are small
and hence it is not necessary to use a non-linear model and
the linear one is used instead to save computational time.
An elastic energy interpolation scheme is used to alleviate
convergence problems due to excessively distorted low den-
sity elements. The validity of the modeling simplifications
is confirmed by full three-dimensional and gometrically
non-linear modeling of the post-processed design.

A robust formulation provides full length-scale control,
avoidance of fragile hinges as well as insensitivity to e.g.
under- and over-etching.
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