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Abstract In this paper we discuss the adjoint sensitivity
analysis and optimization of hysteretic systems equipped
with nonlinear viscous dampers and subjected to tran-
sient excitation. The viscous dampers are modeled via the
Maxwell model, considering at the same time the stiffening
and the damping contribution of the dampers. The time-
history analysis adopted for the evaluation of the response
of the systems relies on the Newmark-β time integration
scheme. In particular, the dynamic equilibrium in each time-
step is achieved by means of the Newton-Raphson and
the Runge-Kutta methods. The sensitivity of the system
response is calculated with the adjoint variable method.
In particular, the discretize-then-differentiate approach is
adopted for calculating consistently the sensitivity of the
system. The importance and the generality of the sen-
sitivity analysis discussed herein is demonstrated in two
numerical applications: the retrofitting of a structure sub-
ject to seismic excitation, and the design of a quarter-car
suspension system. The MATLAB code for the sensitivity
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1 Introduction

Energy dissipation systems are technologies able to improve
the performance of structural systems subject to transient
excitations. Their purpose is to dissipate or reduce part of
the energy generated by the dynamic excitation and trans-
ferred to these systems. Thus, it is possible to reduce the
deformation demand upon the structural systems consid-
ered. In fact, if properly designed, they can reduce specific
systems’ responses of interest, such as selected displace-
ments and accelerations. These technologies can be divided
into passive systems, active and semi-active systems (Soong
and Dargush 1997; Constantinou et al. 1998). In each of
these categories, there are a wide variety of different tech-
nologies nowadays well developed and widely used. Exam-
ples of their applications are: The seismic retrofitting of
buildings subject to seismic excitation with viscous dampers
(e.g. Takewaki 1997; Lavan and Levy 2005; Kanno 2013)
and tuned-mass dampers (e.g. Almazán et al. 2012; Daniel
and Lavan 2015); The reduction of wind and earthquake
induced vibrations in high-rise buildings (e.g. Yang et al.
2004; Smith and Willford 2007; Infanti et al. 2008); The
seismic protection of bridges with viscous dampers (e.g.
Infanti et al. 2004; Simon-Talero et al. 2006; Infanti and
Castellano 2007); The control of human-induced vibrations
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(Caetano et al. 2010; Casado et al. 2013); The vibration con-
trol of offshore wind turbines (e.g. Brodersen and Høgsberg
2016); The shock absorption for high-speed boat seats (e.g.
Klembczyk and Mosher 2000); The structural control of
dynamic blast loading (e.g. Miyamoto and Taylor 2000);
The design of passive and semi-active suspension systems
for cars subject to road excitation (e.g. Georgiou et al. 2007;
Suciu et al. 2012).

The efficacy of the energy dissipation systems is strongly
related to their location in the system that needs to be con-
trolled and to their size. For these reasons, often their design
is based on optimization, to address the placement and siz-
ing of these devices. For instance, in Lavan and Amir (2014)
the authors distribute and size linear fluid viscous dampers
in linear structures subject to seismic excitation with an
optimization approach based on Sequential Linear Program-
ming (SLP). This procedure is then further enhanced in
Pollini et al. (2016) in order to consider a more complete
and realistic objective cost function. In Kanno (2013) the
author presents a mixed-integer programming approach for
the optimal placement of viscous dampers in shear frames,
where the damping coefficients are selected from a dis-
crete set of values. A discrete optimization approach is
presented in Dargush and Sant (2005), where different types
of passive dissipation systems (i.e. metallic plate dampers,
fluid viscous dampers, viscoelastic solid dampers) are sized
and placed with genetic algorithms. Also in this case, the
properties of the devices are selected from a predefined
set of available sizes. In Georgiou et al. (2007) Geor-
giou, Verros, and Natsiavas present a methodology for the
multi-objective optimization of the suspension damping and
stiffness parameters of quarter-car models subjected to ran-
dom road excitation. The authors consider both passive and
semi-active suspension systems.

An important aspect related to optimization-based design
methodologies is the computational effort that they require.
This aspect can influence the preference for one of these
methodologies over more traditional design techniques.
Broadly speaking, there are two major sets of optimization
approaches: the ones that rely on gradient information (i.e.
first or second order gradients of the functions involved),
and the ones that do not require this information and that
are often referred to as zero order methods (e.g. genetic
algorithms). These two sets have different advantages
and disadvantages. Gradient-based approaches typically
require reduced computational efforts, and more sophisti-
cated mathematical tools. They are also less affected by
the size of the problem considered. On the other hand,
gradient-based optimization approaches are less robust from
a computational point of view, meaning that, depending on
the complexity of the problem considered, they may show
difficulties in converging smoothly to a local minimum. For
this reason they require users that are more familiar with

these types of approaches. Nevertheless, they are typically
preferred because they achieve good final designs with rea-
sonable computational resources, thus promoting the use of
optimization-based methodologies among practitioners and
researchers in their everyday activities. On the other hand,
zero order methods are more simple and easy to get started
with, but they require very high computational resources
that in many cases become even prohibitive. Moreover, the
computational effort significantly increase with the com-
plexity and the size of the problems considered. For these
reasons, a significant effort and attention has been directed
towards the development and application of gradient-based
design approaches in several engineering fields.

A key element for the development of a gradient-based
optimization approach is the sensitivity analysis (Haftka and
Adelman 1989; Tortorelli and Michaleris 1994). In general
there are three different approaches for the calculation of
the sensitivities: The finite difference method; The direct
differentiation method; And the adjoint variable method.
The finite difference method is undoubtedly the most easy
to implement, and it is typically used for comparison and
verification of the sensitivity obtained with more accurate
methodologies. The sensitivities obtained with the direct
and adjoint method are identical and exact with respect
to the numerical solution (Tortorelli and Michaleris 1994).
However, the adjoint method is to be preferred when there
are less functions to differentiate in comparison to the num-
ber of design variables, as in the applications towards which
this paper is directed. In the adjoint variable method, the
sensitivity is calculated by first expanding the function
that needs to be differentiated into an augmented function
and subsequently by differentiating the resulting augmented
function. In principle, there are two ways to perform the
adjoint sensitivity analysis. The first consists of differentiat-
ing the augmented function first, and in introducing only at
the end the particular discretization adopted for the numeri-
cal solution of the problem. This approach is also referred to
as “differentiate-then-discretize”. The second way consists
in differentiating directly the discretized version of the prob-
lem at hand (Tortorelli and Michaleris 1994; Jensen et al.
2014). This approach, instead, is referred to as “discretize-
then-differentiate”. In the literature there are several exam-
ples of optimization-based approaches that relied on the
differentiate-then-discretize type of adjoint sensitivity anal-
ysis. Some dealt with the design of linear viscous dampers
in linear structures subject to seismic excitation (Lavan
and Levy 2006a, b); others with linear viscous dampers
in nonlinear structures subject to seismic excitation (Lavan
and Levy 2005, 2010). Other examples, but in a different
context, include: The work presented in (Turteltaub 2005)
where Turteltaub proposed an algorithm to optimize the per-
formance of a two-phase composite under dynamic loading;
A topology optimization-based method for the systematic
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design of one-dimensional band gap and pulse converting
structures, (Dahl et al. 2008); The design of non-linear opti-
cal devices based on topology optimization (Elesin et al.
2012). However, as it has been pointed out in Tortorelli
and Michaleris (1994) and more recently in Jensen et al.
(2014), optimization procedures based on a “differentiate-
then-discretize” type of adjoint sensitivity analysis may lead
to inconsistency errors. These may be caused, for example,
by different time discretizations between the time-history
analysis for the structural response and the sensitivity anal-
ysis. In order to avoid these sources of inconsistency, it
is recommended to rely on a “discretize-then-differentiate”
type of adjoint sensitivity analysis. For example, this type
of adjoint sensitivity analysis is used in Le et al. (2012) for
the topology optimization of linear elastic structures with
spatially varying material micro-structures to tailor energy
propagation. Also in Nakshatrala and Tortorelli (2016) the
authors rely on a discretize and then differentiate type of
adjoint sensitivity analysis, but in this case for the topology
optimization of nonlinear elastic material micro-structures
for tailored energy propagation. Very recently, the sensitiv-
ity analysis for dynamic systems non-viscously damped has
been discussed in Yun and Youn (2017). Essentially, Yun
and Youn extended the methodology discussed in Jensen
et al. (2014) to the case of linear structures with damping
forces which depend on the history of motion via con-
volution integrals. The discretize-then-differentiate adjoint
variable method was also adopted recently in Pollini et al.
(2017) for the seismic retrofitting of 3-D linear frame struc-
tures with nonlinear viscous dampers. However, to the best
of the authors knowledge, the adjoint sensitivity analysis for
hysteretic dynamic systems with nonlinear viscous dampers
has not yet been developed.

Thus, in this paper we formulate a consistent adjoint sen-
sitivity analysis for the optimization of hysteretic dynamic
systems subject to transient excitation and equipped with
nonlinear viscous dampers. The responses of interest are
evaluated with nonlinear time-history analyses based on
the Newmark-β method. The equilibrium in each time-
step is achieved by means of the Newton-Raphson and the
Runge-Kutta methods. The dampers are modeled with the
Maxwell’s model for visco-elasticity. In this way, both the
stiffening and damping contributions of the dampers are
accounted for. The adjoint sensitivity analysis discussed
herein is presented through a step-by-step procedure, and its
validity and generality is then demonstrated with two design
applications based on optimization: the seismic retrofitting
of a structure subject to seismic excitation, and the design
of a quarter-car suspension system.

The remainder of the paper is organized as follows: In
Section 2 we present the governing equations of the systems
considered, focusing on the equations for the dynamic equi-
librium, and for the nonlinear behavior of the structures and

dampers considered; The adjoint sensitivity analysis is then
discussed with detail in Section 3; The general results of
Section 3 are then applied to specific optimization problems
in Section 4, followed by conclusions in Section 5.

2 Governing equations

In this paper we consider nonlinear systems equipped with
nonlinear dampers and subjected to transient excitations.
In what follows, we will focus on a single degree of free-
dom system for the sake of clarity. It should be noted
that the methodology discussed herein can be generalized
with no particular effort to the case of a multi-degree-of-
freedom system. The governing equations for the dynamic
equilibrium of these systems are the following:

mü(t) + csu̇(t) + fs(t) + fd(t) = P(t), for t ∈ [0, tf ]
ḟs(t) = gs (fs(t), u̇(t), u(t), t)

ḟd(t) = gd (fd(t), u̇(t), u(t), t)

u(0) = 0, u̇(0) = 0, fs(0) = 0, fd(0) = 0 (1)

where tf is the final time; u(t), u̇(t), and ü(t) are the dis-
placement, velocity, and acceleration of the system with
respect to a ground reference system at time t ; m is the
mass of the system; cs the inherent damping of the sys-
tem; fs(t) the restoring forces generated by the structural
elements; fd(t) the resisting forces produced by the nonlin-
ear viscous dampers; and P(t) is the external load acting
on the system. In the following sections we will intro-
duce the specific models considered for the description of
the nonlinear behavior of the added damping system (i.e.
gd (fd(t), u̇(t), u(t), t)) and of the structural components
(i.e. gs (fs(t), u̇(t), u(t), t)).

2.1 Nonlinear fluid viscous damper model

In what follows, we present the model considered for
the definition of the mechanical behavior of the nonlinear
dampers considered in this work. In particular, we model the
dampers with the Maxwell’s model considering a spring and
a dashpot in series, as shown in Fig. 1. The spring accounts
for the stiffening property of the damper and its supporting
member, and the dashpot for its viscous property.

Fig. 1 Nonlinear viscous damper modeled with the Maxwell’s model
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Equation (2) defines the compatibility and equilibrium
equations of the damper model considered:

u(t) = uel(t) + uvd(t), u̇(t) = u̇el(t) + u̇vd(t)

fd(t) = fel(t) = fvd(t) (2)

where uel(t) is the elastic deformation in the spring at time
t , uvd(t) is the deformation in the dashpot at time t , u̇el(t)

and u̇vd(t) are the velocities in the spring an in the dash-
pot. Similarly, fel(t) and fvd(t) are the forces in the spring
and in the dashpot as functions of time, which are also equal
because of equilibrium considerations. In the damper ele-
ment, the spring is characterized by a stiffness coefficient
kd . Therefore, the output force can be calculated with the
following equation:

fel(t) = kduel(t) (3)

The viscous property of the dashpot is defined by a frac-
tional power law (Seleemah and Constantinou 1997). More
precisely, the nonlinear behavior of the dashpot is defined
by the damping coefficient cd , and the fractional exponent
α:

fvd(t) = cdsgn (u̇vd(t)) |u̇vd(t)|α (4)

where sgn is the sign function. We observe that for α = 1
(4) represents the force-velocity behavior of a linear vis-
cous damper. Similarly, for α → 0 (4) mimics the behavior
of a friction damper. If we invert the force-velocity rela-
tion expressed in (4), we obtain the following velocity-force
relation for the dashpot:

u̇vd(t) = sgn (fvd(t))

( |fvd(t)|
cd

) 1
α

(5)

By deriving (3) with respect to time, and substituting u̇el(t)

with an equivalent formulation based on the compatibility
equation presented in (2), we obtain the following equation:

ḟd (t) = kd u̇el(t) = kd (u̇(t) − u̇vd(t))

= kd

(
u̇(t) − sgn (fvd(t))

( |fvd(t)|
cd

) 1
α

)
(6)

Last, we can observe that the function gd of (1) can now be
written explicitly as follows:

gd (fd(t), u̇(t), u(t), t)

= kd

(
u̇(t) − sgn (fvd(t))

( |fvd(t)|
cd

) 1
α

)
(7)

2.2 Hysteretic model for inelastic systems

We introduce now the nonlinear model considered for the
definition of the resisting force fs(t). The model considered
is represented in Fig. 2. In particular, we consider a hys-
teretic spring with elastic-perfectly plastic behavior, and a

Fig. 2 Model for the description of the structural resisting forces

smooth transition from the elastic to the plastic range (Siva-
selvan and Reinhorn 2000). The stiffness ks is formulated
as follows:

ks (fs(t), u̇(t), u(t), t)

= k0

[
1 − 1

2

∣∣∣∣fs(t)

fy

∣∣∣∣
N

(sgn(fs(t)u̇(t)) + 1)

]
(8)

where the exponent N controls the smoothness of the tran-
sition from the elastic to the inelastic range, k0 is the elastic
stiffness, fs(t) the current force in the spring at time t , fy is
the yielding force that marks the limit for the elastic range,
u̇(t) is the current velocity impressed on the spring at time t .

The force in the spring can then be expressed in a
differential form:

ḟs(t) = ksu̇(t)

= k0

[
1− 1

2

∣∣∣∣fs(t)

fy

∣∣∣∣
N

(sgn(fs(t)u̇(t))+1)

]
u̇(t) (9)

and the function gs introduced in (1) can then be written as
follows:

gs (fs(t), u̇(t), u(t), t)

= k0

[
1− 1

2

∣∣∣∣fs(t)

fy

∣∣∣∣
N

(sgn(fs(t)u̇(t))+1)

]
u̇(t) (10)

It is now possible to rewrite (1) more explicitly, intro-
ducing the functions gs and gd that have already been
discussed.

mü(t) + csu̇(t) + fs(t) + fd(t) = P(t)

ḟs(t) = ks

[
1 − 1

2

∣∣∣∣fs(t)

fy

∣∣∣∣
N

(sgn(fs(t)u̇(t)) + 1)

]
u̇(t)

ḟd(t) = kd

[
u̇i −

( |fd(t)|
cd

) 1
α

sgn(fd(t))

]
(11)

It should be noted that the methodology discussed herein
can accommodate any desired formulation for the func-
tions gs and gd . Figure 3 represents schematically the single
degree of freedom system that we will consider in the
following development.
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Fig. 3 Single degree of freedom system subjected to transient excita-
tion for demonstration purpose

2.3 Time-history analysis

The differential equations (11) are solved with an algorithm
based on the Newmark-β integration scheme. In order to
solve problem (1), we first discretize it in time:

müi + csu̇i + fs,i + fd,i = Pi

ḟs,i = ks

[
1 − 1

2

∣∣∣∣fs,i

fy

∣∣∣∣
N (

sgn(fs,i u̇i ) + 1
)]

u̇i

ḟd,i = kd

⎡
⎣u̇i −

(∣∣fd,i

∣∣
cd

) 1
α

sgn(fd,i)

⎤
⎦

u0 = 0, u̇0 = 0, fs,0 = 0, fd,0 = 0 (12)

for i = 1, . . . , N . Initially the problem is divided into
N�t identical time intervals. If in a specific time interval
the algorithm does not achieve an equilibrium point with
good approximation, the time interval is reduced into n sub-
intervals. More details on this aspect will be provided later.
In every time-step �ti+1 = ti+1 − ti we rely on the constant
acceleration method, which is a particular case of the more
general Newmark-β method:

u̇i+1 = u̇i + �ti+1

2
(üi+1 + üi )

ui+1 = ui + u̇i�ti+1 + (�ti+1)
2

4
(üi+1 + üi ) (13)

In every time-step, the first order differential equations
for fs(t) and fd(t) can be seen as two Cauchy problems
with initial suitable conditions. Briefly, a Cauchy problem
with initial conditions can be written as follows:{

ẏ = f (y(t), t) t ∈ [
t0, tf

]
y(t0) = y0

(14)

The Cauchy problem can be approximated with the fam-
ily of Runge-Kutta (RK) methods. These methods have the
advantage of being one-step methods, which depend only on
information related to time ti for approximating the prob-
lem at time ti+1. Therefore, they are naturally suited for

being used in algorithms which rely on heterogeneous time
discretizations. However, they achieve a good accuracy at
the price of an increased number of function evaluations
in each time-step, compared to multi-step methods (Quar-
teroni et al. 2007). For this reason, we will use a fourth-
order RK method similarly to Kasai and Oohara (2001)
and Oohara and Kasai (2002). This allows us to achieve a
good compromise between accuracy of the approximation
and complexity of the method. It should be noted that the
complexity of the integration scheme directly affects the
computational effort required in the sensitivity analysis, as
it will be discussed in a later section.

The explicit four-stage RK method over the time step
�ti+1 = ti+1 − ti can be written as follows:

yi+1 = yi + �ti+1

6
(K1 + 2K2 + 2K3 + K4)

K1 = f (ti , yi)

K2 = f (ti + �ti+1

2
, yi + �ti+1

2
K1)

K3 = f (ti + �ti+1

2
, yi + �ti+1

2
K2)

K4 = f (ti+1, yi + �ti+1K3) (15)

The integration scheme (15) will be used for the approxi-
mation of both ḟs,i and ḟd,i in each time-step. Essentially,
in every time-step we approximate ui , u̇i , and üi through
the Newmark-β method. The resisting forces of the struc-
tural components and of the damper are approximated with
the fourth order RK method presented in (15). The equi-
librium in each point in time is achieved by means of an
iterative procedure based on the Newton-Raphson method.
In Table 1 we report the pseudo code for the integration
scheme adopted in the time-history analysis, for a time-step
ti → ti+1. The algorithm was based on the one discussed
in (Argyris and Mlejnek 1991), but it has been further
enhanced to accommodate the nonlinear behavior of the
systems herein considered, and the presence of nonlinear
viscous dampers.

3 Adjoint sensitivity analysis

In the following section we calculate the sensitivity of a
generic response functional h:

h = f (u(x, t), u̇(x, t), ü(x, t), fs(x, t), fd(x, t), x, t),

for t ∈ [0, tf ] (16)

where x is a generic design variable. In particular we
will rely on the discretize-then-differentiate adjoint vari-
able method discussed in (Jensen et al. 2014). Therefore,
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Table 1 Pseudo code for the algorithm used for the nonlinear time-
history analysis

Time-step i → i + 1

1. üi+1 = üi

2. u̇i+1 = u̇i + �ti+1
2 üi + �ti+1

2 üi+1

3. ui+1 = ui + �ti+1u̇i + (�ti+1)
2

4 üi + (�ti+1)
2

4 üi+1

4. k = 1

Newton-Raphson loop (iter on k)

5. Runge-Kutta approximation (15)

f k
s,i+1 = fs,i + �ti+1

6

(
Ki

s1 + 2Ki
s2 + 2Ki

s3 + Ki
s4

)
f k

d,i+1 = fd,i + �ti+1
6

(
Ki

d1 + 2Ki
d2 + 2Ki

d3 + Ki
d4

)
6. R = Pi+1 − mük

i+1 − cs u̇
k
i+1 − f k

s,i+1 − f k
d,i+1

7. R ≤ ε?

if YES go to 14

if NO go to 8

8. �uk
i+1 = R/

(
m 4

(�ti+1)
2 + cs

2
�ti+1

+ ks

)
9. uk

i+1 = uk
i+1 + �uk

i+1

10. u̇k
i+1 = u̇k

i+1 + 2
�ti+1

�uk
i+1

11. ük
i+1 = ük

i+1 + 4
�t2

i+1
�uk

i+1

12. if k > kmax

�ti+1 = �ti+1/Nref ine

üi+1 = üi

u̇i+1 = u̇i + �ti+1
2 üi + �ti+1

2 üi+1

ui+1 = ui + �ti+1u̇i + (�ti+1)
2

4 üi + (�ti+1)
2

4 üi+1

k = 0

13. k = k + 1

14. Update ks

15. Save üi+1, u̇i+1, ui+1

from now on we will consider the discretized version of the
problem at hand:

h=f (ui, u̇i , üi , fs,i , fd,i , x, ti), for i =1, . . . , N (17)

The goal is to calculate d h
d x

. To this end, we first define the

augmented function ĥ:

ĥ = h +
N∑

i=0

Req,iλi +
N∑

i=1

RNew1,iμi +
N∑

i=1

RNew2,iνi

+
N∑

i=1

Rs,iφ
1
i +

N∑
i=1

Rks1,iφ
2
i +

N∑
i=1

Rks2,iφ
3
i

+
N∑

i=1

Rks3,iφ
4
i +

N∑
i=1

Rks4,iφ
5
i

+
N∑

i=1

Rd,iψ
1
i +

N∑
i=1

Rkd1,iψ
2
i +

N∑
i=1

Rkd2,iψ
3
i

+
N∑

i=1

Rkd3,iψ
4
i +

N∑
i=1

Rkd4,iψ
5
i (18)

where λi , μi , νi , φ1
i , ψ1

i , etc., are the adjoint variables
and Req,i , RNew1,i , RNew2,i , Rs,i , Rks1,i , Rd,i , Rkd1,i , etc.,
are the equilibrium equations’ residuals in each time-step.
These residuals should be equal to zero in order to sat-
isfy the dynamic equilibrium of the system. It follows that
d ĥ
d x

= d h
d x

. In particular, we first consider the equation for
the residual of the global equilibrium equation (12):

Req,i = müi + csu̇i + fs,i + fd,i − Pi (19)

We also consider the equations representing the residuals of
the Newmark-β approximation (13):

RNew1,i = −u̇i + u̇i−1 + �ti

2
(üi + üi−1)

RNew2,i = −ui + ui−1 + u̇i−1�ti + (�ti)
2

4
(üi + üi−1)

(20)

Next, we consider the residuals of the local equilibrium
equations for the restoring force of the system approximated
with the Runge-Kutta method (15):

Rs,i = −fs,i + fs,i−1 + �ti

6

(
Ki−1

s1 + 2Ki−1
s2

+ 2Ki−1
s3 + Ki−1

s4

)

Rks1,i = −Ki−1
s1 + ks

[
1 − 1

2

∣∣∣∣fs,i−1

fy

∣∣∣∣
N

×(sgn(fs,i−1u̇i−1) + 1)
]
u̇i−1

Rks2,i = −Ki−1
s2 + ks

⎡
⎣1 − 1

2

∣∣∣∣∣
f̂ 1

s,i−1

fy

∣∣∣∣∣
N

×
(
sgn

(
f̂ 1

s,i−1u̇i− 1
2

)
+ 1

)]
u̇

i− 1
2

Rks3,i = −Ki−1
s3 + ks

⎡
⎣1 − 1

2

∣∣∣∣∣
f̂ 2

s,i−1

fy

∣∣∣∣∣
N

×
(
sgn

(
f̂ 2

s,i−1u̇i− 1
2

)
+ 1

)]
u̇

i− 1
2

Rks4,i = −Ki−1
s4 + ks

⎡
⎣1 − 1

2

∣∣∣∣∣
f̂ 3

s,i−1

fy

∣∣∣∣∣
N

×
(
sgn

(
f̂ 3

s,i−1u̇i

)
+ 1

)]
u̇i (21)
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where we defined:

f̂ 1
s,i−1 = fs,i−1 + �ti

Ki−1
s1

2

f̂ 2
s,i−1 = fs,i−1 + �ti

Ki−1
s2

2

f̂ 3
s,i−1 = fs,i−1 + �tiK

i−1
s3

u̇
i− 1

2
= 1

2
(u̇i + u̇i−1) (22)

The last that remain to be considered are the residuals of
the local equilibrium equations for the nonlinear damper
approximated also with the Runge-Kutta method (15):

Rd,i = −fd,i + fd,i−1

+�ti

6

(
Ki−1

d1 + 2Ki−1
d2 + +2Ki−1

d3 + Ki−1
d4

)

Rkd1,i = −Ki−1
d1 + kd

⎡
⎣u̇i−1−

(∣∣fd,i−1
∣∣

cd

) 1
α

sgn(fd,i−1)

⎤
⎦

Rkd2,i = −Ki−1
d2 + kd

⎡
⎢⎢⎣u̇

i− 1
2
−
⎛
⎝
∣∣∣f̂ 1

d,i−1

∣∣∣
cd

⎞
⎠

1
α

sgn
(
f̂ 1

d,i−1

)
⎤
⎥⎥⎦

Rkd3,i = −Ki−1
d3 +kd

⎡
⎢⎢⎣u̇

i− 1
2
−
⎛
⎝
∣∣∣f̂ 2

d,i−1

∣∣∣
cd

⎞
⎠

1
α

sgn
(
f̂ 2

d,i−1

)
⎤
⎥⎥⎦

Rkd4,i = −Ki−1
d4 +kd

⎡
⎢⎢⎣u̇i −

⎛
⎝
∣∣∣f̂ 3

d,i−1

∣∣∣
cd

⎞
⎠

1
α

sgn
(
f̂ 3

d,i−1

)
⎤
⎥⎥⎦

(23)

where we defined:

f̂ 1
d,i−1 = fd,i−1 + �ti

Ki−1
d1

2

f̂ 2
d,i−1 = fd,i−1 + �ti

Ki−1
d2

2

f̂ 3
d,i−1 = fd,i−1 + �tiK

i−1
d3 (24)

It is now possible to formulate the full sensitivity of the
function ĥ by differentiating the equations of the residuals
(i.e. (19)–(23)) with respect to a generic variable x:

d ĥ

d x
=

N∑
i=1

(
∂h

∂ui

dui

dx
+ ∂h

du̇i

du̇i

dx
+ ∂h

∂üi

düi

dx

∂h

∂fs,i

dfs,i

dx

+ ∂h

∂fd,i

dfd,i

dx
+ ∂h

∂x

)

+
N∑

i=0

dReq,i

dx
λi +

N∑
i=1

dRNew1,i

dx
μi +

N∑
i=1

dRNew2,i

dx
νi

+
N∑

i=1

dRs,i

dx
φ1

i +
N∑

i=1

dRks1,i

dx
φ2

i +
N∑

i=1

dRks2,i

dx
φ3

i

+
N∑

i=1

dRks3,i

dx
φ4

i +
N∑

i=1

dRks4,i

dx
φ5

i

+
N∑

i=1

dRd,i

dx
ψ1

i +
N∑

i=1

dRkd1,i

dx
ψ2

i +
N∑

i=1

dRkd2,i

dx
ψ3

i

+
N∑

i=1

dRkd3,i

dx
ψ4

i +
N∑

i=1

dRkd4,i

dx
ψ5

i (25)

It should be noted that the derivatives of the residuals are
also calculated with the chain rule. For example:

dReq,i

dx
= ∂Req,i

∂üi

düi

dx
+ ∂Req,i

∂u̇i

du̇i

dx
+ ∂Req,i

∂fs,i

dfs,i

dx

+∂Req,i

∂fd,i

dfd,i

dx
+ ∂Req,i

∂x
;

dRs,i

dx
= ∂Rs,i

∂fs,i

dfs,i

dx
+ ∂Rs,i

∂fs,i−1

dfs,i−1

dx
+ ∂Rs,i

∂Ki−1
s1

dKi−1
s1

dx

+ ∂Rs,i

∂Ki−1
s2

dKi−1
s2

dx
+ ∂Rs,i

∂Ki−1
s3

dKi−1
s3

dx

+ ∂Rs,i

∂Ki−1
s4

dKi−1
s4

dx
+ ∂Rs,i

∂x
;

dRd,i

dx
= ∂Rd,i

∂fd,i

dfd,i

dx
+ ∂Rd,i

∂fd,i−1

dfd,i−1

dx
+ ∂Rd,i

∂Ki−1
d1

dKi−1
d1

dx

+ ∂Rd,i

∂Ki−1
d2

dKi−1
d2

dx
+ ∂Rd,i

∂Ki−1
d3

dKi−1
d3

dx

+ ∂Rd,i

∂Ki−1
d4

dKi−1
d4

dx
+ ∂Rd,i

∂x
(26)

where, for the sake of generality, we allowed each of the
residuals to depend directly and indirectly on the indepen-
dent design variable x. At this point we should also mention
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that the quantities Ki−1
s,j and Ki−1

d,j , with j = 1, . . . , 4, intro-
duced by the RK approximations (15) of the forces fs,i

and fd,i are treated as additional state variables. To avoid
the calculation of the implicit derivatives of the state vari-
ables with respect to the design variables (e.g. dui

dx
, du̇i

dx
,

düi

dx
, dfs,i

dx
, dfd,i

dx
,

dKi
s,1

dx
,

dKi
d,1

dx
), once (25) is differentiated

all the terms multiplying these derivatives are collected and
equated to zero. This requires the recollection of the terms in
(25), considering the implicit derivatives dui

dx
, du̇i

dx
, etc. unre-

lated. In this way it is possible to eliminate these unknown

derivatives from the final formulation of the gradient dĥ
dx
.

As a result of this procedure, we obtain a system of lin-
ear equations where the unknowns are the adjoint variables
(e.g. λi , μi , νi , φ1

i , ψ1
i ) with terminal known conditions.

More precisely, for each time step i → i − 1 we solve the
following linear system:

Agr,izgr,i = bgr,i (27)

where:

Agr,i =
[
A11

i A12
i

A21
i A22

i

]

zgr,i = [
ψ5

i ψ4
i ψ3

i ψ2
i ψ1

i φ5
i φ4

i φ3
i φ2

i φ1
i νi μi λi

]T
bgr,i = [

b1i b2i b3i
]T

(28)

The matrix Agr,i and the vector bgr,i have been presented
in (28) divided into blocks. The details of each of these
blocks are given in Appendix. If we consider a generic sys-
tem of Ndof degrees of freedom, with Nd nonlinear viscous
dampers, and Ns elements at the level of which the non-
linear behavior of the resisting forces is defined, the matrix
Agr,i has dimensions

(3×Ndof +5×Ns +5×Nd)×(3×Ndof +5×Ns +5×Nd)

The column vectors zgr,i and bgr,i have dimensions

(3 × Ndof + 5 × Ns + 5 × Nd) × 1

Herein, as we already mentioned, we consider a single
degree of freedom system where Ndof = 1, Ns = 1, and
Nd = 1 (see Fig. 3). Therefore, in (28) the matrix Agr,i

has dimensions 13 × 13 and the vector bgr,i 13 × 1. The
matrix Agr,i in (27) may become very large in large scale
problems, much larger than the number of degrees of free-
dom in the structural analysis. This, in first sight, may seem
to lead to a computationally very expensive approach for
sensitivity analysis. However, this is not the case. In fact,

as the structural analysis problem is comprised of “global”
and “local” state variables, the sensitivity analysis problem
too is characterized by “global” and “local” adjoint vari-
ables. For example, λi , μi and νi can be viewed as global
adjoint variables, while all the others may be treated as local
ones. Due to the structure of the equations and their linear-
ity, some sets of the local adjoint variables may be solved
locally as a function of the global ones. This is relatively
easy as each set of the local equations is small. Then, the
local adjoint variables could be substituted to the equations
of the global ones. Thus, the system could be reduced to
the size of the structural analysis problem while being lin-
ear. This is much more computationally cheap compared
to the structural analysis. Thus, if the structural analysis
problem is manageable from a computational point of view,
then so is the sensitivity analysis. It should be remembered,
that for the class of problems considered here, this is the
computationally cheapest option.

The systems of linear equations (27) is solved backward
starting from known terminal conditions for zgr (i.e. for
zgr,N = zgr (tf )). Thus, the system of (27) is organized such
that the vector bgr,i depends on zgr,i+1. The final conditions
are written as follows:

Agr,Nzgr,N = bgr,N (29)

The matrix Agr,N is essentially equal to Agr,i . The vector
zgr,N contains the adjoint variables calculated in the final
point in time tN . The vector bgr,N has less non zero entries
than bgr,i , since the vector entries with subscript N + 1 do
not exist. With reference to (28), the blocks of bgr,N are
written as follows:

b1N =

⎡
⎢⎢⎢⎢⎣

0
0
0
0

− ∂h
∂fd,N

⎤
⎥⎥⎥⎥⎦ , b2N =

⎡
⎢⎢⎢⎢⎣

0
0
0
0

− ∂h
∂fs,N

⎤
⎥⎥⎥⎥⎦ , b3N =

⎡
⎢⎢⎢⎢⎢⎣

− ∂h
∂üN

− ∂h
∂u̇N

− ∂h
∂uN

⎤
⎥⎥⎥⎥⎥⎦
(30)

The adjoint sensitivity analysis starts from (29), to then
continue by solving sequentially the system of equations
(27) for i : N − 1 → 1. Once the adjoint variables zgr,i

have been calculated for each discrete point in time ti it is
possible to calculate the sensitivity of the functional h:

dh

dx
= dĥ

dx
=

N∑
i=1

Aizgr,i

=
N∑

i=1

{[
dks

dx
M(fs,i−1, u̇i−1)+ dfy

dx
N (fs,i−1, u̇i−1)

]
φ2

i

+
[
dks

dx
M(f̂ 1

s,i−1, u̇i− 1
2
)+ dfy

dx
N (f̂ 1

s,i−1, u̇i− 1
2
)

]
φ3

i
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+
[
dks

dx
M(f̂ 2

s,i−1, u̇i− 1
2
)+ dfy

dx
N (f̂ 2

s,i−1, u̇i− 1
2
)

]
φ4

i

+
[
dks

dx
M(f̂ 3

s,i−1, u̇i)+ dfy

dx
N (f̂ 3

s,i−1, u̇i)

]
φ5

i

+
[
dkd

dx
G(fd,i−1, u̇i−1)+ dcd

dx
H(fd,i−1)kd

]
ψ2

i

+
[
dkd

dx
G(f̂ 1

d,i−1, u̇i− 1
2
)+ dcd

dx
H(f̂ 1

d,i−1)kd

]
ψ3

i

+
[
dkd

dx
G(f̂ 2

d,i−1, u̇i− 1
2
)+ dcd

dx
H(f̂ 2

d,i−1)kd

]
ψ4

i

+
[
dkd

dx
G(f̂ 3

d,i−1, u̇i)+ dcd

dx
H(f̂ 3

d,i−1)kd

]
ψ5

i

}
(31)

where:

M(x, y) =
[
1− 1

2

∣∣∣∣ x

fy

∣∣∣∣
N

(sgn(xy)+1)

]
y

N (x, y) = 0.5Nksx
1

f 2
y

sgn

(
x

fy

)∣∣∣∣ x

fy

∣∣∣∣
N−1

(sgn(xy)+1)y;

G(x, y) = y−
( |x|

cd

) 1
α

sgn(x)

H(x) = 1

α
c
−
(
1
α
+1

)
d |x| 1α sgn (x) (32)

In (31), it is assumed that the properties of the spring
(i.e. ks , and fy) and of the viscous damper (i.e. cd , and
kd ) are formulated explicitly in terms of the design vari-
able x. The mass m, and the inherent damping cs , on the
contrary, are assumed constant and not dependent on the
design variable x. This is an approximation that relies on
the assumption that a variation of the variable �x will not
affect significantly the mass and the inherent damping of the
system.

Table 2 contains the pseudo code for the adjoint sensiti-
vity analysis.

In the following section we will show how the adjoint
sensitivity analysis discussed in this section can be used in
order to optimize particular dynamic systems.

Table 2 Pseudo code for the adjoint sensitivity analysis

1. Initialize dh
dx

to 0

2. Build Agr,N (see Appendix for i = N), and bgr,N (see (30))

3. Solve: Agr,N zgr,N = bgr,N

4. Loop for i : N − 1 → 1

5. Build Agr,i and bgr,i , (see Appendix)

6. Solve Agr,izgr,i = bgr,i

7. Calculate the final gradient as in (31): dh
dx

= dh
dx

+ Aizgr,i

4 Applications

The adjoint sensitivity analysis discussed in Section 3 can
be generalized to the case of multi-degree-of-freedom sys-
tems with no particular additional effort, and it opens up
new possibilities for optimizing complex dynamic systems
equipped with nonlinear viscous dampers. In this section
we present and discuss two different illustrative numerical
applications. In both cases we apply the adjoint sensitiv-
ity analysis discussed previously. The gradients calculated
with the adjoint sensitivity analysis were verified by com-
paring them successfully with the gradients calculated with
the finite difference method in both applications. The MAT-
LAB code for the sensitivity analysis considered in the first
application, and its verification with the finite difference
method is provided as “Supplementary Material”. The first
system considered is a planar frame with two degrees of
freedom. The structure is subject to a ground motion accel-
eration, which represents a realistic seismic excitation. The
goal is to design the added damping system to reduce the
peak displacement in time of the structure. It can be seen as
a seismic retrofitting problem for a structure with nonlinear
behavior equipped with nonlinear fluid viscous dampers. In
the second application we consider a quarter-car suspension
system. The suspension is made of a linear spring and a non-
linear damper in parallel. In this case the spring is expected
to remain in the linear range. The design extends to both
the spring and the viscous damper composing the suspen-
sion system. The system is subject to a sinusoidal excitation
representing the road irregularity.

4.1 Two degrees of freedom planar frame

The first example consists of a planar shear frame with
two degrees of freedom, and subject to a ground accel-
eration as shown in Fig. 4. In particular, we consider the
first 20 seconds of the acceleration record LA02 from the

Fig. 4 Two degrees of freedom system with nonlinear fluid viscous
dampers considered in Section 4.1
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LA 10% in 50 years ensemble (National Information Ser-
vice for Earthquake Engineering - University of California
Berkeley 2013). Figure 5 shows the ground acceleration
record considered over time. Due to the ground acceler-
ation the structure is expected to experience significant
displacements, and in particular inter-story drifts (i.e. rela-
tive displacements between contiguous stories). In this case,
the inter-story drifts are:

d1(t) = u1(t); d2(t) = u2(t) − u1(t) (33)

and they are collected in the vector d(t). Inter-story drifts
are a measure of both structural and non-structural damage
in structures subject to earthquakes (Charmpis et al. 2012).
Hence, in this example the goal is to reduce the deformation
demand on the structure by distributing and sizing up to two
nonlinear fluid viscous dampers. The mass matrix and the
initial stiffness vector of the system are:

M =
[
0.0250 0

0 0.0250

]
103ton, ks0 =

[
37.5
25

]
kN

mm
(34)

The nonlinear behavior of the structure is defined at the ele-
ment level, as discussed in Section 2.2. In particular, for
each column we consider an elastic-perfectly plastic behav-
ior defined in terms of shear forces and relative horizontal
displacement between the columns ends. The initial stiff-
ness for the columns of the first and second floor is defined
in the stiffness vector of (34). Each entry of the vector ks0 is
the sum of the stiffening contributions of the two columns
of each story. Similarly, the yielding forces for the columns
of the first and second story of the structure are defined in
the vector fy :

fy =
[
169
107

]
kN (35)

We assume 5% of critical damping for the two modes of the
structure to construct the Rayleigh damping matrix of the
structure (Chopra 2011):

Cs =
[

0.1207 −0.0324
−0.0324 0.0721

]
kNs

mm
(36)

0 5 10 15 20

-4000

-2000

0

2000

4000

6000

Fig. 5 Ground acceleration record LA02 considered in Section 4.1

This matrix is then considered constant throughout the opti-
mization. We consider an aggregated constraint of the peak
inter-story drifts in time. To this end, we first evaluate the
maximum value in time of each inter-story drift with a
differentiable approximation of the max function:

d̃c =
(
1

tf

∫ tf

0

(
d−1
allowD(d(t))

)r

dt

) 1
r

1 (37)

where tf is the final time, and D(·) is an operator that trans-
forms a vector into a diagonal matrix, and a diagonal matrix
into a vector (similarly to the diag(·) MATLAB function).
In (37) the inter-story drifts have been normalized by the
allowable value dallow. The maximum allowable inter-story
drift is set to dallow = 9mm. For high values of the param-
eter r , (37) approximates the maximum value in time of the
normalized inter-story drifts. Numerically, (37) is calculated
as follows:

d̃c =
(
1

tf

N∑
i=1

wi

(
d−1
allowD(di )

)r
) 1

r

1 (38)

where w1 = �t1
2 , wN = �tN

2 , and wi = �ti+�ti+1
2 . Sub-

sequently, we aggregate the two normalized peak drifts:

d̃c = 1T D(d̃c)
q+11

1T D(d̃c)q1
(39)

Equation (39) for high values of the parameter q approxi-
mates the maximum value of the two entries of the vector
d̃c. It should be noted that both r and q are even num-
bers. We consider an exponent α for the viscous dampers
equal to 0.35, and a fixed ratio between the damping coef-
ficient and the stiffness coefficient of each viscous damper:
ρ = kd/cd . The coefficient ρ in this example is set to
1.1042. For more information regarding the tuning proce-
dure adopted for the definition of ρ the reader is referred to
(Pollini et al. 2017). As a result, the design variables of the
problem are cd1 and cd2 for a given exponent α and ratio
ρ. The two damping coefficients are defined as the product
of a reference damping coefficient c̄d and a scaling vari-
able xi ∈ [0, 1]: cdi = xi c̄d , for i = 1, 2. The reference
damping coefficient represents the maximum allowed value
of damping, and it is defined a priori. In this example is
set to c̄d = 100 [kN(s/mm)α]. As we already mentioned,
the properties of the structure are given, and the added vis-
cous dampers are designed in order to satisfy a constraint on
performance. Similarly to what is done in more traditional
problems of structural optimization where structural weight
or volume are minimized (e.g. truss optimization), here we
are designing the smallest added damping system required.
The dampers are characterized by their damping coefficient,
therefore the most natural objective cost function would be



Adjoint sensitivity analysis and optimization of hysteretic dynamic systems with nonlinear viscous dampers 2283

the sum of the dampers’ damping coefficients. Thus, the
objective cost function minimized is the sum of the two
damping coefficients of the two fluid viscous dampers that
could be potentially placed in the structure if needed. The
final optimization problem formulation is presented in (40):

min
x

J = cd1 + cd2

s. t.: d̃c = 1T D(d̃c)
q+11

1T D(d̃c)q1
≤ 1

0 ≤ x1,2 ≤ 1

with: Mü(t) + Cs u̇(t) + TT fs(t) + TT fd(t)sin(β)

= −Meag(t)

ḟs(t) = D(ks0)

[
I − 1

2
D

(∣∣∣D(fy)−1fs(t)
∣∣∣N

)

D (sign(D(fs(t))Tu̇(t)) + 1)
]
Tu̇(t)

ḟd(t) = D (kd)

[
Tu̇(t) −

(
D (cd)−1D (|fd(t)|)

) 1
α

sgn(fd(t))

]

u0 = 0, u̇0 = 0, fs,0 = 0, fd,0 = 0

cdi = cd0 + xi c̄d , kdi = ρcdi, i = 1, 2

d̃c =
(
1

tf

∫ tf

0

(
d−1
allowD(d(t))

)r

dt

) 1
r

1 (40)

where T is a transformation matrix from local degrees of
freedom to global ones, and I is the identity matrix. As
already mentioned, we attach to this article the MATLAB
code for the sensitivity analysis of the constraint on d̃c, and
its verification with the finite difference method. Problem
(40) has been solved with a Sequential Linear Programming
approach (SLP), where in every iteration the sub-problems
were solved with the Gurobi Optimizer solver for Linear
Programming problems (Gurobi Optimization Inc. 2016).
In every iteration five linearized constraints were consid-
ered: the linearized aggregated constraint corresponding to
the current iteration point and the linearized constraints
corresponding to the previous four iterations. Due to the
non-convexity of the problem, it may happen that in a cer-
tain iteration one or more linearized constraints are active
even though the current point strictly falls into the feasi-
ble domain. This issue was already discussed in (Lavan
and Levy 2006b), and it is shown in Fig. 2 of the same
reference. These constraints may lead to too conservative
solutions. Therefore they are removed and disregarded in
the following iterations. Moving limits were also considered
with respect to the design variables x1 and x2. In particular,
we considered moving limits with a range of ±0.025 with
respect to each current iteration point. Last, the parameters
r and q presented in (37) and (39) are initially set to 1000,

Table 3 Final solution of the first example application

J d̃c cd1 cd2

kN(s/mm)α # kN(s/mm)α kN(s/mm)α

59.22 1.0025 32.34 26.88

and progressively increased through the iterations by steps
of 50.

The starting point for the optimization analysis was the
maximum damping solution, with both cd1 and cd2 equal
to 100 [kN(s/mm)α] (i.e. x1 = 1, x2 = 1). The optimiza-
tion analysis converged after 36 iterations in MATLAB.
The details regarding the final optimized design solution
are listed in Table 3. In Fig. 6 we plot the contour of the
objective function and of the aggregated constraint, and
the optimization path followed by the algorithm. Each blue
circle represents an optimal point identified in each itera-
tion. The black circle represents the final solution. From
the plot it is also possible to notice the high degree of
non-convexity of the problem at hand. Nevertheless, the
algorithm adopted in this application was able to identify
what graphically seems to be a final solution resembling
the optimal solution of the problem. From Table 3 it possi-
ble to observe that the final solution is characterized by a
small constraint violation. The aggregated inter-story dirift
constraint is highly non-convex and progressively approxi-
mated by (38) and (39). These two approximations of the
max function improve their accuracy through the iterations
according to the prescribed continuation scheme. Thus, the
non-convex constraint is hard to enforce due the approxi-
mation adopted. Additionally, the optimal solution seats in
a corner of the feasible domain. Therefore, as the algorithm
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Fig. 6 Contour of the objective function (blue) and of the aggregated
constraint (red) considered in Section 4.1. Each blue circle represent
the optimal point for each sub-linear programming problem. The black
circle represents the final optimized solution



2284 N. Pollini et al.

0 5 10 15 20 25 30 35
0

0.5

1

0 5 10 15 20 25 30 35
0

100

200

Fig. 7 Values of the aggregated constraint and objective function over
the iterations

converges towards this corner, it becomes more complex
to enforce the approximated aggregated constraint through
sequential linearizations. As a result, the final solution is
identified accepting a negligible (from an engineering point
of view) constraint violation. The values of the aggregated
constraint and objective function for each iteration point are
plotted in Fig. 7. In Fig. 8, we show the response of the
structure with the optimized damping distribution. In par-
ticular, the first plot shows the response in terms of global
coordinates u1 and u2. The second plot shows the response
in terms of dampers’ local coordinates (i.e. inter-story drifts)
d1 and d2.

4.2 Quarter-car with passive suspension system

The second application that we discuss consists of the design
of a quarter-car suspension system equipped with a nonlinear

Fig. 8 Structural response of the optimized structure. The first plot
shows the displacements u1 (blue) and u2 (red) over time. The second
plot shows the inter-story drifts d1 = u1 (blue) and d2 = u2 − u1
(red) over time. The dashed line represents the maximum allowable
inter-story drift (i.e. 9 mm)

fluid viscous damper. This particular application was inspired
by the numerical examples discussed in (Georgiou et al.
2007), where the authors formulated and solved with genetic
algorithms a multi-objective optimization problem for the
design of passive or semi-active suspension systems. In
what follows, the quarter-car is modeled as a two degrees of
freedom system, similarly to the previous application. The
system is subject to a sinusoidal road excitation zg(t) =
Asin(ωt), with A = 50 mm, ω = 10 rad/sec, and 0 ≤ t ≤
1.25 sec. This value of the forcing frequency was chosen
because it is close to one of the undamped natural frequen-
cies of the linear system. Essentially, this excitation mimics
the dynamic load felt by a car driving over a road irregular-
ity of amplitude 5 cm and length 4.36 m, with a speed of
50 km/h. The associated ground acceleration considered in
the equations of motion is z̈g(t) = −Aω2 sin(ωt). In Fig. 9
we show the dynamic system considered. In this case the
first mass represents the unsprung mass of the wheel, and
the second mass accounts for a quarter of the total sprung
car mass. The coefficients ks1 and c1 represent the stiff-
ness and the damping of the wheel. They both define linear
behaviors, and they are considered fixed and not involved
in the design. Their values are set to ks1 = 200 kN/m and
c1 = 7 Ns/m. The suspension system is characterized by
a linear spring and a nonlinear fluid viscous damper. These
two elements will be designed with an optimization-based
approach. The spring is defined by the stiffness coefficient
ks2, initially set to 15 N/mm. The damper is defined by the
stiffness coefficient kd , the damping coefficient cd , and the

Fig. 9 Quarter-car with nonlinear passive suspension considered in
Section 4.2



Adjoint sensitivity analysis and optimization of hysteretic dynamic systems with nonlinear viscous dampers 2285

Table 4 Final solution of the second example application

J d̃c cd ks2

s/mm2 # N(s/mm)α N/mm

5842.24 1.0000 99.16 7.58

exponent α. The mass matrix, the damping matrix, and the
initial stiffness matrix are:

M =
[
0.06 0
0 0.375

]
ton, Cs =

[
0.007 0
0 0

]
Ns

mm

Ks =
[
207.58 −7.58
−7.58 7.58

]
N

mm
(41)

As in Section 4.1, also in this case we consider a fixed ratio
ρ between the damping coefficient and the stiffness coef-
ficient of the damper. In particular, in this application we
considered a ratio ρ equal to 1.4519. For the calculation
of ρ we followed the same tuning procedure discussed in
Pollini et al. (2017), considering the linear system defined
by the mass and stiffness matrices presented in (41). The
exponent α in this case was set to 0.5. Therefore, the design
variable related to the damper is the damping coefficient
cd for a given ratio ρ and exponent α. For convenience,
from a numerical point of view, the two design variables are
reformulated as follows:

cd = x1c̄d , ks2 = x2k̄s (42)

where c̄d and k̄s are reference damping and stiffness coef-
ficients defined a priori, and x1,2 ∈ [0, 1]. In this example
we considered c̄d = 150 N(s/mm)α and k̄s = 15 N/mm.
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Fig. 10 Contour of the objective function (blue) and of the aggregated
constraint (red) considered in Section 4.2. Each blue circle represent
the optimal point for each sub-convex programming problem. The
black circle represents the final optimized solution
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Fig. 11 Value of the aggregated constraint and objective function over
the iterations

The goal of this problem is to design a suspension system
that minimizes the peak acceleration in time of the mass
m2 while respecting a constraint on the peak stroke of the
suspension. The peak acceleration of the second mass is a
parameter related to the comfort of the occupants of the car.
Therefore, we want to achieve the best level of comfort by
minimizing the peak acceleration ü2,max = maxt |ü2(t)|.
We calculate the peak acceleration through a differentiable
approximation of the max function:

ü2,max =
(
1

tf

∫ tf

0
(ü2(t))

r dt

) 1
r

(43)

where r is a high even number. At the same time, we
consider a constraint on the peak suspension stroke, or sus-
pension travel. The peak stroke is calculated also with a
differentiable formulation:

d̃c =
(
1

tf

∫ tf

0

(
u2(t) − u1(t)

dallow

)r

dt

) 1
r

(44)
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0 0.2 0.4 0.6 0.8 1 1.2
-5000

0

5000

Fig. 12 Acceleration and drift response of the sprung mass in the
optimized system. The dashed line represents the maximum allowable
stroke (i.e. 50 mm)
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where the maximum allowed stroke was set to dallow = 50
mm. Both (43) and (44) have been calculated similarly to
(37). The final optimization problem is presented in (45):

min
x

J =
(
1

tf

∫ tf

0
(ü2(t))

r dt

) 1
r

s. t.: d̃c ≤ 1

0 ≤ x1,2 ≤ 1

with: Mü(t) + Cs u̇(t) + Ksu(t) + TT fd(t) = −Mez̈g(t)

ḟd(t) = D (kd)
[
Tu̇(t) −

(
D (cd)−1

D (|fd(t)|)) 1
α sgn(fd(t))

]

u0 = 0, u̇0 = 0, fd,0 = 0

cd = x1c̄d , kd = ρcd

ks2 = x2k̄s

d̃c =
(
1

tf

∫ tf

0

(
u2(t) − u1(t)

dallow

)r

dt

) 1
r

(45)

Problem (45) has been solved with the Method of Moving
Asymptotes (MMA) (Svanberg 1987). The MMA algo-
rithm, in fact, proved to be more effective for this particular
optimization problem in converging smoothly towards the
final optimized solution. Moreover, with this example we
want to show that the sensitivity analysis discussed herein
can be applied to different types of dynamic systems. We
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Fig. 13 Force-displacement and force-velocity response histories of
the viscous damper in the optimized system

considered the same moving limits as in the previous appli-
cation, and the same setting for the parameter r .

The variables x1 and x2 were initially set to one. As a
consequence, the associated physical design variables ini-
tially were: cd = 150 N(s/mm)α , and ks2 = 15 N/mm.
The optimization process converged after 24 iterations in
MATLAB. The final results of the analysis are presented in
Table 4. Figure 10 shows the contour of the objective func-
tion and of the constraint. It also shows the optimization
path followed by the optimizer. Also in this case each blue
circle represents optimal points for each subsequent con-
vex approximation of the problem at hand. The black circle
highlights the final design solution. The values of the con-
straint and of the objective function over the iterations are
plotted in Fig. 11. The response of the optimized system is
shown in Figs. 12 and 13. In particular, Fig. 12 shows the
acceleration response of the sprung mass m2 in time, and
the stroke of the suspensions system d(t) = u2(t)−u1(t) in
time. Figure 13 shows the response of the damper in terms
of force-displacement and force-velocity.

5 Conclusions

In this paper we discussed the adjoint sensitivity analysis
and optimization for nonlinear dynamic systems coupled
with nonlinear fluid viscous dampers. The dampers are
modeled with the Maxwell’s model for visco-elasticity. It
is thus possible to account for the stiffening and damp-
ing contributions of the device. The systems are subject
to transient excitations, and their response is calculated
with the Newmark-β method. In particular, the equilibrium
in each time-step is iteratively achieved by means of the
Newton-Raphson and Runge-Kutta methods. The heart of
the discussion of this paper focuses on the adjoint sensi-
tivity analysis of these systems, and its application to two
different design cases. The sensitivity of a generic response
function is in fact consistently calculated with detail through
the discretize-then-differentiate version of the adjoint vari-
able method. The generic framework is then applied to the
optimization-based design of an added damping system for
seismic retrofitting, and to the optimization-based design
of a quarter-car suspension system. Both applications show
the importance of the adjoint sensitivity analysis discussed
herein in the context of optimization-based design of hys-
teretic dynamic systems with nonlinear viscous dampers.
The results presented could be extended and applied to dif-
ferent design cases, where we expect the methodology dis-
cussed here to promote the use of computationally efficient
design procedures based on optimization.
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Appendix: Explicit formulations of the matrices
involved in the sensitivity analysis

To perform the sensitivity analysis discussed in Section 3,
(27) must be solved iteratively backwards over the same
time discretization adopted in the system response analysis.
The matrix Agr,i , and the vector bgr,i have been partitioned
into blocks in order to facilitate their description. More
precisely, the block A11

i of Agr,i is also a matrix and it
is presented in Table 5. The blocks A12

i and A21
i are the

following:

A12
i =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ ,

A21
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
kd

kd

2
kd

2 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(46)

Finally, the block A22
i is defined in Table 6.

Similarly, the blocks of the vector bgr,i are also vectors,
and they are written as follows:

b1i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

−ψ1
i+1+IL

(
fd,i

)
kdψ2

i+1+IL
(
f̂ 1

d,i

)
kdψ3

i+1 . . .

+IL
(
f̂ 2

d,i

)
kdψ4

i+1+IL
(
f̂ 3

d,i

)
kdψ5

i+1− ∂h
∂fd,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(47)

b2i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

−φ1
i+1+O

(
fs,i , u̇i

)
φ2

i+1+O
(
f̂ 1

s,i , u̇i+ 1
2

)
φ3

i+1+. . .

+O
(
f̂ 2

s,i , u̇i+ 1
2

)
φ4

i+1+O
(
f̂ 3

s,i , u̇i+1

)
φ5

i+1− ∂h
∂fs,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(48)

b3i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μi+1
�ti+1
2 −νi+1

�t2
i+1
4 − ∂h

∂üi

−μi+1−νi+1�ti+1−Q
(
fs,i , u̇i

)
φ2

i+1+ . . .

− 1
2Q

(
f̂ 1

s,i , u̇i+ 1
2

)
φ3

i+1− 1
2Q

(
f̂ 2

s,i , u̇i+ 1
2

)
φ4

i+1+ . . .

−kdψ2
i+1− 1

2kdψ3
i+1− 1

2kdψ4
i+1− ∂h

∂u̇i

−νi+1− ∂h
∂ui

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(49)

where u̇
i+ 1

2
= 1

2 (u̇i+1 + u̇i ). We remark that �ti+1 =
ti+1 − ti , and �ti = ti − ti−1.

Table 5 Block A11
i of the

partitioned matrix Agr,i

A11
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 �ti
6

−IL
(
f̂ 3

d,i−1

)
kd�ti −1 0 0 �ti

3

0 −IL
(
f̂ 2

d,i−1

)
kd

�ti
2 −1 0 �ti

3

0 0 −IL
(
f̂ 1

d,i−1

)
kd

�ti
2 −1 �ti

6

0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where we simplified the formulation by defining the following functions:

I(x) = 2c
− 1

α

d |x| 1
α δ (x), with δ (x) Dirac delta function

L(x) = 1

α
c
− 1

α

d |x| 1
α

−1

IL(x) = I(x) + L(x)
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Table 6 Block A22
i of the

partitioned matrix Agr,i

A22
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 �ti
6 0 0 0

−�tiO
(
f̂ 3

s,i−1, u̇i

)
−1 0 0 �ti

3 0 0 0

0 −�ti
2 O

(
f̂ 2

s,i−1, u̇i− 1
2

)
−1 0 �ti

3 0 0 0

0 0 −�ti
2 O

(
f̂ 1

s,i−1, u̇i− 1
2

)
−1 �ti

6 0 0 0

0 0 0 0 −1 0 0 1

0 0 0 0 0
�t2i
4

�ti
2 m

Q
(
f̂ 3

s,i−1, u̇i

)
1
2Q

(
f̂ 2

s,i−1, u̇i− 1
2

)
1
2Q

(
f̂ 1

s,i−1, u̇i− 1
2

)
0 0 0 −1 cs

0 0 0 0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where we simplified the formulation by defining the following functions:

O(x, y) = 0.5Nks

1

fy

sgn

(
x

fy

) ∣∣∣∣ x

fy

∣∣∣∣
N−1

(sgn(xy) + 1) y

Q(x, y) = ks

[
1 − 1

2

∣∣∣∣ x

fy

∣∣∣∣
N

(sgn(xy) + 1)

]
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