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Abstract Meta-models and meta-models based global opti-
mization methods have been commonly used in design opti-
mizations of expensive problems. In this work, a multiple
meta-models based design space differentiation (MDSD)
method is proposed. In the proposed method, an important
region will be constructed using the expensive points inside
the whole design space. Then, quadratic function (QF) will be
employed in the search of the constructed important region.
To avoid the local optima, kriging is employed in the search of
the whole design space simultaneously. The MDSD method
employs different meta-models in the different design space
instead of space reduction, which preserves the advantages of
high efficiency of the space reduction methods and avoids
their shortcomings of removing the global optimum by mis-
take in theory. Through extensive test and comparison with
three meta-model based algorithms, efficient global optimiza-
tion (EGO), Mode-pursuing sampling method (MPS) and hy-
brid and adaptive meta-modeling method (HAM) using sev-
eral benchmark math functions and an engineering problem
involving finite element analysis (FEA), the proposed method
shows excellent performance in search efficiency and
accuracy.

Keywords Multiple meta-models . Design space
differentiation . Expensive problems . Global optimization

1 Introduction

Meta-model and meta-model based global optimization
methods have been commonly-used in solving the practical
expensive problems in engineering. Meta-models, also
called surrogate model or approximation model, are usually
used to replace the expensive problems in optimization
process. In the past years, many excellent meta-models
have been developed. The famous kriging is presented orig-
inally in mining and geostatistics applications (Matheron,
1963; Cressie, 1989; Cresssie, 1993). Hardy originally de-
veloped radial basis function (RBF) to fit irregular topo-
graphic contours of geographical data using linear combi-
nations of radially symmetric function based on Euclidean
distance (Hardy, 1971). Polynomial response surface (PRS)
models was originally developed for the analysis of physi-
cal experiments (Box and Wilson, 1951). The second-order
polynomial response surface model, or called quadratic
function (QF), is commonly selected in fitting various prob-
lems. Multivariate adaptive regression splines (MARS) was
originally developed for flexible regression modeling of
high dimensional data through a forward/backward iterative
approach(Friedman, 1991). Support Vector Regression
(SVR) was developed as an alternative technique for ap-
proximating complex engineering analyses (Clarke et al.,
2005). To select a proper meta-model in fitting the given
problem, the performance of the presented meta-models is
intensively studied by the researchers. From the study,
kriging is a good choice when fitting slightly nonlinear
responses in high-dimension spaces (Simpson et al.,
2001b); RBF is better in fitting high nonlinear responses
(Fang et al., 2005); PRS is recommended when fitting
slightly nonlinear and noisy responses(Jin et al., 2001);
MARS can give accurate results in fitting cheap problems
for its need of a large set of sample points (Simpson et al.,
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2001a); and the performance of SVR needs to be further
studied for the unknown fundamental reason that it outper-
forms all other meta-models including kriging, PRS, RBF
and MARS in the provided test (Wang and Shan, 2007).

Due to the request of high efficiency, many effective
meta-model based iterative algorithms have been devel-
oped and widely used in engineering. Jones et al. devel-
oped a so-called efficient Global Optimization (EGO) to
overcome the computational obstacles (Jones et al., 1998).
Wang et al. used RBF to find the promising region, and
then QF is used to detect the region containing the global
optimum (Wang et al., 2004). To improve the performance
of the methods, multiple meta-models based global opti-
mization algorithms attracted many researchers’ attention.
Gu et al. employed three different meta-models simulta-
neously in the search process and developed the hybrid
and adaptive meta-modelling method(HAM), which greatly
expands the scope of application of the algorithm (Gu
et al., 2012). Viana et al. provided multiple surrogate ef-
ficient global optimization (MSEGO) (Viana et al., 2013).
Chaudhuri et al. used multiple meta-models in constraint
optimization (Chaudhuri et al., 2015). However, the effi-
ciency of the algorithms mentioned above need further
improved.

To get efficient algorithms, the strategy of reduction of
the design space in the iterative process has been introduced
and many excellent region reduction methods have been
developed. Wang et al. used QF in the search process and
gradually reduced the design space which reaches the given
threshold (ARSM) (Wang et al., 2001). Shin and Grandhi
removed the design using the interval method (Shin and
Grankhi, 2001). Move-limit optimization strategies are also
used to reduce the design space (Fadel et al., 1990; Fadel,
and Cimtalay, 1993; Wujek and Renaud, 1998a; Grignon,
and Fadel, 1994; Wujek and Renaud, 1998b). With the re-
duction of the design space, the search efficiency has been
greatly improved. But the global optimum may be omitted
with the removed space.

In this work, a multiple meta-model based design space
differentiation method (MDSD) is proposed for the expensive
problems. Unlike the conventional space reduction algo-
rithms, the proposed algorithm employs QF in the important
region and the kriging is used in the search of the whole design
space simultaneously to avoid the situation that the global
optimum is contained in the removed remaining region due
to the coarse meta-models. And the test using a series of math
functions and a real engineering expensive black-box problem
demonstrates its performance.

The rest of the paper is organized as follows. Section 2 will
introduce the basic knowledge about the meta-modeling tech-
niques. The proposed MDSD method will be shown in
Section 3. Section 4 will present the test results. And the
conclusion will be shown in Section 5.

2 Technique approach

2.1 Latin hypercube design (LHD)

The Latin hypercube design is employed in this work for its
“space filling” characteristic (Mckay et al., 1979). The sim-
plest form of LHD can be defined as follows:

Si; j ¼ 1

n
Fi; j−Pi; j

� � ð1Þ

where, n is the number of design variables; Fi,j is an m*n
matrix corresponding to the problems with n variables and m
levels; Pi,j is also anm*nmatrix and each element is a random
number in [0,1]. The detailed algorithm of LHD can be found
in the literature (Mckay et al., 1979; Fang et al., 2006).

2.2 Quadratic function (QF)

Quadratic function is originally developed by Box andWilson
for the analysis of physical experiments(Box and Wilson,
1951). Its form can be expressed as follows:

ŷ̂ xð Þ ¼ βo þ ∑
k

i¼1
βixi þ ∑

k

i¼1
βiix

2
i þ ∑

i
∑
j
βijxix j ð2Þ

where, βij are the parameters and evaluated by the least
squares method; y(x) is the approximation of the real
function.

2.3 Kriging

Kriging is an intensively studied meta-model(Laslett,
1994; Simpson et al., 1998; Jin et al., 2001; Simpson
et al., 2001c; Simpson et al., 2001b; Van Beers, 2005;
Krige, 1953; Matheron, 1963). Its general form is shown
as follows:

y xð Þ ¼ f xð Þ þ Z xð Þ ð3Þ
where f(x) is a given zero order polynomial function and
Z(x) is a Gaussian process with a zero mean value and a
non-zero covariance Cov[Z(xi), Z(xj)]. So kriging can also
be expressed in the following form:

y xð Þ ¼ ∑
n

i¼1
βibi xð Þ þ Z xð Þ ð4Þ

Cov Z xi
� �

; Z x j
� �� � ¼ σ2R xi; x j

� � ð5Þ

where, σ2 is the process variance and R is the correla-
tion matrix. A well written MATLAB toolbox of kriging
can be downloaded at the website http://www.imm.dtu.
dk/~hbn/dace.
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3 Multiple Meta-models based design space
differentiation (MDSD) method

The MDSD method is proposed especially for the expensive
problems in practical design optimizations. Of all the current
meta-models, the kriging is famous as it can predict highly
nonlinear function more correctly (Wang, and Shan, 2007).
And according to Taylor’s theorem, a QF can locally, accu-
rately fit any smooth function. In this method, the QF is used
in the search of the important region constructed using a part
of the existing expensive points with lowest function values.
And kriging is employed simultaneously in the search of the
whole design space to avoid the local minima. The procedures
of the proposed method are shown in Fig. 1.

3.1 Steps of MDSD method

3.1.1 Step 1 Sample initial points

The number of initial sample points is usually small to save
the computation cost. And from test, twelve initial points can
meet the requirements and more initial points can’t noticeably
increase the accuracy and efficiency, see Section 4.3. So,
twelve initial sample points will be generated and evaluated
in the proposed method, x1, x2,…, x12, and y1, y2,…, y12. Of
course, more initial points can also be used.

3.1.2 Step 2 Identify the important region

In the proposedMDSDmethod, a varied number of expensive
points with lowest function values are used to construct the
important region. And this region is searched each iteration to
improve the performance of the proposed method. To avoid
the local minima, a global search in the whole design space
will be carried out simultaneously. The search strategy will be
introduced in next section and the number of expensive points
used to construct the important region is defined as follows:

ne ¼ int wi
*me

� �
; i ¼ 1; 2; 3; :…; 10

ne ¼ 12; i > 10

�

wi ¼ 1:0−0:1* i−1ð Þ� �
; i ¼ 1; 2; 3; :…; 10

ð6Þ

where, me is the number of all the expensive points; ne is the
number (the integer part) of expensive points to construct the
important region; i is the number of iterations. In the proposed
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Fig. 1 Procedures of MDSD method

Fig. 2 An illustration of a first important region

Table 1 The distribution for ne

iteration me
(expensive pts)

wi

(weight)
ne
(No. of pts for
important region)

1 12 1.0 12

2 24 0.9 22

3 36 0.8 29

4 48 0.7 34

5 60 0.6 36

6 72 0.5 36

7 84 0.4 34

8 96 0.3 29

9 108 0.2 22

10 120 0.1 12

11 132 N/A 12

… 12
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method, the important region is the smallest region to cover the
used expensive points. Figure 2 shows a first important region.

According to (6), the distribution for ne reaches a peak at
36 then drops down to 12,see Table 1.

In the proposed method, twelve new points are selected to
update the meta-models in each iteration, so the points select-
ed in the last several iterations are used to construct the im-
portant region at least before the tenth iteration, which can
make the important region be gradually reduced to keep the
global optimum as possible.

Figure 3 shows the change process of the important region
in solving the Goldstein and Price (GP) function (The equa-
tion and plot are shown in Section 4). Since the tenth iteration,
twelve points are used to construct the important region and
the important region can be rapidly reduced to the area around
the global minimum. Figure 4 shows the search process in
solving the F16 function (The equation and plot are shown

in Section 4). The obtained minimum value is rapidly de-
creased since the tenth iteration.

In summary, the used strategy to construct the important re-
gion can make the obtained region gradually reduced before the
tenth iteration and then rapidly decreased to the globalminimum.

3.1.3 Step 3 Select new expensive points

Search in whole design space Kriging is well-known for its
high global accuracy and it is employed in the search of the
whole design space. And the new expensive points are select-
ed with the following steps:

1. Fit kriging using the initial sample points generated in step 1.
2. Generate a large number of points using LHD in the

whole design space, 104 or more (Wang et al., 2004).
These points will be evaluated by kriging and called
cheap points, x1k ; x

2
k ;…; x10000k , are obtained in this step.

If the problems have constraints, the constraints will be
fitted using both QF and kriging. And the 104 cheap
points which can pass any one of the two meta-models’
test will be kept for next step.

3. Evaluate the generated cheap points using the fitted
kriging meta-model and f x1k

� �
; f x2k

� �
;…; f x10000k

� �
are obtained.

4. Selected six points with lowest function values evaluated
by kriging as the new expensive points and x1e ; x

2
e ;…; x6e

are obtained.

Search in the important region The gradually reduced im-
portant region will be searched using QF, because any smooth
function can be locally, accurately fitted by a QF according to

Fig. 3 The important region in solving the GP function

Fig. 4 The process in solving
F16 function
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Taylor’s theorem. The procedure to select new expensive
points in the important region is shown below:

1. Fit a QF using the initial sample points Generated in step
1.

2. Generate a large number of points using LHD in the im-
portant region, 104 or more (Wang et al., 2004), x1q; x

2
q;

…; x10000q are obtained in this step. These points will be

evaluated by QF and also called cheap points. If the prob-
lems have constraints, the constraints will also be fitted
using both QF and kriging. And the 104 cheap points to
pass any one of the two meta-models’ test will be kept for
next step.

3. Evaluate the generated cheap points using the fitted QF

meta-model, and f x1q
� �

; f x2q
� �

;…; f x10000q

� �
are

obtained.

4. Selected six points as the new expensive points with low-
est function values evaluated by QF and x7e ; x

8
e ;…; x12e are

obtained.

Six new expensive points are selected both in the whole
design space by kriging and in the important region by QF,
so twelve new expensive points will be obtained in this step.
The newly selected expensive points will be combined with
the initial sample points to update the used meta-models
until the program stops. Figure 5 shows a complete search
process in solving the GP function (Its global minimum is at
(0,-1).).

3.1.4 Step 4 Check convergence

The program will stop when the convergence criteria are met.
In HAM method, the mean value of five lowest function

Fig. 5 The search process in
solving the GP function

Fig. 6 Plot of Beak function Fig. 7 Plot of Alpine function
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values of the expensive points is used to check the conver-
gence and gained a great success (Gu et al., 2012). In the
proposed method, the strategy is also employed and the pro-
gram stops when the mean value of five lowest functions
become negligible. Since the tenth iteration, the number of
the expensive points is fixed and this convergence criterion
become to work. See (7).

jFiþ1−Fij≤ε

Fi ¼
∑
5

j¼1
f j

5
; i ¼ 10; 11; 12::…

ð7Þ

where, ε is a small number given by the user and 0.5 is rec-
ommended for most situations; fj is the jth lowest function
value of the obtained expensive points.

To save the computation time, the number of iterations is
also used as the convergence criteria in the proposed method.
When the number of iterations reaches the pre-defined

number, the program will be forced to terminate. And the
number of 25 is recommended.

4 Tests

In this section, four famous low-dimensional math functions
with several local minima are used to test the ability to escape
the trap of local minima of the proposed method. And five
high-dimensional problems, from 6-D to 20-D, and a practical
vehicle lightweight design problem are used to test the search
efficiency and accuracy of the proposed method. The famous
meta-model based algorithms, EGO, Mode-pursuing sam-
pling method (MPS) and the previously developed HAM will
also be employed for the comparison.

4.1 Low dimensional problems

All the four selected low-dimensional problems have several
local minima, which are used to test the ability of the proposed
method to escape the trap of local minima.

1. Beak Function(BF) (Younis et al., 2007)

Beak function is an exponential form, see (8) and Fig. 4.

f x1; x2ð Þ ¼ 3 1−x1ð Þ2e −x21− x2þ1ð Þ2ð Þ−10 x1
5
−x31−x

5
2

� �
e −x21−x

2
2ð Þ

−
1

3
e − x1þ1ð Þ2−x22ð Þ; x1; x2ð Þ∈ −3;−4; 3; 4½ �

ð8Þ

2. Alpine Function(AF) (Younis et al., 2007)

Alpine function is a sinusoidal function, see (9) and Fig. 5.

f x1; x2ð Þ ¼ sin x1ð Þ
� sin x2ð Þ ffiffiffiffiffiffiffiffiffi

x1x2
p

; x1; x2ð Þ∈ 0; 0; 10; 10½ � ð9Þ

3. Goldstein and Price Function (GP) (Wang et al., 2004)

GP function is a high nonlinear function, see (10) and
Fig. 6.

Table 2 Summary of low-dimensional problems

Func. Analytical minimum MDSD HAM MPS EGO

min nit nfe min nit nfe min nit nfe min nit nfe

BF −6.55 −6.33 12.3 160 −5.64 11.9 92 −5.53 17.8 61 −6.55 14.7 50

AF −6.13 −6.09 12.1 157 −5.57 11.9 90 −5.69 13.2 45 −6.13 16.3 53

GP 3 3.24 13.2 170 3.95 18.9 123 14.4 40.1 137 3.00 46.2 112

SC −1.03 −1.03 11.5 140 −1.03 11.9 84 1.00 11.1 42 −1.03 14.1 48

Table 3 Results in handling local minima

Function Analytical
minimum

Algorithm Number of times global
minimum was obtained

BF −6.55 MDSD 94

HAM 75

MPS 71

EGO 100

AF -6.13 MDSD 99

HAM 83

MPS 87

EGO 100

GP 3 MDSD 100

HAM 96

MPS 70

EGO 100

SC -1.03 MDSD 100

HAM 100

MPS 89

EGO 100
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f x1; x2ð Þ ¼ 1þ x1 þ x2 þ 1ð Þ2
�
19−14x1 þ 3x21−14x2 þ 6x1x2

h
þ 3x22

�i
30þ 2x1−3x2ð Þ2

�
18−32x1 þ 12x21 þ 48x2−

h
36x1x2 þ 27x22

�i
; x1; x2ð Þ∈ −2; 2½ � ð10Þ

4. Six-hump camel-back (SC) function (Wang et al.,
2004)

SC function is also a high nonlinear polynomial, (11) and
Fig. 7.

f x1; x2ð Þ ¼ 4x21−
21

10
x41 þ

1

3
x61 þ x1x2−4x22

þ 4x42; x1; x2ð Þ∈ −2; 2½ � ð11Þ

In this test, 100 runs are carried out and the mean values of
the number of the function evaluations (nfe), number of iter-
ations (nit) and the obtained minima (min) will be given to

show the search efficiency and accuracy of the proposed
method, see Table 2. (The HAM method employs the same
stop criteria as DSD method for the comparison.)

All the four low-dimensional math problems have several
local minima and are mainly used to test the abilities of the
used algorithms to escape the local minima. The results show
that EGO has the best performance and the optimization re-
sults by EGO is identical to the analytical results. The devel-
oped MDSD method can obtain better results than the HAM
method and the MPS method, just behaves worse than the
EGO. The low accuracy of HAM and MPS shows their poor
abilities to escape the local minima, see Table 3.

As shown in Table 2, EGO has the best ability to escape the
trap of the local minima, and each run can get the global

Table 4 Summary of the results in solving high-dimensional functions

Func. Analytical
minimum

MDSD HAM MPS EGO

min nit nfe min nit nfe min nit nfe min nit nfe

PF −45.8 −44.3 12.4 161 −37.2 13.4 91 −34.6 100 1572 −42.0 50 200

TF −210.0 −203.9 18.1 229 −125.4 40.7 297 −210 1 73 −202 50 200

F16 25.88 36.6 22.4 281 50.3 60.9 423 341.7 100 2562 40.8 50 260

SSF 0 0.53 19.2 243 4.6 47.4 286 0 1 243 9.9 100 400

Table 5 Distribution of the
obtained minima by MDSD
method

Func. Analytical minimum MDSD

Mean value Number of times global minimum was obtained

PF −45.8 −44.3 98 (<−43) 2(> − 43)

TF −210.0 −203.9 80(<−200) 15(> − 200& < −190) 5(> − 190)

F16 25.88 36.6 84(<40) 16(>40& < 50) 6(>50)

SSF 0 0.53 94(<1) 6(>1)

Table 6 results by MDSD
method with different number of
initial points

Func. Analytical minimum MDSD (12 initial points) MDSD (30 initial points)

min nit nfe min nit nfe

PF −45.8 −44.3 12.4 161 −44.9 12.5 180

TF −210.0 −203.9 18.1 229 −209.4 19.0 259

F16 25.88 36.6 22.4 281 34.5 21.6 289

SSF 0 0.53 19.2 243 0.51 19.7 267
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minimum. The proposed MDSD method is trapped 6 times in
solving BF and once in solving AF. HAM has difficulties in

solving BF and AF, which get the global minimum less than
90 times in 100 runs. MPS has the worst ability to escape the
trap of the local minimum of the four methods and gets the
global minimum less than 90 times for all the four problems.

4.2 High dimensional problems

5. Paviani function with n = 10 (PF) (Adorio, 2005)

f xð Þ ¼ ∑
n

i¼1
ln2 xi−2:0ð Þ þ ln2 10−xið Þ� �

− ∏
n

i¼1
xi


 �0:2

; xi∈ 2:1; 9:9½ �

ð12Þ

6. Trid Function with n = 10(TF) (Hedar 2005)

f xð Þ ¼ ∑
n

i¼1
xi−1ð Þ2− ∑

n

i¼1
xixi−1; xi∈ −100; 100½ � ð13Þ

7. F16 function with n = 16(F16) (Wang et al., 2004)

f xð Þ ¼ ∑
n

i¼1
∑
n

j¼1
aij x2i þ xi þ 1
� �

x2j þ x j þ 1
� �

; xi; x j∈ −5; 5½ �

ð14Þ

where

aij
� � ¼

1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1
0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
666666666666666666666666664

3
777777777777777777777777775

8. Sum Squares function with n = 20(SSF) (Adorio, 2005)

f xð Þ ¼ ∑
n

i¼1
ix2i ; xi∈ −10; 10½ � ð15Þ

Fig. 8 Plot of GP function

Fig. 9 Plot of SC function

Fig. 10 FEA model of the rear frame
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In this test, 100 runs are also carried out and the parameters
min, nit and nfe are also used to test the efficiency and accu-
racy of the proposed MDSD method, see Table 4.

Table 4 show that both the proposed MDSD method and
the EGO method can provide close accurate results to the
analytical minimum for all the four problems, but the
MDSD method can save more than 50% of the computation
time when nit is considered. HAM gives poor accuracy when
solving TF and MPS fails to solve F16.

To further demonstrate the performance of the MDSD
method, the distribution of the obtained minima of the 100
runs is given in Table 5.

As shown in Table 5, more than 80% of the runs can get
accurate results, which the obtained minima are close to their
analytical minimum in solving all the four problems,
separately.

In summary, the MDSD method can strike a good balance
between search efficiency and accuracy. Overall, it is a good
choice in solving the expensive problems.

4.3 Test of the different number of the initial points

To demonstrate the number of the initial sample points, 30
initial points are also used the four high dimensional problems
and the results are shown in Table 6.

That can be seen from Table 6 that the performance of the
MDSD method with 30 initial points has no noticeably im-
provements. So, twelve initial sample points are used to start
the program.

4.4 Vehicle lightweight design

The lightweight design of the rear frame involves the finite
element analysis and simulation and MSC. Nastran software
is used to evaluate its stiffness. Figure 8 shows the FEA
model.

The weight of all the 43 parts of this model is 73.65 kg and
one run of this FEA model containing more than 160,000
elements need about 3 min with Lenovo T420i installed a
64-bit operating system. The optimization model is shown
below:

min f xð Þ
s:t: dis < 2:0; t1−18∈ 0:6; 2:5½ � ð16Þ

where, f(x)is the weight of the system and is the objective
(unit: kg) of the optimization model; the thicknesses of the
parts, t1–18(unit: mm), are the variables; the displacement by
the load, dis (unit: mm), is the constraint. The constraint is also
handled by the meta-models and the cheap points which can
pass any of the meta-model will be kept for selection. The
results is given in Table 6.

That can be seen from Table 7 the MDSD method yields
an optimized result with 15 iterations and 192 function eval-
uations. The weight of the whole structure is reduced by
7.7 kg and the displacement by the load is decreased to
2.00 mm, which can meet the requirements in engineering.
A number of 15 iterations and 192 function evaluations can
also be accepted in engineering design. In summary, the
MDSD method has a great potential in solving the practical
problems.

Initial design Optimized design by MDSD

Max. disp = 2.04mm Max. disp = 2.00mm

Fig. 11 The displacements by the
load

Table 7 Summary of the lightweight design

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 mass dis nit nfe

Initial

design 0.8 1.0 1.0 1.0 1.0 1.5 1.5 1.0 1.2 0.8 1.5 1.2 1.2 1.5 1.0 1.5 2.0 2.0 73.7 2.04

MDSD 0.96 0.60 0.80 1.00 0.90 0.90 1.10 2.00 1.10 0.60 1.00 1.00 0.84 0.60 0.92 1.15 0.84 1.18 66.0 2.00 15 192
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5 Conclusion

In this work, a novel MDSD method is presented, which em-
ploys QF in the so-called important region and kriging in the
whole design to avoid the local minima. Several benchmark
math functions and a real engineering problem involving FEA
show that the MDSD method can strike a good balance be-
tween search efficiency and accuracy and also has good ability
to escape the local minima. The MDSD method preserves the
advantages of high efficiency of the space reduction methods
and avoids their shortcomings of removing the global opti-
mum by mistake. It is real a good choice in solving the ex-
pensive problem in engineering.
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