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Abstract The reliability-based design optimization (RBDO)
has been widely recognized as a powerful optimization tool
under probabilistic constraints, through appropriate modeling
of uncertainties. However, the drawback of RBDO is that it
does not reflect the ability of the structure to complywith large
data variations, unforeseen actions or deterioration mecha-
nisms. On the other hand, the robust design optimization
(RDO) reduces the variability of the structural performance,
in addition to its mean level. However, RDO does not take
direct advantage of the interaction between controllable (prod-
uct design values) and noise variables (environmental random
values), and the obtained results do not accurately indicate
what parameter has the highest effect on the performance
characteristics. The purpose of this paper is to propose a robust
formulation for reliability-based design optimization
(RRBDO) that combines the advantages of both optimization
procedures and overcomes their weaknesses. The optimiza-
tion model proposed overcomes the limitations of the existing
models without compromising the reliability level, by consid-
ering a robust convex objective function and a performance
variation constraint. The proposed formulation can consider
the total cost of structures and can control structural parameter
variations. It takes into account uncertainty and variability in
the same mathematical formulation. A numerical solution

procedure is also developed, for which results are analyzed
and compared with RBDO for several examples of concrete
and steel structures.
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1 Introduction

The early design methods proposed by regulations were based
on the principle of allowable stresses. Given the scattered
nature of data, designers started using in the 1960’s a semi-
probabilistic approach based on partial safety factors that are
supposed to deal with variability. This approach is nowadays
used in many codes of practice, as it allows one to cover a
large range of uncertainties. The use of these factors often
leads to over-design, and does not award the engineerwho hold
more information and more representative models which nat-
urally allows the designer to be more confident in the results
hegets.Theprobabilisticmethods constitute an alternative to
safety factor approaches and allow for effective cost optimi-
zation. In order to point out the difference between the existing
optimization methods, a distinction is to be highlighted be-
tween the terms ‘variability’ and ‘uncertainty’. In this paper,
the Van Belle’s terminology (VanBelle, 2011) is considered,
where ‘variability’ refers to natural or intrinsic variation in
some quantity, whereas ‘uncertainty’ refers to the degree of
precision with which a quantity is measured. Usually, uncer-
tainty can be probabilistically modeled, whereas variability
cannot without specific assumptions; other methodologies,
such as fuzzy sets and interval algebra could be appropriate
for modeling variability. In structural design, the Deterministic
Design Optimization (DDO) is known as the first mathemat-
ical formulation to be applied in engineering (Arora, 1989),
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where the safety factors are assumed to cover the uncertainties
related to design variables, material properties and loads.
However, as uncertainties can have large impact on structural
performance, the probabilistic constraint formulations have
been developed since the 1980 (Madsen & Krenk, 1986).
Although the Reliability-Based Design Optimization
(RBDO) takes into account the uncertainty in the analysis, it
does not reflect the ability of the structure to adapt to variabil-
ity, unforeseen actions or to deterioration mechanisms. A de-
sign that is less sensitive to changes in the variable parameters
can sustain greater excursions from the assumed design con-
ditions before failing (Sandgren & Cameron, 2002). The
Robust Design Optimization (RDO) implies that the objective
function becomes less sensitive to random variations by re-
ducing the variability of the structural performance while in-
creasing its mean level. The conventional formulation of ro-
bust engineering design was proposed by Taguchi (Taguchi &
Rafanelli, 1994) with the aim of enhancing the quality of a
product or process not only by achieving the performance
target, but also by minimizing the performance variation with-
out removing the cause of variations. Later on, the limitations
of Taguchi methods are clarified by Parks (Parks, 2001). It has
been proven in many studies that reliability-based and robust
design has advantages over deterministic design; e.g.
(Sandgren & Cameron, 2002; Taguchi & Rafanelli, 1994;
Parks, 2001; Lee & Park, 2001; Doltsinis et al., 2005;
Saydam & Frangopol, 2011). However, there are still ambi-
guities regarding the links between the two approaches, and
the domain of application in which RBDO or RDO can be
recommended. Although the former uses the reliability theory
and the latter uses deterministic models (Beck & de Santana
Gomes, 2012), the engineer is seeking for a consistent and
adapted decision-making methodology whatever the applied
procedure. In order to combine the advantages of both opti-
mization methods, the present paper proposes a robust formu-
lation for Reliability-Based Design Optimization (RRBDO).
Some work in literature integrates the robustness into the
reliability-based design (Youn et al., 2005; Lee et al., 2008;
Rathod et al., 2013; Shahraki & Noorossana, 2014), by keep-
ing a robust objective function, and adding a reliability con-
straint on the performance variation. However, these formula-
tions presents the same pitfalls of RBDO. The solution of
theses formulations can be very sensitive to the choice of the
reliability target and the probabilistic input parameters.
Moreover, considering a target failure probability as a con-
straint without tolerating small amount of variation may lead
to highly conservative solutions. Also, the probabilistic con-
straint may not always be active. Moreover, these formula-
tions cannot take into account the variations in the system
parameters related to external and internal variabilities.

The major development in this paper is the formulation of a
design optimization that can take account for uncertainty and
variability in the same mathematical formulation, while

minimizing the response variation and guaranteeing the de-
sired reliability level. This is done by considering a robust
convex objective function and a performance variation con-
straint. Another development is the consideration of the total
cost of structures, which allows balancing the dispersion of the
failure cost expectance, including failure cost and failure prob-
ability. Also, a solution procedure is developed, through the
application of an efficient computational technique to facili-
tate the assessments of both robustness and reliability charac-
teristics in searching the optimal solution.

The benefits of the proposed RRBDO is demonstrated
through several applications on concrete and steel structures.
The RRBDO formulation provides a general framework in
which the link between RBDO and RDO is well established,
through the definition of the application domain for each
method and the appropriate setting of the optimization con-
straints. The advantage of the proposed RRBDO over the
existing formulations is demonstrated from both conceptual
and numerical points of view.

2 Total Design Cost

The total design cost of a structure has been widely studied in
the literature; e.g. (Aoues & Chateauneuf, 2008; Aoues &
Chateauneuf, 2010; Saad et al., 2016). This cost does not
consider only the initial cost (i.e. design, manufacturing, trans-
port, construction, etc.), but also the expected failure cost (i.e.
operation loss, structural failure, damage to facilities, etc.). It
is to note that maintenance cost is out of the scope of the
present paper, which is focused on structural design stage.
The total cost CT can be formulated as:

CT ¼ C0 þ CF ð1Þ
where C0 is the initial cost and CF is the expected failure cost.
The initial cost covers the costs of design, material and work-
manship. It includes all the costs of buying the physical asset
and bringing it to operation. Let the limit state function gj
represent the structural condition that preserves the operation,
away from the critical performance level; the subscript j
makes reference to a given failure scenario. The failure prob-
ability Pfj is the probability of having negative limit state func-
tion (i.e. failed condition):

Pfj ¼ P gj≤0
� � ð2Þ

The expected failure cost can be estimated by:

CF ¼ ∑
m

j¼1
Cfj Pfj Tð Þ ð3Þ

where Pfj(T) is the cumulative failure probability for the jth

limit state (i.e., probability that failure occurs anytime between
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the construction and the time T), m is the number of indepen-
dent limit state functions, and Cfj is the failure cost associated
with the occurrence of the jth limit state.

If all aspects and consequences of a decision concerning a
structure can be converted to monetary terms, then an optimal
decision will be met by minimizing the life-cycle cost (Val &
Stewart, 2003).

3 Reliability-based design optimization

As the uncertainties in the design variables can lead to large
changes in performance, a probabilistic model should be con-
sidered. The probabilistic constraint formulation, described by
Madsen et al. (Madsen & Krenk, 1986), defines the design
optimization under probabilistic constraints as follows:

Find d
minimizing E f X ; dð Þ½ �
subject to P j ¼ P g j X ; dð Þ≤0

h i
≤PT

f j ¼ 1;⋯;m
dL≤d≤dU

ð4Þ

where X and d are the vectors of random and design variables
respectively, E[f(X, d)] is the mathematical expectation of the
cost function f(X, d),Pj is the probability of failure for the limit
state function gj, dL and dU are respectively the lower and
upper bounds of the design variables, m is the number of
independent limit state functions, and PT

f is the admissible

failure probability. The optimality conditions for the RBDO
problem are as following:

∂E f X ; dð Þ½ �
∂di

þ ∑
m

j¼1
k j

∂P g j X ; dð Þ≤0
h i

∂di
¼ 0

k j P g j X ; dð Þ≤0
h i

−PT
f

� �
¼ 0

ð5Þ

where kj is the Lagrange multiplier for the jth constraint. Each
one of the second system of equation means that either the
multiplier is nil (i.e. inactive constraint) or the constraint is nil
(i.e. active constraint). These optimality conditions indicate
that the rate of decrease of the expected cost is balanced by
the increase rate of the weighted probability sum for active
constraints. The intricate part in RBDO applications is the
assessment of the probability of failure. Standard Monte-
Carlo simulations and classical reliability methods have been
widely used, but suffer from high computation costs.

The reliability constraint in RBDO formulation allows one
to take into account the uncertainties related to structural pa-
rameters. As mentioned in the above introduction, the terms
‘variability’ and ‘uncertainty’ are used herein for intrinsic var-
iation and for knowledge precision, respectively, according to
Van Belle’s terminology (Van Belle, 2011). Similarly, Guedri
et al. (Guedri et al., 2012) defined two types of uncertainties

that are encountered in practice, namely aleatory and episte-
mic uncertainties. Aleatory uncertainties are generally consid-
ered to be irreducible and results from variations in the phys-
ical properties of components and interfaces. Epistemic uncer-
tainties are due to a lack of knowledge concerning the physical
laws governing the behavior of a component and can gener-
ally be reduced with more thorough modeling and experimen-
tal studies. Epistemic uncertainties can be difficult to illustrate
due to simplifications in geometric and material field proper-
ties, and as such are rarely taken into account in reliability
analysis. In general, mainly aleatory uncertainties are covered
by structural design approaches. These uncertainties are de-
fined as “non-cognitive” by Pendola et al. (Pendola et al.,
2000), “inherent uncertainties” by Tovo (Tovo, 2001), and
“variability” by Van Belle (Van Belle, 2011). Variability may
be either controllable in case of geometrical and material pa-
rameters to be set by engineers, or uncontrollable in case of
environmental parameters and deterioration-related mecha-
nisms. The transmitted variation from uncontrollable variabil-
ity to the objective function can result in the deterioration of
product quality and can compromise design feasibility. The
effect of variability on the objective function can be generally
reduced by adjusting the design values. Therefore, there are
needs to define the values of controllable settings (such as
cross-section dimensions of a bridge girder) which minimize
the negative effects of the uncontrollable phenomena (such as
humidity and corrosion rate). In this context, the Robust
Design Optimization (RDO) aims at finding the optimal set-
tings to minimize cost by minimizing the response variation,
where more consistent design meets better quality.

4 Robust Design Optimization Formulation

Robust design is an engineering procedure for optimal design
of products, in order to make them less sensitive to system
variations (Kang, 2005; Tsompanakis et al., 2008).
Robustness is also defined as the ability of a structure to sus-
tain damage without uneven consequences (Kagho-Gouadjio
et al., 2015). Robust product design is defined as reducing the
variation of a product without eliminating the causes of vari-
ations. This variation can come from a variety of factors and
can be classified into three main types: internal variation, ex-
ternal variation, and unit-to-unit variation. Internal variation is
due to deterioration such as the aging of materials. External
variation comes from factor related to environmental and
loading conditions such as temperature, load, humidity and
dust. Unit-to-Unit variation is the difference between parts
due to scatter of materials, processes and equipment. The goal
of robust design is to come up with a way to make the final
product consistent when its development is subject to variabil-
ity. This can be done through a variety of experimental
approaches.
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There is no agreement on a simple measure to quantify the
robustness of structures. De et al. (De et al., 1989) defined
robustness as the ability of the system to still carry some load
after the brittle fracture of one or more critical components.
An approach to robustness has been proposed by Saydam and
Frangopol (Lee & Park, 2001) by the ratio of the failure prob-
ability of the intact structure to the failure probability of the
damaged structure, for each damage case. Casas and Chambi
(Casas, 2014) defined a robustness coefficient which modifies
a typical condition rating obtained with standard inspection
procedures, to take into account structural type and configu-
ration, based on redundancy measures. A robustness index is
also proposed to measure the influence of deterioration prop-
agation on the loss of performance. The above mentioned
robustness insight is generally accompanied by redundancy
insight. System redundancy is defined as the ability of a struc-
tural system to redistribute the applied load after reaching the
ultimate capacity of its main load-carrying members
(Frangopol & Curley, 1987). In this study, robust design refers
to a design that is less sensitive to changes in the variable
parameters and that can sustain greater throw from the as-
sumed design conditions before failing (Sandgren &
Cameron, 2002).

Lee and Park (Lee & Park, 2001) proposed a mathematical
formulation for robust design by defining the robustness of the
objective and the constraint functions as follows:

Find d

minimizing ~f d; að Þ ¼ 1−∝ð Þμ f dð Þð Þ
μ*
f

þ ασ f dð Þð Þ
σ*
f

0≤α≤1

subject to ~g j d; λ j
� � ¼ g j dð Þ þ λ j∑n

i¼1

∂g j

∂di

���� ����Δdi≤0 j ¼ 1;⋯;m

dL≤d≤dU
ð6Þ

where f(.) is the original objective function, ~f :ð Þ is the desir-
ability robustness objective, d is the design variable, μf and σf
are respectively the mean and the standard deviation of the
objective function, μf* and σf* are normalization factors
denoting the mean value and the standard deviation of the
objective function, respectively, m is the number of limit state
functions,α is the weighting factor and λj is the penalty factor.
The value of the weighting factor α can be set to specify the
relative weights to put on the different objective functions and
therefore enables the user to investigate the trade-off between
the objectives in an easy manner. To include the variations of
the constraint, the revised constraint eg j :ð Þ is defined by

Sundaresan et al. (Sundaresan et al., 1995). The penalty fac-
tors λj are determined by the designer. The low sensitivity of
the objective function to system variations is enhanced by
decreasing the weighting factor α, while the low sensitivity
of constraint to system variations is enhanced by increasing
the penalty factor λj. Most of the researchers, e.g. (Lee& Park,
2001), take into account only the variations of the design

variables, while the variability of the other parameters includ-
ing loads are not accounted for in the formulation. Doltsinis
et al. (Doltsinis et al., 2005) used the same objective function
as in (Taguchi & Rafanelli, 1994), but developed a different
constraint formulation which is able to deal with variations in
both design and system parameters:

Find d

minimizing ~f ¼ 1−∝ð Þμ f dð Þ
μ*
f

þ ασ f dð Þ
σ*
f

0 < α < 1

subject to
μg j

dð Þ
σg j

dð Þ ≤−λ j j ¼ 1;⋯;m

dL≤d≤dU

ð7Þ

In this formulation, the designer has a choice of weights
that will eventually define how far from the failure surface
should the average optimum lie. The optimality conditions
for the above RDO problem are as following:

1−∝ð Þ
μ*
f

∂μ f dð Þ
∂di

þ α
σ*f

∂σ f dð Þ
∂di

þ ∑
m

j¼1
k j

∂μg j
dð Þ

∂di
þ λ j

∂σg j dð Þ
∂di

 !
k j μg j dð Þ þ λ jσg j dð Þ
� �

¼ 0

ð8Þ

In these optimality conditions, the weighted mean and standard
deviation are balanced at the optimal solution. In addition to the
Lagrange multiplier kj, the penalty factor λj plays a significant role
in the optimal design solution, as it controls the coefficient of
variation of the constraint function gj(d). In general, the RDO
optimization allows one to minimize the performance variation
but cannot guarantee the desired reliability level. Moreover, the
mean and variance modeling approach of robust design does not
take direct advantage of the interactions between controllable and
uncontrollable variables. Another disadvantage is that the obtained
results do not exactly indicatewhat parameter has the highest effect
on the performance characteristic value. In addition, this method is
not appropriate for a dynamically changing and time-variant pro-
cesses (Rizzuti et al., 2009). For this reason, a reliable optimization
procedure that can overcome the above disadvantages is devel-
oped in the present work. But first, let us observe the behavior of
reliability based design optimization.

5 Behavior of RBDO formulation

Let us consider the following RBDO formulation applied to
the expected total cost:

Find d
minimizing CT dð Þ ¼ C0 dð Þ þ C f P f dð Þ
subject to P f dð Þ≤PT

f
dL≤d≤dU

ð9Þ

where d, Pf, dL, dU and PT
f are defined in section 2. In this

formulation, the reliability constraint is not always active, as
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the optimal solutions may be found with failure probabilities
lower than the admissible one. Depending on the considered
problem, there may be conflicting requirements between the
objective function minimization and the failure probability
constraint. When the admissible failure probability PT

f in-

creases, the initial cost C0(d) decreases but the expected fail-
ure cost CfPf(d) increases, and vice-versa, leading to the con-
vex shape of the cost function, as shown in Fig. 1. LetCT,RBDO

be the optimal cost found by the application of the above

RBDO formulation, andCT
*
min be the optimal cost correspond-

ing to the unconstrained formulation. In fact, the constraint on
the failure probability is not active beyond a certain value
Pf(d

∗) corresponding to the unconstrained minimum cost

CT
*
min, as shown in Fig. 1.

The constraint PT
f is not active when : Pf d*

� �
< PT

f < 1

The constraint PT
f is active when : 0 < PT

f < Pf d*
� �

When the expected value of performance exceeds the level

corresponding to the target (i.e. P f d*
� �

< PT
f ), the RBDO

becomes insensitive to the reliability constraint. The drawback
in this situation is that the wrong or large setting of the admis-
sible failure probability, will lead to non-robust solution as it
mostly corresponds to large variability. In other words, the
obtained solution will satisfy the optimality conditions and
the reliability constraints, but not the robustness requirements.
This drawback makes the solution very sensitive to the choice
of the reliability target and the probabilistic input parameters,
and therefore inappropriate for practical engineering use.

Another drawback of the RBDO appears when the expect-
ed total cost function is narrow as shown in Fig. 2; this situa-
tion is frequently observed when the failure cost is high. A
narrow cost function is very sensitive to the failure probabil-
ity; i.e. large cost points are clustered closely around the opti-

mum CT
*
min. In this case, inquiring the optimal solutions may

be skipped when applying the RBDO, since a less costly so-
lution can be found without degrading neither the structural

performance nor the safety level, if a small variation is
allowed for PT

f . Therefore, considering a target failure proba-

bility as a constraint without tolerating small amount of vari-
ation may lead to highly conservative solutions. By setting the
constraint on PT

f , the RBDO finds a solution that costs much

more than the unconstrained one CT
*
min. Knowing the various

levels of uncertainties in engineering systems, this over-cost
cannot be properly justified when the admissible failure prob-
ability PT

f is close to the one corresponding to the uncon-

strained minimum cost Pf(d
∗). In this case, a better solution

can be found with much less cost than for the crude RBDO
solution, without compromising significantly the structural
reliability.

The above two situations, either inappropriate setting of
reliability target or narrow expected cost function, show clear-
ly that the crude RBDO is not sufficient to provide robust
solutions, especially that large amount of uncertainties cannot
be predicted and identified in engineering practice. Among
these uncertainties, we can mention the direct and indirect
failure costs which are often very difficult to estimate precise-
ly, and the admissible failure probability which is a conven-
tional measure depending on the precision of the input data
and the involved physical and probabilistic models. It is there-
fore necessary to develop a more consistent methodology for
optimal decision-making under uncertainties.

Some authors proposed reliability-based formulations for
robust optimization by keeping the robust objective function
in eq. 7, and adding a reliability constraint on the performance
variation (Youn et al., 2005; Lee et al., 2008; Rathod et al.,
2013; Shahraki & Noorossana, 2014). However, these formu-
lations cannot take account for the variations in the system
parameters. Moreover, they suffer from the same limitationsFig. 1 Active Reliability limit

Fig. 2 Interesting optimal solution skipped by the use of RBDO
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explained herein, which are mainly caused by the fixed value
of the reliability target.

It is worth to note that unconstraint formulations of robust
and reliability optimization procedures were compared by
Beck et al. (Beck et al., 2015). The unconstraint risk formula-
tion was found in their study to outperform robust formula-
tion, mainly due to the non-convex shape of the robust objec-
tive function which leads to optimal designs determined by
the variable bounds.

The available methods in the literature still need to be im-
proved, in order to properly handle both variability and uncer-
tainty, affecting structural performance and parameters. The
main difficulties are related to the consistency of reliability
and robustness objective function and constraints, on one
hand, and to the arbitrary choice of the constraint bounds, on
the other hand. According to the above discussion, the incon-
sistency of setting the reliability target in accordance with the
problem context is believed to be the key feature for combin-
ing effectively the reliability and robustness considerations. In
this framework, the optimization model proposed in the next

section overcomes the above limitations without compromis-
ing the reliability level, by considering a robust convex objec-
tive function and a performance variation constraint.

6 Robust Reliability-based design optimization

As mentioned in the above sections, the RBDO solution
leads to reliable design, but does not consider the per-
formance variation. On the opposite, the RDO can min-
imize the performance variation, but cannot guarantee
the desired reliability level. A formulation that combines
the benefits of robust and reliability design is proposed
herein, by considering both: the objective function ro-
bustness and the reliability level. This method allows
one to overcome the previously discussed weaknesses
of both optimization procedures. The proposed Robust
Reliability-Based Design Optimization RRBDO applied
to the total cost is formulated as following:

Find d

minimizing ~f ¼ 1−∝ð Þμ CT X ; dð Þð Þ
μ*
CT

þ ασ CT X ; dð Þð Þ
σ*
CT

0 < α < 1

with CT X ; dð Þ ¼ C0 X ; dð Þ þ ∑m
j¼1CfjP g j X ; dð Þ≤0

h i
subject to

μ g j X ; dð Þ
� �

σ g j X ; dð Þ
� � ≤−λ j j ¼ 1;⋯;m

dL≤d≤dU

ð10Þ

As can be seen, the mean value of the limit state functions
gj appears in the objective function as well as in the constraint
function. Consequently, the increase in the mean value that is
usually observed in robust design is limited in this formula-
tion. The advantages of the proposed RRBDO method are as
following:

– The low sensitivity of the objective function is
emphasized,

– The effect of uncontrollable random variables on the
structural performance is minimized,

– The tolerance to comply with unforeseen actions or to
deterioration mechanisms is quantified and controlled,

– The prescribed reliability level is ensured.

The optimality conditions for the above RRBDO problem
are as following:

1−∝ð Þ
μ*
CT

∂μ C0 X ; dð Þð Þ þ ∑m
j¼1CfjPfj X ; dð Þ

∂di
þ α

σ*
CT

∂σ C0 X ; dð Þ þ ∑m
j¼1CfjPfj X ; dð Þ

� �
∂di

þ ∑
m

j¼1
κ j

∂ μ g j X ; dð Þ
� �
∂di

þ λ j

∂ σ g j X ; dð Þ
� �
∂di

0@ 1A ¼ 0

κ j μ g j X ; dð Þ
� �

þ λ jσ g j X ; dð Þ
� �� �

¼ 0

ð11Þ
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These optimality conditions aim at balancing, not only the
cost function mean and standard deviation, but also the dis-
persion of the failure cost expectance, including failure cost
and failure probability. In addition to random variable consid-
erations, the obtained solution takes into account the possible
variations in the design variables d, through their effects on
both the limit state functions and the failure probabilities. As a
consequence, it is expected to get more stable solution with
less sensitivity to variations than in the classical formulations.
This can be seen from the optimality conditions where the
derivatives of the standard deviations are to be lowered.
Beside the failure costs Cfj, the final solution is governed by
two types of control parameters: the weighting factor ∝ and the
penalty factor λj specified for each constraint.

Let z* refer to the optimal solution of the problem, CT* is
the optimal total cost of the structure, μfj and σfj are respec-
tively the mean and standard deviation of the failure probabil-
ity, μg j

and σg j
are respectively the mean and standard devi-

ations of the limit state function gj (X, d).
For each failure scenario (i.e. limit state function), the mean

and standard deviation of the failure probability are given by:

μPf j ¼ ∫dU

dL
Pf j X;dð Þ fPf j X;dð Þdd ð12Þ

σPf j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫dU

dL
Pf j X;dð Þ−μPf j

� �2
fPf j X;dð Þ dd

q
ð13Þ

where f Pf j X ;dð Þ is the probability density function of Pf j

X ; dð Þ . The mean and standard deviation of the limit state
function gj are given by:

μg j ¼ ∫dU

dL
gj X;dð Þ fg j X;dð Þ dd ð14Þ

σg j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫dU

dL
gj X;dð Þ−μg j

h i2
fg j X;dð Þ dd

r
ð15Þ

where f g j X ;dð Þ is the probability density function of gj(X, d).
These parameters can be estimated by either Monte Carlo

simulations or by first order approximations.
The above formulation can be extended to time-variant

problems if the limit state can be expressed as function of time
gj(X, d, T). This is particularly useful for structures subjected
to performance degradation due to aging. A discount rate is
thus attributed to the failure cost, in order to get its equivalent
present value. For practical reasons, the time integration over
the structure life can be discretized in terms of the years in
service, leading to the expected total cost expression:

CT X;d;Tð Þ ¼ C0 X;dð Þ þ ∑
m

j¼1
∑
T

¼1

Cfj P g j X;d;ð Þ≤0� �
1þ νð Þτ ð16Þ

where P[gj (X, d, τ) ≤ 0] is the annual probability of failure for
the jth limit state at the τth year (i.e. probability that failure
occurs during the year τ, with 1 ≤ τ ≤ T), and ν is the discount

Fig. 3 Sequence of analysis

Fig. 4 Plane truss example
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rate. The above time-variant extension is made possible by the
use of probabilistic degradation models, based on either ex-
plicit or numerical procedures to evaluate the failure probabil-
ity of complex nonlinear problems.

7 Solution procedure

When robustness is considered, the solution procedure should
be defined such that practical engineering problems can be
handled in a reasonable computation time. This procedure
can also be used for comparison between RRBDO and
RBDO. As shown in Fig. 3, the proposed procedure is divided
into the following steps:

Step 1: The limit state functions gj are evaluated.
Step 2: The failure probability P f j

associated with the limit
state function gj is evaluated. For this purpose, the
First Order ReliabilityMethod (FORM), or any other
numerical procedure, can be applied to give an ap-
proximation of P f j

. The uncertainties in the

problem-related parameters are accounted for
th rough the i r cor responding probabi l i ty
distributions.

Step 3: Monte Carlo simulations (MCS) are performed on
the reliability analysis results (e.g. FORM results)
in order to evaluate the mean and standard deviation
of the failure probability (μPfj and σPfj).

Step 4: The same Monte-Carlo simulations can be used to
evaluate the mean and the standard deviation of the
limit state functions gj (μg j

and σg j
); in this way, no

additional computation cost is considered to com-
pute these quantities.

Step 5: Having the mean values and standard deviations of
the limit state and failure probability functions, the
RRBDO can be solved using classical optimization
procedures.

Step 6: When comparison between RBDO and RDO is re-
quired, the RBDO is performed using the solution of
RRBDO as initial values for the design variables. In
addition, the admissible failure probability used in
the RBDO constraint is taken equal to the failure

probability when the design variables take the values
given by RRBDO solution. This procedure allows
one to obtain the results of RRBDO and RBDO for
the same reliability level, and thus allowing for com-
parison between the two optimization procedures.

The different runs of the RRBDO correspond to different
values of the constraint λj, such as μg j

=σg j
≤−λ j. In fact, λj is

a constraint on the coefficient of variation of the limit state
function.

The above procedure allows one to insure the reliability
level while minimizing the effect of variability on the design
objectives. However, several computational challenges have
to be faced: (1) FORM has to be applied herein to evaluate the
reliability index in the space of random variables, leading to
two nested optimization problems (Aoues & Chateauneuf,
2010). The outer problem searches for the design variables
minimizing the cost function, while the inner one searches
for the most probable failure point in the space of random
variables; when the limit state function is highly non-linear,
the convergence of FORM cannot be guaranteed. (2)MCS are
applied for both the limit state function and the failure proba-
bility (obtained herein by FORM analysis), in order to deter-
mine their mean values and coefficients of variation. MCS
requires a large number of samples to give stable results,
which is very time consuming, and cannot be always feasible,
especially with FORM results. It is important to note that,
although the FORM algorithm is used in our applications,
any other reliability procedure (e.g. Monte-Carlo simulations,
response surfaces, stochastic expansions, etc.) can be applied
to compute the failure probability. The main criteria to consid-
er when choosing a method are the precision and the compu-
tation cost.

In order to cater for the above problems, a polyno-
mial approximation is adopted herein to compute μPf,
σPf, μg and σg as functions of the design variables,
using least square regression on a reduced number of
MCS samples. Gomez and Beck (Beck & de Santana
Gomes, 2012) proposed a design space root finding
method for efficient risk based optimization computation
(corresponding to the herein RBDO formulation (10)).
Their method can be extended to the above described

Table 1 Variables of the plane truss problem

Design variables Deterministic parameters Uncertainties (X)

μ Distribution cov

t (thickness) d(diameter) 15 cm P (load) 337 kN Normal 0.1

H (height) B (span) 3 m E(elastic modulus) 30 GPa Normal 0.03

fy (material strength) 105 MPa Lognormal 0.07
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sequence in order to overcome the computational burden
of the nested optimization and reliability loops. Other
authors also proposed approached based on decoupling
the reliability loop from the optimization loop (Spence
et al., 2015).This formulation is still in need of more
accurate and performant numerical estimation methods;
however, the solution procedures are beyond the scope
of the present paper, although the reader can check the
work of Aoues and Chateauneuf (Aoues & Chateauneuf,
2010) for comprehensive discussion about this issue.

8 Application

Four applications are considered hereafter in order to investi-
gate the performance of the proposed RRBDO formulation
and to compare it with Reliabili ty-Based Design
Optimization. The first example aims at illustrating in details
the proposed procedure, and at describing the behavior of
reliability-based design. In the second application, the role
of time in the RRBDO formulation of a time-variant process
is investigated. The third example shows the interest of
RRBDO framework for system analysis, through the design
of overhanged beamwith variable cantilever depth. The fourth
application investigates the effect of robustness objective re-
garding the structural topology, where several failure modes
are considered. The structural applications are chosen to have
different structural properties and modes of failure, in order to
show the applicability of the proposedmethodology on a large
range of engineering problems (i.e. structural topology, num-
ber of failure modes, time-invariant and time-variant, compo-
nent and system reliability, etc.).

8.1 Plane truss

This application, drawn from Beck and Gomes (Beck &
de Santana Gomes, 2012), aims at finding the optimal
height and thickness of a plane truss structure, consid-
ering the yielding of steel cross-section as shown in
Fig. 4. The span is fixed to 2B = 6 m. Table 1 sum-
marizes the data and distributions of the system

variables. The considered limit state function accounts
for cross-section yielding, and takes the form:

g ¼ fy−σ ¼ fy−
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ H2

p
πt Hd

ð17Þ

where σ is the compressive stress in the tubes, B and H
are respectively the truss half-span and height, d and t
are respectively the cross-section diameter and thick-
ness, P is the applied load, and fy is the yield stress.
The initial cost is composed of a fixed cost of labor
(taken equal to 10 cost units), plus a term proportional
to material cost:

C0 ¼ Cs � 1:2 ρ 2π d t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ H2

p
þ 10

h i
ð18Þ

where Cs is the cost of steel per unit weight and ρ is
the material density. The expected total cost CT is writ-
ten as:

CT ¼ C0 þ C f P f with P f ¼ P g≤0½ � ð19Þ

In Table 1, the design variables are represented by the vec-
tor d = [t H]. The uncertainties, represented by the vector

Table 2 RBDO solutions in terms of Cf – The plane truss example

Cf /C0 h* t* CT,RBDO Pf(dRBDO)

10 3 0.0169 620 1.00 × 10−4

100 3 0.0169 620 1.00 × 10−4

1000 3 0.0169 621 1.00 × 10−4

10,000 3 0.0169 630 1.00 × 10−4

100,000 3 0.0178 712 6.26 × 10−5

1,000,000 3 0.02 897 1.67 × 10−6

% 0 16 31

Fig. 5 Behavior of RBDO for different values ofCf - the plane truss example

Fig. 6 Optimal Cost found by the RRBDO – Plane truss example
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X = [P, E, fy], are characterized by their probability distribu-
tions, mean values, coefficients of variation.

The RBDO problem of the plane truss is:

Find d ¼ H ; t½ �
minimizing CT X ; dð Þ ¼ C0 þ C f � Pf dð Þ
subject to P f dð Þ ¼ P g X ; dð Þ≤0½ �≤PT

f and dL≤d≤dU
ð20Þ

where the admissible failure probabilityPT
f is taken equal to 10

−4

and Pf(d) is approximated using the first order reliability method
FORM .TheRBDO is applied for different values ofCf leading to
results in Table 2. The amplification of the failure costCf does not
lead to significant variations in the optimal design. A rise of Cf

from 10C0 to 106C0 induces an increase of only 16% in the
optimal thickness and 31% in the optimal cost.

As a matter of fact, for all failure costs below 104C0, the reli-
ability constraint of 10−4 is active, as shown in Fig. 5. Therefore
the optimal results correspond to a failure probability equal to PT

f ,

with optimal cost higher than for the unconstrained case. For Cf

higher than 104C0, the reliability limit of 10
−4 is not active, and the

minimum cost is equal to CT
*
min .

The robust formulation for reliability-based design optimi-
zation (RRBDO) applied to the plane truss example is written
as:

Find d ¼ H ; t½ �
minimizing ~f ¼ 1−∝ð ÞμCT X ;dð Þ

μ*
CT

þ ασCT X ;dð Þ
σ*
CT

with 0 < α < 1

with CT X ; dð Þ ¼ C0 X ; dð ÞC0 þ C f P f dð Þ
subject to

μ g X ;dð Þð Þ
σ g X ;dð Þð Þ

≤−λ and dL≤d≤dU

ð21Þ

where μ*
CT
, σ*

CT
, α, λ, dL and dU are defined in section 3. The

normalization factors μ*
CT

and σ*
CT

are taken equal to the mean
and the standard deviation of CT(X, d) when the design vari-
ables take the initial values d0 = [2.4m; 0.018m] . The lower
and upper limits are respectively dL = [1; 0.01] and dU = [3;
0.03]. Fig. 6 shows the mean values of the initial cost, the
failure cost and the total cost, for decreasing values of the

penalty factors λ from 5 to 0.5, with α equal to 0.5 and Cf

equal to 104C0. A larger value of λ generally requires the
corresponding performance to be more robust regarding the
system variability. A decrease of the penalty factor corre-
sponds to an increase in μPf, leading to an increase in the mean
failure cost and a decrease in the mean initial cost. This be-
havior is foreseen because the penalty factor is a measure of

Fig. 8 Optimal solution z* -the plane truss example

Fig. 7 Optimal Costs CT* - the plane truss example
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the inverse of the coefficient of variation of the limit state, and
the failure probability (thus the expected failure cost) in-
creases when σg increases. In this RRBDO formulation, the
objective function is directly related to the constraint function
by the mean of P[g < 0]. Therefore, the increase of mean
objective function that is usually seen in RDO studies is lim-
ited in the suggested RRBDO formulation.

As explained above, the reliability constraint in RBDO is
not active when PT

f exceeds Pf(d
∗) corresponding to the un-

constrained minimum cost CT
*
min. Therefore, the optimal cost

found by the use of RBDO is independent of the reliability
constraint when PT

f exceeds Pf(d
∗). Fig. 7 shows the optimal

costs found by the RBDO and the RRBDO for increasing

values of PT
f , when P

T
f < Pf d*

� �
, the RRBDO solution costs

7% less than the RBDO for the same reliability level. On the

opposite, when PT
f > P f d*

� �
, the reliability constraint in the

RBDO is not active, although the RRBDO continues to per-
form reasonably when PT

f is greater than Pf(d
∗) because the

optimal cost increases with the failure probability.
The optimal design parameters are shown in Fig. 8, in

terms of the admissible failure probability PT
f . For low admis-

sible failure probability (PT
f < P f d*

� �
), both procedures

tend to decrease the optimal thickness and maintain a constant

optimal height. For higher failure probabilities (PT
f > Pf d*

� �
), the RRBDO tends to increase the optimal thickness by 10%
and decrease the optimal height by 20% in order to maintain a
certain level of reliability while minimizing the total cost.
However, the optimal design of RBDO becomes independent
of the failure probability beyond Pf(d

∗).
As a result, the proposed RRBDO has better behavior than

the RBDO for all reliability targets, since it provides more
robust and less costly optimal solutions for high reliability
levels, and it continues to perform properly for low reliability
levels.

8.2 Bridge girder

This application aims at finding the optimal longitudinal
steel area and concrete depth of a reinforced concrete
girder, considering degradation with time due to corro-
sion and fatigue. The coupled corrosion and fatigue de-
terioration process is formulated by Bastidas-Arteaga
et al. (Bastidas-Arteaga et al., 2009), and was divided
into three stages. The first stage is corrosion initiation
and pit nucleation. The time to corrosion initiation τini

Table 3 Variables of the Bridge girder problem

Design variables Deterministic parameters Uncertainties (X)

value μ Distribution cov

b (width) 0.4 m G (dead load) 26 kN/m Normal 0.15

l (length) 10 m Q (live load) 115 kN Normal 0.25

fy (steel strength) 500 MPa Lognormal 0.07

As (Steel Area) Es (elastic modulus of steel) 210,000 MPa Cth (threshold chloride concentration) 0.9 kg/m3 Lognormal 0.19

h(depth) wc (water cement ratio) 50 mm Cs(chloride concentration) 2.95 kg/m3 Lognormal 0.5

ith (treshold corrosion) 5 μA/cm2 Dc(coefficient of diffusion) 6 × 10−12 m2/s Lognormal 0.2

c (concrete cover) 0.05 m Lognormal 0.3

f (traffic frequency) 2000 cycles/day fc (concrete compressive strength) 30 MPa Lognormal 0.15

Fig. 9 Optimal solution for the bridge girder example
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is given by Thoft-Christensen (Thoft-Christensen, 1998),
and the time to pit nucleation τpn is given by Stewart
(Stewart, 2004). The second stage is pit-to-crack transi-
tion τpt obtained by equating the pit growth rate to the
equivalent crack growth rate, as defined by Val et al.
(Val & Melchers, 1997; Val et al., 1998). The third
stage is the crack growth, τcg, which is reached when
the crack size induces cross-section failure. The reduc-
tion of the steel reinforcement cross-section which is
caused by the coupled effect of corrosion and fatigue
starts after the time-to-corrosion initiation τini. This re-
duction is estimated by considering pitting corrosion
from τini till τpt. After the pit to crack transition, the
new crack size is calculated by integrating the fatigue
crack growth rate. For full description of the degrada-
tion model, the reader is invited to see the papers
(Bastidas-Arteaga et al., 2009; Stewart, 2004; Val &
Melchers, 1997; Val et al., 1998; El Hassan et al.,
2010). The limit state considered herein is related to
girder bending capacity:

g d;X; tð Þ ¼ Mr d;X; tð Þ−Ma d;Xð Þ ð22Þ

where Mr is the resisting moment and Ma is the applied
bending moment, d and X are the vectors of design and
random variables, respectively, and t is the time. The
initial cost is:

C0 ¼ Cc ρc b h lþ Creinf reinf As l

þ Cform ρform 2 bþ hð Þ l ð23Þ

where Cc, Creinf and Cform are respectively the costs of
concrete, reinforcement and formwork per unit weight
and ρ is the material density. The cost of failure is
considered as Cf = 10C0 . Table 3 summarizes the values
and distributions of different variables in this problem
(Bastidas-Arteaga et al., 2009; El Hassan et al., 2010).

The RBDO problem is given by:

Find d ¼ As; h½ �
minimizing CT X ; dð Þ ¼ C0 þ C f P f dð Þ
subject to P f dð Þ ¼ P g X ; dð Þ≤0½ �≤PT

f

30cm2≤As≤50cm2

0:5m ≤h≤1:2 m

ð24Þ

The RRBDO formulation applied to the bridge girder is:

Find d ¼ As; h½ �
minimizing ~f ¼ 1−∝ð ÞμCT X ;dð Þ

μ*
CT

þ ασCT X ;dð Þ
σ*
CT

; with 0 < α < 1 and CT X ; dð Þ ¼ C0 þ C f P f dð Þ

subject to
μ g X ; dð Þð Þ
σ g X ; dð Þð Þ ≤−λ
30cm2≤As≤50cm2

0:5m ≤h≤1:2 m

ð25Þ

Fig. 10 Overhanged beam with
variable cantilever depth

2244 L. Saad et al.



The weighting factor α is taken equal to 0.5, and the nor-
malization factors μ*

CT
and σ*

CT
correspond to the steel area of

44 cm2 and a beam depth of 0.9 m Different values are
assigned to the penalty factor λ in order to parametrically
study the problem (from 0.5 to 5).

Figure 9 shows the optimal costs and steel areas found by
RBDO and RRBDO as functions of PT

f . The optimal height is

constant for a fixed point in time in both optimization formu-
lations and for all reliability levels. The procedure described in
section 6 is applied for a reference period of 10 years. In this
example, the value of Pf(d

∗) is 10−4 as shown in Fig. 9. The

reliability constraint of RBDO is not active when PT
f > Pf

d*
� �

corresponding to the unconstrained minimum cost

CT
*
min of 585 cost units. The optimal solution found by

RBDO is constant when PT
f exceeds Pf(d

∗), with optimum

reinforcement area of 48 cm2 for all reliability constraints
higher than 10−4. Nevertheless, the RRBDO continues to per-
form properly when PT

f is greater than Pf(d
∗), i.e. although the

optimal costs increases by 17%, the optimal reinforcement
area (and therefore the initial cost) decreases by 18% when
the admissible failure probability increases from 10−5 to 10−3.
In fact, the increase of the admissible probability of failure PT

f

leads to decrease the penalty factor λ which increases the
coefficient of variation of the limit state function. It is thus
normal to have a larger optimal cost when there is more var-
iation in the limit state function. Therefore, a more robust
design with a constraint on the coefficient of variation leads
to a structure that can better adapt to unforeseen variations.

In this application, the solution procedure is executed
for different points in time in order to observe the influ-
ence of time on the optimal solution. Although the opti-
mal RRBDO cost increases by 4.5% if the time span in-
creases by 10 years, a very interesting RRBDO behavior is
deducted from the results. When time increases, the
RRBDO increases the beam depth h∗ in the aim of reduc-

ing the steel area A*
s . This behavior is not present in the

RBDO runs for different times. In fact, most of the deg-
radation uncertainties are related to the steel area that
becomes more corroded with time. Therefore, the
RRBDO is able to find the solutions that are less sensitive
to the highest variations, while keeping the same reliabil-
ity level as the RBDO. This is achieved by the perfor-
mance variation constraint in the RRBDO formulation.Fig. 11 Built-up column example

Table 4 Variables of the overhanged beam example

Design variables Deterministic parameters Uncertainties(X)

Beam depth value Moment μ Distribution cov

fc(concrete compressive strength) 25 MPa

fy (steel strength) 200 MPa M1 90 kNm Normal 0.2

d1 q (distributed load) 40 kN/m M2 11.2 kNm Normal 0.2

d2 P (tensile force) 30 kN/m

Lc(cantilever length) 3 m

b (beam width) 0.2 m

L (beam span) 8 m
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8.3 Overhanged beam

This third application, drawn from Aoues and Chateauneuf
(Aoues & Chateauneuf, 2008), aims at finding the optimal
thicknesses of a reinforced concrete overhanged beam struc-
ture with variable depths (Fig. 10), considering the bending
due to uniformly distributed load and concentrated end forces.
The beam is defined by the middle-span depth d1 and the
cantilever end depth d2. In this example the middle span and
the cantilever are considered as two perfectly correlated com-
ponents of the system. The span is L = 8 m and the cantilever
length is Lc = 3 m. The beam is subjected to the distributed
loads q and q/8 as illustrated in Fig. 10. In order to reduce the
negative moments, two tension rods are acting at the cantile-
ver ends, with tensile force P. Table 4 summarizes the data and
distributions of the problem variables. Under nominal condi-
tions, the maximum moments are M1 = 90 kNm and
M2 = −11.25 kNm.

For a given cross-section j, the limit state function is written
as:

gj ¼ fY Asj d j−
fy Asj

2 0:85 fcubð Þ

 �

−Mj ð26Þ

The reinforcement area is chosen as As1 = 12 cm2 and
As2 = 6 cm2, leading to the following nominal values of the
limit state functions:

g1 ¼ 0:24 d1−0:02824ð Þ−M1 ð27Þ
g2 ¼ 0:12 d2−0:01412ð Þ–M2 ð28Þ

The initial costs C0 and the failure costs Cf are computed as
in the previous example, and the design variables are d1 and
d2.

The results show that when applying the RBDO, the con-
straint P g1≤0½ �ð ≤PT

f 1Þ is not active when it is greater than

6 × 10−3, which is the value of P f d*1
� �

, for the limit state g1.
Therefore the RBDO optimal solutions for d1 are constant

beyond Pf d*1
� �

. The optimal solution found for d2 through

the use of RRBDO and RBDO are the same, because P f d*2
� �

for the limit state g2 is not reached by the RBDO constraint
PT

f 2 (which is equal to the RRBDO solution μPf 2
as explained

in section 6). Therefore, the initial cost is similar for both

optimization procedures until Pf d*1
� �

, after which the use of
RBDO does not affect d1 and the use of RRBDO provides
solutions that reduce the initial cost by continuously reducing
d1. Since the RBDO does not allow the failure probability to

exceed Pf d*1
� � ¼ 6� 10−3, the failure costs using RBDO are

also irreducible even when a greater probability of failure is
allowed. The proposed formulation is therefore able to de-
crease the depth where cost is involved (mid-span) without
compromising the structural safety of the components, as long
as the performance variability limit is respected. d1 is reduced
by 3.7% for an admissible probability of failure of 10−2.

It is interesting to note that Aoues and Chateauneuf (Aoues
& Chateauneuf, 2008) proposed a scheme for consistent
RBDO of structural systems, where the component target safe-
ty is adapted in order to fulfill the overall system target. They
considered the overhanged beam example to investigate the
adaptive target approach. The adaptive target approach re-
duced d1 by 4.7% for a reliability index of 1.645. The com-
parison with this result shows that the proposed RRBDO is
able to handle properly the system effect in the structural op-
timization framework.

8.4 A Built-up column

This application, drawn from Beck and Gomes (Beck & de
Santana Gomes, 2012), aims at finding the optimum width
and topology of a steel column formed of U and L cross-
sections (Fig. 11), subject to local and global buckling due
to axial load. The impact of robust design on the topology of
the structure is also observed in this application. The column
is made of U-section struts (U200 × 75 × 2.65 mm), with L-
section braces and battens (L30 × 2.25 mm). The total length
is L and the column is subject to a load P. The optimization

Table 6 Results of the RRBDO for the column example

λ N* b* (cm) μCT μPf cov(Pf)

1/0.2 5.5 14.4 28,842 1.60 × 10−6 2.93

1/0.25 5.2 13.9 28,683 2.09 × 10−5 2.59

1/0.3 5 13.5 28,580 1.45 × 10−4 2.32

1/0.5 4.6 13 28,711 2.20 × 10−3 1.91

1/1 4.1 12.6 31,869 2.43 × 10−2 1.6

Table 5 Variables - Built-up column example

Design variables Deterministic parameters Uncertainties (X)

μ Distribution cov

b (width) L (length) 7 m P (load) 300 KN Normal 0.15

λL 1.875 E (elastic modulus) 210 GPa Normal 0.03

N (number) λG 1.676 fy (yield stress) 250 MPa LogNormal 0.1
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variables are the width b and the number of braces and battens
(N= L/d). The input data are summarized in Table 5. The limit
state functions are related to local and global buckling. Local
buckling of the U-shaped struts is given by:

gL ¼ π2 � E� IU

d2
−λL � P

2
ð29Þ

where IU is the moment of inertia of the U-section. Global
column buckling is given by:

gG ¼ π2 � E� IG

L2
−λG � P ð30Þ

where IG is the moment of inertia of the column cross-section,
given by:

IG ¼ 2 ðIU þ AU
b
2

� �2
) (31).

One unit of braces and battens is considered as one hori-
zontal and one diagonal L-shape. The total length of a brace-
batten unit is:

Lbb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ L

N


 �2
s

þ b ð32Þ

The material cost Cmat is:

Cmat ¼ CS ρ N Lbb AL þ 2 L AUð Þ ð33Þ
where CS is the cost of steel material per unit weight and ρ is
the material density. Considering a fixed reference cost of
Cref = 150 CS, the construction cost Cconst contains a setup
cost, a material cost, and a cost due to the number of brace-
batten units:

Cconst ¼ Cref þ 0:2 Cmat þ Cref 0:025 N−1ð Þ ð34Þ

The initial cost is:

C0 ¼ 1:2 Cmat þ Cref 1þ 0:025 N−1ð Þ½ � ð35Þ

The probabilities of local and global failures are respective-
ly:

PfG X;dð Þ ¼ Pf gG X;dð Þ≤0½ � ð36Þ
PfL X;dð Þ ¼ Pf gL X;dð Þ≤0½ � ð37Þ

The cost of global failure is considered as CSFG = 100Cref,
and the cost of local failure is considered as CSFL = 10Cref.
The total cost takes the form:

CT ¼ C0 þ CSFG PfG X;dð Þ þ CSFL PfL X;dð Þ ð38Þ

As shown in Table 6, the optimal number of braces and
battens increases when the structural robustness increases
(i.e. λ increases), which means that additional members
help in improving the structural robustness. A robust

design increases the initial cost by increasing the number
of members N and the width b, but decreases the failure
cost by decreasing the failure probability. The optimum
configuration found by the RRBDO has 5 brace-batten
units (N = 5), b = 13.5 cm, a system failure probability
of 1.45 × 10−4, and an optimal cost of 28,580 unit cost. In
addition, it is interesting to note that the RRBDO favors the
increase of the number of members over the amplification
of the width. Between the two extents of the penalty con-
straint values, the RRBDO solution increases the number of
members by 72% and the member widths by 31% to meet
the most stringent penalty function. It can be concluded for
this example that the topology plays a higher role in ro-
bustness than the member widths.

The RBDO constraint Pf
T is not active beyond Pf(d

∗) =
2.09 × 10−5. Therefore, the RBDO optimal solutions for N
and for the optimal cost are constant after Pf(d

∗). whereas by
the use of RRBDO, b, N and the optimal cost continue on
decreasing when the constraint λ is loosen, as shown in
Table 6. Therefore, the RRBDO formulation delivers less cost-
ly results while satisfying the performance variability limit
and without compromising the targeted safety level.
Moreover, it can give solutions that are consistent with all
reliability targets. The RRBDO formulation clearly outper-
forms the RBDO formulation for this example.

9 Conclusion

The proposed formulation for robust reliability-based de-
sign optimization (RRBDO) considers the total cost of
structure and controls the variations in the structural pa-
rameters. The reliability-based design optimization
(RBDO) is known to be sensitive to the input data and their
possible variation, regarding the assumed or initial condi-
tions. Meanwhile, a more robust structure is less likely to
fail, which is particularly important for optimized systems,
as no additional margin is available. A robust design may
increase the mean initial cost by increasing the design var-
iables in order to reduce the variability, leading to decrease
the probability of failure. In this scope, the proposed
RRBDO is able to find an optimal solution that reduces
the variability of the structure. A comparison between the
RBDO and the RRBDO procedures is carried out for the
design of two structural concrete and two structural steel
problems. It is shown in this study that the proposed
RRBDO behaves better than the RBDO for all reliability
values, since it provides more robust optimal solutions
for high reliability levels, and it continues to perform prop-
erly for low reliability levels. The scope of work of the
RRBDO is wider than the RBDO and the DDO because
more information and better assumptions can be handled
by the application of RRBDO.
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