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Abstract Surrogate models are usually used as a time-saving
approach to reduce the computational burden of expensive
computer simulations for engineering design. However, it is
difficult to choose an appropriate model for an unknown de-
sign space. To tackle this problem, an effective method is
forming an ensemble model that combines several surrogate
models. Many efforts were made to determine the weight fac-
tors of ensemble, which include global and local measures.
This article investigates the characteristics of global and local
measures, and presents a new ensemble model which com-
bines the advantages of these two measures. In the proposed
method, the design space is divided into two parts, and differ-
ent strategies are introduced to evaluate the weight factors in
these two parts respectively. The results from numerical and
engineering design cases show that the proposed ensemble
model has satisfactory robustness and accuracy (it performs
best for most cases tested in this article), while spending al-
most the equivalent modeling time (the additional cost is not
more than 6.7% for any case tested in this article) compared
with the combined global and local ensemble models.

Keywords Ensemblemodel . Globalmeasure . Local
measure . Surrogatemodels

Nomenclature
d Number of design variables.
Ei Root generalized mean square cross-validation error

of the ith surrogate.
eik Cross-validation error of the ith surrogate at the kth

sample point.
f̂
ens

Predictor of the ensemble.
f̂ i Predictor of the ith surrogate.
N Number of test points.
Ns Number of surrogates used in the ensemble.
n Number of sample points.
Pk Ratio of the global cross-validation error to the local

cross-validation error at the kth sample point.
Ro Outer region.
Ri Inner region.
rk Radius of the kth point’s inner region.
rmax
k Euclidean distance between the kth sample point and

the closest sample point.
S Sample points set.
WCVE Weighted cross-validation error.
wi Normalized weight of the ith surrogate.
w*
i Unnormalized weight of the ith surrogate.

wik Pointwise weight of the ith surrogate at the kth sam-
ple point.

xnearest Sample point which is nearest to the prediction
point.

ŷik Response predicted by the ith surrogate at the kth

point, the surrogate is constructed by using leave-
one-out cross-validation.

yk True response at the kth sample/test point.
ŷk Prediction response at the kth sample/test point.
ρ Impact metric of local measure.
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1 Introduction

Computer simulations are widely used in structural optimiza-
tion of mechanical systems. However, for the design of com-
plicated structures, computer simulation techniques such as
finite element analysis may need unbearable computing time,
which hinders the successful optimization of system perfor-
mance. As a cheap alternative for computationally expensive
simulations, surrogate modeling method can solve this prob-
lem very well and has been developed rapidly over the last
few decades.

Surrogate models such as Polynomial Response Surface
(PRS; Box and Draper 1987), Kriging (KRG; Sacks et al.
1989), Radial Basis Functions (RBF; Hardy 1971) and
Support Vector Regression (SVR; Smola and Schölkopf
2004) are widely used in the practice of engineering design.
And some reviews of various surrogates can be found in
Queipo et al. (2005), Forrester and Keane (2009) and refer-
ences therein. However, there is no clear consensus on which
one is most suitable for an unknown problem. More recently,
inspired by Bishop’s work (1995) in neural network, a prom-
ising modeling technique which is known as ensemble of
surrogate models was developed (Zerpa et al. 2005; Goel
et al. 2007). The ensemble method combines different surro-
gate models through a weighted form and the weight factor of
each surrogate model is determined by the model accuracy. It
is reasonable to view the ensemble approach as an alternative
to model selection in statistics, and there are many researches
in this area, including selection methods of models based on
Akaike’s Information Criterion (AIC), Bayes Information
Criterion (BIC), cross-validation, and the structural risk min-
imization methods (Madigan and Raftery 1994; Kass and
Raftery 1995; Buckland et al. 1997; Cherkassky et al. 1999;
Hoeting et al. 1999). Existing ensemble modeling methods
can be summarized as global measures and local measures.
For simplicity, weight factors evaluated from global measures
and local measures are called global weight factors and local
weight factors respectively in this article.

Global measures evaluate the weight factors over the entire
design space. For each surrogate model, the weight factor
keeps constant at every sampling point. Goel et al. (2007)
proposed a heuristic algorithm in which the weight factor is
calculated from generalized mean square cross-validation er-
ror (GMSE). Acar and Rais-Rohani (2009) treated the weight
factors as design variables in an optimization problem, GMSE
and root mean square error (RMSE) are selected as the objec-
tive function respectively. The optimization problem is solved
by a numerical optimization procedure in their work. Viana
et al. (2009) also obtained the optimumweight factors through
minimizing RMSE, but they solved the optimization problem
analytically by using Lagrange multipliers. Zhou et al. (2011)
introduced a recursive algorithm in which the final averaged
ensemble model is obtained by iterative modeling.

Compared with global measures, local measures evaluate
the weight factors point by point, so the weight factors of each
surrogate model are different at every sampling point. Sanchez
et al. (2008) used prediction variance of the k-nearest sam-
pling points around the prediction point to evaluate the weight
factors. Based on the pointwise weight factors at sample
points and the distances between the sample points and the
prediction point, Acar (2010) proposed a spatial ensemble
model.

Considering that global measures and local measures both
have their pros and cons, an ensemble method (ES-HGL)
which hybrids a global measure and a local measure is pro-
posed in this article. In this method, design space is divided
into two regions: the region far from the sample points (the
outer region) and the region near to the sample points (the
inner region). Then two strategies are introduced to evaluate
the weight factors for different regions respectively: (1) in the
outer region, a new weight factor named Hybrid Weight
Factor is introduced; (2) in the inner region, the Hybrid
Weight Factor and the local weight factor are combined in a
certain way based on the location of the prediction point.

The remainder of this article is organized as follows: Some
representative ensemble methods are briefly overviewed in
Section 2. The development of the proposed ES-HGL model
is described in Section 3. Several numerical and engineering
examples are tested in Section 4. And several conclusions are
presented in Section 5.

2 Background of ensemble methods

The common way of using surrogate modeling methods in-
cludes the following steps: constructing several candidate sur-
rogate models, selecting the most accurate one based on some
criteria and discarding the rest. However, this scenario has two
major shortcomings. First, it is a waste of resource used on the
construction of those so-called “inaccurate” models. Second,
the performances of different surrogate models are influenced
by the sample points, which means one surrogate model may
be accurate on one data set but may be inaccurate on another
one. To overcome these shortcomings, ensemble methods are
proposed.

An ensemble model is a weighted combination of several
individual surrogate models. The basic form of an ensemble
model is defined as

f̂
ens

¼ ∑
i¼1

Ns

wi f̂ i

∑
i¼1

Ns

wi ¼ 1

ð1Þ

where f̂
ens

is the response value of the ensemble model, Ns is
the number of used surrogate models and wi is the weight
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factor of the ith surrogate model f̂ i. Apparently, if one surro-
gate model is more accurate than another, it will occupy a
larger proportion in the ensemble model, and vice versa. In
this section, some representative global measures and local
measures for ensemble modeling are briefly introduced.

2.1 Global measures

Goel et al. (2007) proposed an ensemblemodel which is based
on GMSE. The weight factors are evaluated from a heuristic
algorithm

wi ¼ w*
i

∑
j¼1

Ns

w*
j

;w*
i ¼ Ei þ αE

� �β

E ¼ 1

Ns
∑
i¼1

Ns

Ei;Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

k¼1
yk−ŷ̂ikð Þ2

s ð2Þ

where yk is the actual response at the k
th sampling point, ŷik is

the ith surrogate model’s corresponding prediction value using
cross-validation and n is the number of sample points. Two
unknown parameters α(α < 1) and β(β < 0) are determined

based on the relationship between Ei and E. Goel et al.
(2007) suggested α = 0.05 and β = − 1 in their study.

Acar and Rais-Rohani (2009) tried both GMSE and RMSE
as the global error metrics. The weight factors of different
surrogate models in the ensemble model are determined by
solving the following optimization problem

Find wi

min GMSE or RMSE

s:t: ∑
i¼1

Ns

wi ¼ 1
ð3Þ

2.2 Local measures

Sanchez et al. (2008) used prediction variance as the local
error metric to construct the ensemble model. The ensemble
method is based on the k-nearest prediction variance, the
weight factors are evaluated from

wi ¼
1

Vnear
i

∑
j¼1

Ns 1

Vnear
j

Vnear
i ¼ 1

k−1
∑
k

i¼1
yi−ŷi

� �2
ð4Þ

where Vnear
i is the prediction variance of the ith surrogate

model. Here, Sanchez et al. (2008) suggested that k = 3 is a
reasonable choice.

Acar (2010) proposed a spatial model, in which the cal-
culation of weight factors depends on the pointwise weight
factors and the distances between sample points and the pre-
diction point. Hence, the weight factors are evaluated from

wi ¼ w*
i

∑
j¼1

Ns

w*
j

;w*
i ¼ ∑

n

k¼1
wikI k xð Þ

Ik xð Þ ¼ 1

d2k xð Þ ; dk xð Þ ¼ x−xkk k
ð5Þ

where wik is the pointwise weight factor of the i
th surrogate

model at thekth samplepoint.wikequalsone for the surrogate
model with the lowest cross-validation error at the kth sam-
ple point, and equals zero for all other surrogate models at
this sample point. Ik(x) is a distance metric, especially w*

i
¼ wik when dk(x) = 0. Three other approaches for determin-
ing wik and Ik(x) were also proposed by Acar (2010).

3 The proposed hybrid ensemble method

Constructing an ensemble model merely with global mea-
sures or local measures both have pros and cons. Global
measures can guarantee the modeling accuracy in a global
perspective but ignore the diversity of the combined surro-
gate models. Local measures can make the ensemble model
more flexible but less robust, because inaccurate local error
metrics may influence the model accuracy severely. This
article integrates a global measure with a local measure in
ensemblemodeling, attempting tomake the ensemblemod-
el more robust and accurate. Thus we call this approach
ensemble of surrogates with hybrid method using global
and local measures. In this method, the same error matrix,
which is themost time-consuming part in themodeling pro-
cess, is used for both global and local measures. It means
that the modeling accuracy can be enhanced with the
amount of modeling time remaining nearly the same.

The flowchart for ES-HGL model is shown in Fig. 1.
Three key steps of this proposed method are: calculation
of the weight factors using global measure and local mea-
sure based on the same error matrix, division of the design
space and construction of ES-HGL model in the divided
design space with different weight calculation strategies.
These will be discussed in detail in Section 3.1 to 3.3.

3.1 Calculation of weight factors using global and local
measures

Modeling error is an important criterion to evaluate the ac-
curacy of the surrogate model. Commonly used measures
include prediction variance and cross-validation error.With
no more additional test points needed for error calculation,
the cross-validation error is used as the modeling error to
construct ES-HGL model in this article. Cross-validation
error is the prediction error at each sample point when the
surrogate model is constructed by using the other (n − 1)
points (it is also called leave-one-out cross-validation

Ensemble of surrogates with hybrid method using global and local measures for engineering design 1713



error). Cross-validation error of the ith surrogate at the kth

sample point is evaluated as

eik ¼ yk−ŷik ð6Þ

In order to save the repeated computational time and
make a fair comparison, the same error matrix is used for
constructing all ensemble models. Two ensemblemodeling
methods are selected to construct the proposed ES-HGL:
the heuristic algorithm proposed by Goel et al. (2007) as
the global measure, and the spatial model presented by
Acar (2010) as the local measure. These two ensemble
methods both use cross-validation error as the error matrix
and can provide excellent modeling performances. The for-
mulation of each method can be found in Section 2 and the
measures can be described as follows

wG⇐ f G eCV
� �

wL⇐ f L eCV
� ��

ð7Þ

where eCV represents the error matrix which is computed
from cross-validation error, f(·) represents the strategy of
weight factor calculation, and the superscript G and L de-
note the weight factor is obtained by using global measure
or local measure.

3.2 Division of the design space

It is crucial to choose a proper method to calculate weight
factors of the combined surrogatemodels.Researchers have
summarized the existing ensemble methods into two clas-
ses: the global measures and the local measures. However
there is no consensus that which measure is the best one

when it comes to an unknown problem. So in this article,
the weight factors of individual surrogate models are calcu-
lated using different measures according to the location of
the prediction point.

Due to the weight factors at a prediction point are evalu-
ated based on the error at the sample points, the calculation
strategies of weight factors need to be different for areas
near to and far from the sample points. Among many of
the existing methods, different measures have their own
characteristics in calculating weight factors: (1) Local mea-
sures consider that the weight factors should indicate the
diversity of combined surrogate models at different loca-
tions in the design space, so theweight factors are evaluated
point bypoint and theweight factors at a prediction point are
heavily influenced by the nearest sample point; (2) Global
measures regard weight factors as the representative of
overall accuracy, so that the weight factors are evaluated
from the entire error matrix. Hence the weight factors at a
prediction point are not affected greatly by the modeling
error of any one sample point. Therefore, local measures
aremore suitable for regions near to the sample points while
global measures are more appropriate for regions far from
the sample points. Thus it is reasonable to define the weight
factors as:

w*
i ¼ wG

i if x∈Ro

wL
i if x∈Ri

�

wi ¼ w*
i

∑
j¼1

Ns

w*
j

ð8Þ

where Ro and Ri are the outer and inner regions. Notice that
the actual landscape of interest is unknown, every inner part Ri

should have an n-sphere shape whose center is the according
sample point. Thus the design space can be divided from:

x∈
Ri if x−xnearestk

�� �� ≤ rk
Ro if x−xnearestk

�� �� > rk

�
ð9Þ

where Ro and Ri denote the regions far from and near to the
sample points respectively, ∥ ⋅ ∥ denotes the Euclidean dis-
tance between the prediction point and the closest sample
point and rk is the radius of the k

th sample point’s inner region.
Once the division of design space is implemented, the

determination of the region radius of each sample point is
crucial. To solve this problem, the errors of ensemble
models at sample points are calculated first, and then the
region radii are computed from those errors. Obviously,
the modeling errors evaluated from sample points are im-
portant criteria in the determination of region radii. In this
article, the weighted cross-validation error (WCVE for
short), which is a weighted sum of cross-validation errors
from combined surrogate models, is utilized to evaluate the

Cross validation

error

Data set

Weight factors computed

from global measure

Weight factors computed

from local measure

The corrected local

measure

The corrected global

measure

Design space

The regions near to

sample points

The regions far

from sample points

Ensemble of surrogate

models

End

Fig. 1 Development and evaluation steps for ES-HGL model
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modeling error of ES-HGL.Apparently, with the strategy of
weight factor calculation changing, the WCVEs of sample
points are also different. For simplicity,WCVEs computed
from the global measure and the local measure are denoted
asWCVEk

G andWCVEk
L respectively in this article.

In ES-HGL, to evaluate the region radius of each sample
point, two criteria should be followed:

(1) The region radius of the kth sample point is proportional
to the distance (rmax

k ) between the current sample point and
the closest sample point;

(2) The region radius depends on the ratio of WCVEk
G to

WCVEk
L at the current sample point. That is to say, the region

radius rk(⋅) is the function of the error ratio Pk. Moreover, the
region radius rk(Pk) monotonically increases as the error ratio
Pk increasing from 1 to positive infinity. At the same time, two
boundary conditions should be satisfied:

lim
Pk→1

r Pkð Þ ¼ 0 ð10Þ

lim
Pk→þ∞

r Pkð Þ ¼ rmax
k ð11Þ

That is to say, when the global weighted cross-validation
error WCVEk

G at the current sample point is smaller than
the local one (the error ratio Pk is less than one), the region
radius should be equal to zero. That is because the global
measure is deemed to be more accurate than the local mea-
sure in this case, so we just adopt the global measure only.
And when the global cross-validation error at the current
sample point is far less than the local one (the error ratio Pk

is tend to be positive infinity), the region radius should be
equal to the distance between the current sample point and
the closest sample point rmax

k . And the local measure is
deemed to be more accurate than the local measure in this
case, so we just adopt the local measure only.

We consider the following two feasible formulas of the
region radius rk(Pk) in the range of the elementary function:

r1k Pkð Þ ¼ rmax
k 1−

1

Pk

	 

ð12Þ

r2k Pkð Þ ¼ rmax
k 1−e1−Pk

� � ð13Þ

After testing these two formulas respectively, we decide to
adopt the first form r1k Pkð Þ according to the test results (see in
AppendixC.1).Hence, the region radius in (9) is evaluated from

rk ¼ rmaxk ⋅ 1−
1

Pk

	 

if Pk > 1

0 else

8<
: ð14Þ

where

rmaxk ¼ 1

2
min
i∈S;i≠k

∥xk−xi∥ ð15Þ

Pk ¼ WCVEG
k

WCVEL
k

ð16Þ

WCVEk
G ¼ ∑

i¼1

Ns

jwG
ikeik j;WCVEk

L ¼ ∑
i¼1

Ns

jwL
ikeik j ð17Þ

where S denotes the sample points set, rmax
k is half of the mini-

mum distance between the kth sample point and the nearest
sample point to the kth sample point and Pk denotes the k

th ratio
of the weighted cross-validation error computed from different
measures.

Fig. 2 A 2-D problem for illustrating the division of the design space

Table 1 Summary of the training
and test point sets used in each
problem

Function Design variables Training sets Sample points Test points

Branin-Hoo 2 1000 12 1000

Camelback 2 1000 12 1000

Hartman-3 3 500 20 1000

Hartman-6 6 100 56 1000

Extended-Rosenbrock 9 20 110 1000

Dixon-Price 12 10 182 1000

Ensemble of surrogates with hybrid method using global and local measures for engineering design 1715



Table 2 Mean and COVof
RMSE, AAE and MAE for
different surrogate models

PRS RBF KRG OM EG SP ES-HGL

Branin-Hoo

RMSE 32.08/0.14 25.51/0.21 24.48/0.34 26.44/0.27 24.17/0.23 24.08/0.24 23.97/0.24

AAE 23.07/0.14 15.81/0.17 15.87/0.35 17.43/0.28 15.61/0.20 15.48/0.21 15.40/0.21

MAE 146.86

/0.26

148.43

/0.33

136.61

/0.39

141.14

/0.34

135.40

/0.34

134.79

/0.34

132.27

/0.35

Camelback

RMSE 17.99/0.13 17.68/0.10 22.97/0.20 19.02/0.20 17.52/0.13 17.82/0.14 17.51/0.13

AAE 12.80/0.16 11.41/0.11 15.40/0.18 12.82/0.20 11.41/0.13 11.63/0.14 11.34/0.11

MAE 74.86/0.20 85.16/0.16 97.22/0.21 83.73/0.22 82.12/0.19 82.85/0.19 80.90/0.19

Hartman-3

RMSE 0.79/0.18 0.74/0.22 0.45/0.27 0.50/0.34 0.51/0.23 0.49/0.25 0.49/0.22

AAE 0.58/0.16 0.53/0.19 0.29/0.26 0.40/0.33 0.35/0.19 0.34/0.21 0.33/0.20

MAE 3.26/0.33 3.15/0.36 1.82/0.27 2.40/0.44 2.12/0.34 2.08/0.35 2.03/0.29

Hartman-6

RMSE 0.40/0.19 0.35/0.13 0.34/0.18 0.34/0.16 0.31/0.12 0.31/0.11 0.30/0.10

AAE 0.29/0.22 0.25/0.17 0.21/0.18 0.22/0.20 0.21/0.15 0.20/0.14 0.19/0.13

MAE 2.03/0.17 1.90/0.18 2.00/0.19 1.94/0.18 1.85/0.17 1.86/0.17 1.85/0.17

Extended-Rosenbrock

RMSE 7.68*104

/0.76

7.64*104

/0.76

7.67*104

/0.76

7.65*104

/0.76

7.65*104

/0.76

7.65*104

/0.76

7.64*104

/0.62

AAE 7.64*104

/0.76

7.60*104

/0.77

7.63*104

/0.76

7.61*104

/0.77

7.62*104

/0.76

7.62*104

/0.76

7.59*104

/0.63

MAE 1.38*105

/0.37

1.33*105

/0.35

1.33*105

/0.36

1.33*105

/0.36

1.33*105

/0.36

1.32*105

/0.36

1.33*105

/0.36

Dixon-Price

RMSE 3.70*105

/0.69

3.76*105

/0.67

3.74*105

/0.67

3.72*105

/0.68

3.70*105

/0.69

3.70*105

/0.69

3.35*105

/0.60

AAE 3.62*105

/0.73

3.66*105

/0.71

3.62*105

/0.72

3.62*105

/0.73

3.62*105

/0.73

3.61*105

/0.73

3.28*105

/0.63

MAE 6.56*105

/0.33

6.85*105

/0.33

7.47*105

/0.33

6.97*105

/0.28

6.63*105

/0.33

6.79*105

/0.32

5.99*105

/0.37

For ease of comparison, the best results of ensemble models and individual surrogate models are shown in
boldrespectively (the lowest value for RMSE, AAE, MAE and COV).

Fig. 3 The structure of a super-heavy machine
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3.3 Construction of ES-HGL model

Though using a global measure and a local measure to
construct the ensemble model in different regions is a
good strategy, the defects are also distinct. The global
measure ignores the diversity of combined surrogate
models in different areas, and the local measure may be
inaccurate when the error matrix cannot represent the ac-
tual modeling error very well. To balance the global mea-
sure and the local measure, a new weight factor named the
Hybrid Weight Factor (HWF) is introduced. The value of
HWF should be evaluated between the global weight and
the local weight, i.e., wG ≤ wH ≤ wL or wL ≤ wH ≤ wG. Then
we have tried the following four types of HWFs:

wH
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wGð Þ2 þ wLð Þ2

2

s
ð18Þ

wH
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wG � wL

p
ð19Þ

wH
3 ¼ wG þ wL

2
ð20Þ

wH
4 ¼ WCVEL

WCVEG þWCVEL w
G þ WCVEG

WCVEG þWCVEL w
L ð21Þ

We decide to adopt the first form wH
1 according to the test

results (see in Appendix C.2).
The Hybrid Weight Factor can possess the following

advantages:

(1) The Hybrid Weight Factor makes the model more robust
and accurate, because the modeling error in some local
areas would be eliminated by the overall accuracy;

(2) The Hybrid Weight Factor makes the model more flexi-
ble, because the diversities of combined surrogate
models are sufficiently considered in the whole design
space;

(3) The Hybrid Weight Factor is succinct and easy to con-
struct, for almost no extra computational burden is
brought in the computing process.

Because the weight factors are based on the errors eval-
uated from the sample points, they have higher probability
to be more accurate in regions near to the sample points.
Then local weight factor, which can make an ensemble mod-
el more flexible, is used to amend the Hybrid Weight Factor
in regions near to the sample points. In addition, considering
that the local weight factors may be less accurate as the
distance between the prediction point and the nearest sample
point increasing, the effect of modification should be weak-
ened. Thus in the new weight factor calculation strategy, the
weight factor evaluated from (8) is modified based on the
following two criteria:

(1) in the outer region Ro, the weight factor is equal to the
Hybrid Weight Factor;

(2) in the inner region Ri, the weight factor consists of two
parts: the local weight factor and the Hybrid Weight
Factor. The proportion of the local weight factor de-
creases with the distance between the prediction point
and the nearest sample point increasing.

Therefore, (8) is replaced by

w*
i ¼ wH

i if x∈Ro

wL
i ρ þ wH

i 1−ρð Þ if x∈Ri

�

wi ¼ w*
i

∑
j¼1

Ns

w*
j

ð22Þ

Fig. 4 Diagram of the simplified
beam with twelve variables

Table 3 Result comparison for the design of NC machine beam

PRS RBF KRG OM EG SP ES-HGL

RMSE 0.2368 0.3730 0.4054 0.2578 0.2832 0.2587 0.2328

AAE 0.1590 0.2401 0.2392 0.1583 0.1670 0.1579 0.1571

MAE 0.9322 1.4571 1.9178 1.1479 1.2454 1.0567 1.0465

For ease of comparison, the best results of ensemble models and individ-
ual surrogate models are shown in bold respectively (the lowest value for
RMSE, AAE and MAE).

Ensemble of surrogates with hybrid method using global and local measures for engineering design 1717



Considering that the volume of n-sphere (Rennie 2005) is

Vn rð Þ ¼ π
n
2

Γ
n
2
þ 1

� � rn ð23Þ

where the volume Vn is proportional to rn and n denotes the
dimension. So the impactmetric of localmeasure ρ is calculated
from

ρ ¼ 1−
∥x−xnearestk ∥

rk

	 
n

ð24Þ

The results of ES-HGL generated by using (8) and (22) re-
spectively are given in theAppendixC.3. From the result com-
parisonwecan see that it is reasonable touse (22) inplaceof (8).

For better understanding how the design space is divided
and how the various measures are applied, a 2-D problem is
used for illustration in Fig. 2.

In Fig. 2, the design space is normalized to [0,1]2 and 12
sample points are denoted as “+”. The circular regions with 12
samplepointsas thecenterpointsare inner regionsdefined inES-
HGL.The radii of these regions are evaluated from (14).The rest
region in the design space is the outer region. Two random se-
lected prediction points (denoted as “•”) are used to give a dem-
onstration. The prediction point No. 1 is located in the circular
regionwhose center point is the sample pointNo. 8, so it is in the
inner region. Then the weights of surrogate models are deter-
mined by (22), (23) and (24). More exactly, the prediction point
x and the nearest sample point xnearestk in (24) are the prediction
point No. 1 and the sample point No. 8 respectively. The inner
region radius rk in (24) is the radius of the circular region whose
center point is the sample point No. 8. For the prediction point
No. 2, the weights of surrogate models in ES-HGL are obtained

from (22). Because this prediction point is not located in any
circular region, that is to say, it is in the outer region.

4 Case studies

The approximation performance of ES-HGL model is com-
pared with three existing ensemble models: the heuristic algo-
rithmEGproposed byGoel et al. (2007) as the globalmeasure,
the spatial model SP introduced by Acar (2010) as the local
measure and the optimization-based method OM (minimizing
GMSE through a numerical optimization procedure to obtain
the optimum weight factors) proposed by Acar and Rais-
Rohani (2009). Three typical surrogate models: PRS, RBF
and KRG (the detailed construction and tuning processes of
these three surrogate models can be seen in Appendix A) are
all used as the components of each ensemble model in this
article and are also compared with the ensemble models. We
use these surrogatemodelsbecause theyare commonlyusedby
practitioners and they can represent different parametric and
nonparametric approaches (Queipo et al. 2005).

Acarhas studied the effectof several errormetrics onensem-
ble of surrogatemodels (2015). Inspiredbyhiswork, fourkinds
of error metrics are used to evaluate the performances of differ-
ent models: root mean squared error (RMSE) which evaluates
the degree of deviation between the prediction value and the
true response value over the entire design space, average abso-
lute error (AAE) which ensures the positive and negative errors
will not offset, maximum absolute error (MAE) which shows
the maximum error within the whole design domain and coef-
ficient of variation (COV) valueswhichmeasure the dispersion
of RMSE, AAE andMAE.

(c)  FEM of the propeller(a) The contour of the propeller (b) UG model of the propeller

Fig. 5 Different models of the
propeller

Table 4 Result comparison of
all-direction propeller bearings
design in power flow

Initial
design

PRS RBF KRG OM EG SP ES-
HGL

Power flow
(P*)

29.6499 22.6279 23.4511 25.5421 22.5322 22.4472 22.4614 22.2021

For ease of comparison, the best results of ensemble models and individual surrogate models are shown in bold
respectively (the lowest value for RMSE, AAE and MAE).
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
yi−ŷi

� �2
s

AAE ¼
∑
N

i¼1
jyi−ŷij
N

MAE ¼ max yi−ŷi
��� ���

COV ¼ std
mean

ð25Þ

In these four definitions above, N is the number of test
points, std denotes the sample standard deviation and mean
denotes the mean value.

4.1 Numerical examples

Sixwell-knownnumerical examples varying from2-D to 12-D
are chosen from previous works (Dixon and Szegö 1978; Goel
et al. 2007; Acar 2010) to test the performance of ES-HGL

model: (1)Branin-Hoo function (2-D); (2)Camelback function
(2-D); (3) and (4) are Hartman functions (3-D and 6-D); (5)
Extended-Rosenbrock function (9-D); (6) Dixon-Price func-
tion (12-D). Description of these test functions can be seen in
Appendix B.

In order to guarantee the accuracies of the constructed
ensemble models and individual surrogate models, the num-
ber of sample points is set as twice the number of the coeffi-
cients in a full quadratic PRS (Acar 2010). Latin Hypercube
Sampling (LHS; McKay et al. 1979) with good space-filling
quality is used to generate the sample and test sets by the
MATLAB® routine “lhsdesign” and the “maximin” criterion
with a maximum of 100 iterations. To take the cost for con-
structing surrogate models into account and to make a full
comparison, we randomly select an appropriate quantity of
test sets to eliminate the effect brought by certain distribution
of sample points and test points. The summary of the training
and test point sets used in each problem is provided in Table 1.

For ease of comparison, the best results of ensemblemodels
and individual surrogatemodels are shown in bold respectively
(the lowest value for RMSE, AAE,MAE andCOV).

From Table 2 we can see that no individual surrogatemod-
el is always accurate for different test functions while RBF is
relatively better than KRG, and PRS is the worst one. On the
contrary, ensemble models perform better than most of the
individual surrogate models in most cases. ES-HGL outper-
forms inmost of the error metrics for all six numerical exam-
ples, and is still among the top three models in situations
when the results of ES-HGL are not the best. Because the
advantages of both global and local measures are combined.
The COV values of error metrics (RMSE, AAE and MAE)
and the error distributions in boxplots (see Fig. 8, 9 and 10)
indicate that theES-HGL is robust, because it has small COV
values and the error distributions are stable. On the other
hand, the performances of the other three ensemble models
and the three individual surrogate models vary apparently

Fig. 6 The landscape of Branin-Hoo function

Fig. 7 The landscape of Camelback function
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with different test numerical examples. It means that without
losing accuracy,ES-HGLcanoffermore reliable approxima-
tions for problems with varying degrees of complexity and
dimension. In general, the comparison results show that it is
worth implementing the ensemble methods, and the pro-
posedES-HGLmodel providesmore satisfactory robustness
and accuracy under the four metrics for the six test functions
in this article.Butwe should still suggest that ensemblemeth-
od be used as an “insurance” rather than offering significant
improvement.

4.2 NC machine beam design problem

A super heavy NC vertical lathe machine weighs over one
thousand tons. It can process the workpieces with a maxi-
mum diameter of 28 m and maximum height of 13 m. The
major part of this NC machine consists of beam, columns,
slides, toolposts and other partswhich are shown in Fig. 3(a).
Among these parts, the beam is themainmoving part that has
awelded irregular triangular structure. It can conduct vertical
feeding along the guide rail of the column, as well as provide
support to the vertical toolpost and vertical slide. Two hori-
zontal guide rails are located on the upper and lower side of
the beam that can guide the vertical slide moving along the
horizontal direction. Due to the great mass of the vertical
slide and vertical toolpost, large weight is imposed on the
guide rails of the beam. In addition, the beam is also affected
by its large self weight and the cutting force of the vertical
toolpost. Under these complex machining situations, the
beam is easily deformed along the negative Z-direction,
which has a great impact on the machining accuracy.

The simplified structure of the beam is mainly controlled
by twelve variables which are shown in Fig. 4: the thick-
nesses of the plate (x1, x2 and x3), the total length of the beam
(x4), the widths of the front and rear end face (x5 and x6), the
sizes of the tail (x7 and x8), the thickness of the rib plates (x9),
the width of the beam (x10) and the geometry parameters of
the rectangular holes (x11 and x12).

To reveal the relationship between the deformation along
the negative Z-direction and the relative design variables,
finite element analysis (FEA) simulations are implemented.
Considering that one simulation for this beam needs great
computing time, the ES-HGLmodel is constructed to evalu-
ate the deflection of the negative Z-direction, which is the
most representative indicator of load effect imposed on the
beam.Three existing ensemblemethods and three individual
surrogatemodels are used tomake a comparison. 150 sample
points are selected for model construction, and 50 test points
are adopted to evaluate the performances of each model.

The results of the test are given in Table 3. ES-HGL is the
best in RMSE andAAE,meanwhile the second inMAE. The
performance of SP is better than RBF and KRG, but worse
than the best individual surrogate model PRS. And EG

performs not well than the other three ensemble methods in
this engineering case. It reveals that when confronted with a
black-box problem with high dimensions, using individual
surrogate model to approximate the unknown design space
has a risk to obtain inaccurate results. However, these great
inaccuracies of individual surrogates do not affect the ap-
proximate ability of ES-HGL. Obviously, ES-HGL is a prom-
ising ensemble modeling method dealing with engineering
problem when the sampling cost is high and a reliable model
is needed.

4.3 Optimal design of bearings for an all-direction
propeller

In this section, an optimal design of bearings for an all-
direction propeller is used to demonstrate the superiority
of ES-HGL from another aspect, exploring the ability to
find the optimal solution when confronted with a complex
engineering problem.

Because of the tough environment of ocean work, marine
equipment is required to have high positioning accuracy,
good mobility and high stability. The all-direction propeller,
as a core dynamic positioning system, is widely used in dril-
ling platform and large ships. Differentmodels of the propel-
ler studied in this article can be seen in Fig. 5. In the design of
a propeller, the vibration resist property is important.
Because large vibration will reduce the life of the propeller
and deteriorate the service performance. Power flow which
combines the effect of response speed and power, can give an
absolute measure of vibration transmission. So this physical
quantity is adopted here to evaluate the vibration character-
istic. The power flowwith ten structural parameters of shaft-
ing system is utilized as the optimization objective to obtain a
better dynamic performance of the propeller. FEA simula-
tions are used to build the relationship of several significant
structural parameters and the power flow of the propeller.
Considering that these simulations are time-consuming (21
mins for one simulation with Intel i3–2120 3.30GHz CPU
and 4 GB RAM), we regard this simulation as a black-box
problem.

The optimization problem can be summarized as:

Find K ¼ k1; k2; k3; k4; k5; c1; c2; c3; c4; c5½ �T

min P* ¼
ffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
P2
i

s
n ¼ 5

Pi ¼ ω
2π

∫
ω
2π
0 Re f ið ÞRe við Þdt

s:t: kLi ≤ki≤k
U
i ; c

L
i ≤ci≤c

U
i i ¼ 1; 2; 3; 4; 5

ð26Þ

where ki and ci are the stiffness and damping coefficients of

the ith bearing, kLi and k
U
i are the lower and upper boundaries

of ki, cLi and c
U
i are the lower and upper boundaries of ci andPi

is the corresponding power flow of the ith bearing. The
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optimum stiffness and damping coefficients of each bearing
need to be found at the minimum value of power flow.

Three other existing ensemble models (EG, SP and OM)
and three individual surrogate models (PRS, RBF andKRG)
are also adopted to make a comparison. For its good global
search ability, the GA (Genetic Algorithm) toolbox of
MATLAB is used to find the optimal solution of eachmodel.
After implementing one hundred FEA simulations and con-
structing the above mentioned four ensemble methods and
three individual surrogate models, the optimized parameters
are obtained by running the GA procedure.

Then we run FEA simulations with specified initial pa-
rameters (the mid-range of each variable) and these opti-
mized parameters respectively for comparison. The result
can be seen in Table 4. From the result we can see that all of
the solutions found by the ensemble models and individual
surrogatemodels are proved to be feasible. ES-HGLpresents
the best result which reduces 25.12% compared to the initial
objective value 29.6499. EG and SP perform nearly the same
as the best individual surrogatemodel PRSwith a decrease of
around 24%. KRG is the most inaccurate individual model
which only reduces 13.85% on the basis of the initial objec-
tive value. The result shows that ensemble models perform
better than the combined individual surrogate models. It ex-
plains the necessity of ensemble methods again. Above all,
the successful application of ES-HGL model indicates that
the proposed new ensemble model has a relative better accu-
racy and robustness than other individual surrogate models
and ensemble models compared in this article.

5 Conclusions

In this article, a newmethodwhich combines the advantages
of both global and local measures is proposed to construct a
better ensemble model in the cases that only a small number
of sample points are available. In thismethod, design space is
divided into two parts: the region far from the sample points
and the region near to the sample points. Two strategies are
introduced to evaluate weight factors in these two different
regions respectively: (1) in the outer region, the Hybrid
Weight Factor is adopted, which is composed of global
weight factor and local weight factor; (2) in the inner region,
for its good approximating ability around sample points, the
local weight factor is used to amend the Hybrid Weight
Factor according to the distance between the prediction point
and thenearest samplepoint. Sixnumerical functions, a 12-D
NCmachine beamdesign problemand a design optimization
problem for the bearingsof an all-directionpropeller are used
to test the proposed ES-HGLmethod. Three other ensemble
models and three individual surrogate models are adopted to
make comparisons with ES-HGL. The results show that ES-
HGL model can provide more robust and accurate

approximations within limited sample points, while spend-
ing almost the equivalent modeling time compared with the
combined ensemble models in this article.
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Appendix A: Description of the selected surrogate
models

In this appendix, a brief overview of the mathematical formu-
lations of PRS, RBF and KRG surrogate models is provided.

A.1 Polynomial response surface (PRS)

The PRS approximation is one of the most well-established sur-
rogate models. The most commonly used PRS model is the
following second-order form

f̂̂ xð Þ ¼ β0 þ ∑
d

i¼1
βixi þ ∑

d

i¼1
∑
d

j≥ i
βijxix j ð27Þ

where d is the number of design variables, β0, βi and βij are the
unknown coefficients to be determined by the least squares tech-
nique. Here we run the MATLAB® routine “pinv” to obtain the
Moore-Penrose generalized inverse matrix of the unknown coef-
ficients, which was proved to be the optimal least square solution
by Penrose (1955).

A.2 Radial basis function (RBF)

RBF models were originally developed to approximate mul-
tivariate functions. The general form of the RBF approxima-
tion can be expressed as

f̂̂ xð Þ ¼ ∑
n

i¼1
wiφ x−xik kð Þ ð28Þ

where n denotes the number of sample points, wi are the un-
known coefficients to be determined, ‖·‖ represents the
Euclidean norm andφ(·) is the so-called basis function. Powell
(1987) suggested several forms of the basis functionφ(·):

& Gaussian φ rð Þ ¼ e−
r2

2σ2

& ultiquadric φ rð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ σ2

p

& nverse Multiquadric φ rð Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ σ2

p
& Thin-Plate Spline φ(r) = r2 ln(r)

where σ ≥ 0. In this article we use the multiquadric basis func-
tion with σ = 1 (suggested by Acar and Rais-Rohani (2009)),
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for its prediction accuracy and convergence ability with in-
creased sample points. In order to obtain the unknown coeffi-
cients wi, we substitute the n sample points into the (28) to
form an equation as

y ¼ Φ⋅w ð29Þ
where y is the vector of sample responses and Φ is an n × n
matrix of basis functions. The coefficients vectorw is obtained
by solving (29).

A.3 Kriging (KRG)

The basic assumption of KRG is the estimation of the re-
sponse in the form

Y xð Þ ¼ μ xð Þ þ Z xð Þ ð30Þ
where the response Y consists of a known polynomial μ(x)
which globally approximates the trend of the function and a
stochastic component Z(x) which generates deviations, so that
the Kriging model interpolates the sample points. The correla-
tion between the randomvariablesY(x(i)) andY(x(j)) is given by

Corr Y x ið Þ
� �

; Y x jð Þ
� �h i

¼ exp −∑
d

l
θl x

ið Þ
l −x jð Þ

l

��� ���pl	 

ð31Þ

where d is the number of design variables, θl and Pl(l = 1,
⋯, d) are unknown parameters to be estimated. Here we
only consider a constant term to represent the mean of the
overall surface (the Ordinary Kriging) and fix the parameters
Pl = 2(l = 1,⋯, d) (the stationary Gaussian correlation func-
tion case). Then we search the optimal θl in the range of
[10−3, 102] (suggested by Forrester et al. (2008)) with the
GA (Genetic Algorithm) toolbox of MATLAB®.

Once the correlation function has been selected, the re-
sponse is predicted as

ŷ̂¼ μ̂̂þ rTR−1 y−1μ̂̂ð Þ ð32Þ
where the matrix R−1 is the inverse of the correlation matrix
R whose element Rij is equal to the (31), y is the vector of
sample responses and 1 represents an n × 1 vector of ones.
The estimated value of μ̂ and the expressions of rT are

μ̂̂ ¼ 1TR−1y
1TR−11

ð33Þ

rT ¼ Corr Y x 1ð Þ
� �

; Y xð Þ
h i

⋯ Corr Y x nð Þ
� �

; Y xð Þ
h i� �

ð34Þ

Detailed derivation of Kriging can be found in Jones
(2001) and Forrester et al. (2008)
.

Appendix B: Description of the numerical test
functions

In this appendix, the description of six numerical test func-
tions is provided. The landscapes of two-variable functions
are depicted in Figs. 6 and 7.

B.1 Branin-Hoo function

f xð Þ ¼ x2−
5:1x21
4π2

þ 5x1
π

−6
	 
2

þ 10 1−
1

8π

	 

cos x1ð Þ

þ 10 ð35Þ

where x1 ∈ [−5, 10] and x2 ∈ [0, 15].

B.2 Camelback function

f xð Þ ¼ 4−2:1x21 þ
x41
3

	 

x21 þ x1x2 þ −4þ 4x22

� �
x22 ð36Þ

where x1 ∈ [−2, 2] and x2 ∈ [−2, 2].

B.3 and B.4 Hartman functions

f xð Þ ¼ − ∑
4

i¼1
ciexp − ∑

n

j¼1
aij x j−pij
� �2

" #
ð37Þ

where xi ∈ [0, 1]. Two types of Hartman functions are given
based on different number of input variables: (1) Hartman-3
with three input variables (test function 3), and (2) Hartman-6
with six input variables (test function 4). While the parameter

c in each function is the same vector 1 1:2 3 3:2½ �T , the
other two parameters a and p are shown in Table 5 and 6.

B.5 Extended-Rosenbrock function

f xð Þ ¼ ∑
m−1

i¼1
1−xið Þ2 þ 100 xiþ1−x2i

� �2h i
ð38Þ

where xi ∈ [−5, 10], i = 1, 2,⋯,m = 9.

Table 5 Parameters used in Hartman-3 function, j = 1, 2, 3

aij pij

3.0 10 30 0.3689 0.1170 0.2673

0.1 10 35 0.4699 0.4387 0.7470

3.0 10 30 0.1091 0.8732 0.5547

0.1 10 35 0.03815 0.5743 0.8828
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B.6 Dixon-Price function

f xð Þ ¼ x1−1ð Þ2 þ ∑
m

i¼2
i 2x2i −xi−1
� 
2 ð39Þ

xi∈ −10; 10½ �; i ¼ 1; 2;⋯;m ¼ 12: ðwhereÞ

Appendix C: Test results for determining the form
of ES-HGL

In this appendix, the test results referenced in Section 3.3 are
provided in Table 7, 8 and 9.

Table 6 Parameters used in
Hartman-6 function, j = 1, 2,⋯, 6 aij pij

10 3.0 17.0 3.5 1.7 8.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

0.05 10.0 17.0 0.1 8.0 14.0 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3.0 3.5 1.7 10.0 17.0 8.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

17.0 8.0 0.05 10.0 0.1 14.0 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

Table 7 Test results of different region radius forms

r1k Pkð Þ r2k Pkð Þ

Branin-Hoo

RMSE/COV 23.97/0.24 23.98/0.24

AAE/COV 15.40/0.21 15.41/0.21

MAE/COV 132.27/0.35 134.17/0.35

Camelback

RMSE/COV 17.51/0.13 17.61/0.14

AAE/COV 11.34/0.11 11.48/0.13

MAE/COV 80.90/0.19 82.11/0.19

Hartman-3

RMSE/COV 0.49/0.22 0.49/0.22

AAE/COV 0.33/0.20 0.34/0.21

MAE/COV 2.03/0.29 2.06/0.31

Hartman-6

RMSE/COV 0.30/0.10 0.31/0.12

AAE/COV 0.19/0.13 0.21/0.15

MAE/COV 1.85/0.17 1.85/0.17

Extended-Rosenbrock-9

RMSE/COV 7.64*104/0.62 7.69*104/0.77

AAE/COV 7.59*104/0.63 7.66*104/0.78

MAE/COV 1.33*105/0.36 1.33*105/0.36

Dixon-Price-12

RMSE/COV 3.35*105/0.60 3.73*105/0.70

AAE/COV 3.28*105/0.63 3.64*105/0.74

MAE/COV 5.99*105/0.37 6.74*105/0.33

NC machine beam design

RMSE 0.2328 0.2355

AAE 0.1571 0.1572

MAE 1.0465 1.0477

All-direction propeller bearings design

Power flow (P*) 22.2021 22.3469
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Table 8 Test results of different HWF forms

wH
1 wH

2 wH
3 wH

4

Branin-Hoo

RMSE/COV 23.97/0.24 25.46/0.24 24.87/0.22 24.20/0.23

AAE/COV 15.40/0.21 16.26/0.19 16.08/0.19 15.45/0.21

MAE/COV 132.27/0.35 146.37/0.33 138.72/0.32 136.06/0.34

Camelback

RMSE/COV 17.51/0.13 17.96/0.13 18.43/0.12 17.56/0.14

AAE/COV 11.34/0.11 11.35/0.12 11.43/0.13 11.44/0.13

MAE/COV 80.90/0.19 86.36/0.17 90.31/0.15 81.24/0.19

Hartman-3

RMSE/COV 0.49/0.22 0.50/0.24 0.52/0.19 0.49/0.24

AAE/COV 0.33/0.20 0.34/0.20 0.34/0.19 0.34/0.20

MAE/COV 2.03/0.29 2.09/0.34 2.08/0.23 2.08/0.34

Hartman-6

RMSE/COV 0.30/0.10 0.31/0.12 0.31/0.11 0.31/0.12

AAE/COV 0.19/0.13 0.21/0.15 0.21/0.15 0.21/0.15

MAE/COV 1.85/0.17 1.93/0.18 1.86/0.17 1.85/0.17

Extended-Rosenbrock-9

RMSE/COV 7.64*104/0.62 7.69*104/0.77 7.69*104/0.77 7.69*104/0.77

AAE/COV 7.59*104/0.63 7.66*104/0.78 7.66*104/0.78 7.66*104/0.78

MAE/COV 1.33*105/0.36 1.36*105/0.32 1.33*105/0.36 1.33*105/0.36

Dixon-Price-12

RMSE/COV 3.35*105/0.60 3.73*105/0.70 3.73*105/0.70 3.73*105/0.70

AAE/COV 3.28*105/0.63 3.64*105/0.74 3.64*105/0.74 3.64*105/0.74

MAE/COV 5.99*105/0.37 6.74*105/0.33 6.74*105/0.33 6.74*105/0.33

NC machine beam design

RMSE 0.2328 0.2335 0.2338 0.2335

AAE 0.1571 0.1577 0.1583 0.1577

MAE 1.0465 1.0512 1.0509 1.0499

All-direction propeller bearings design

Power flow (P*) 22.2021 22.2130 22.2128 22.2133
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Table 9 Test result for evaluating the effect of the hybrid method

Eq. (8) Eq. (22)

Branin-Hoo

RMSE/COV 24.98/0.26 23.97/0.24

AAE/COV 16.41/0.24 15.40/0.21

MAE/COV 134.17/0.37 132.27/0.35

Camelback

RMSE/COV 17.61/0.14 17.51/0.13

AAE/COV 11.48/0.13 11.34/0.11

MAE/COV 82.11/0.19 80.90/0.19

Hartman-3

RMSE/COV 0.51/0.22 0.49/0.22

AAE/COV 0.34/0.21 0.33/0.20

MAE/COV 2.11/0.31 2.03/0.29

Hartman-6

RMSE/COV 0.32/0.12 0.30/0.10

AAE/COV 0.21/0.15 0.19/0.13

MAE/COV 1.85/0.17 1.85/0.17

Extended-Rosenbrock-9

RMSE/COV 7.69*104/0.77 7.64*104/0.62

AAE/COV 7.66*104/0.78 7.59*104/0.63

MAE/COV 1.33*105/0.36 1.33*105/0.36

Dixon-Price-12

RMSE/COV 3.73*105/0.70 3.35*105/0.60

AAE/COV 3.64*105/0.74 3.28*105/0.63

MAE/COV 6.74*105/0.33 5.99*105/0.37

NC machine beam design

RMSE 0.2379 0.2328

AAE 0.1590 0.1571

MAE 1.0477 1.0465

All-direction propeller bearings design

Power flow (P*) 22.3346 22.2021

C.1 Test result for determining the form of the region
radius

C.2 Test result for determining the form of the Hybrid
Weight Factor (HWF)

C.3 Test result for evaluating the effect of the hybrid
method

Appendix D: Boxplots for six numerical examples
(Figures 8, 9, and 10)
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(a) Branin-Hoo (b) Camelback

(c) Hartman-3 (d) Hartman-6

(e) Extended-Rosenbrock (f) Dixon-Price

Fig. 8 Boxplots of RMSE for six numerical examples
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(a) Branin-Hoo (b) Camelback

(c) Hartman-3 (d) Hartman-6

(e) Extended-Rosenbrock (f) Dixon-Price

Fig. 9 Boxplots of AAE for six numerical examples
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(a) Branin-Hoo (b) Camelback

(c) Hartman-3 (d) Hartman-6

(e) Extended-Rosenbrock (f) Dixon-Price

Fig. 10 Boxplots of MAE for six numerical examples
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