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Abstract This study introduces various low-discrepancy
sequences and then develops a new methodology for reli-
ability assessment for structural dynamic systems. In this
methodology, a two-step algorithm is first proposed, in
which the most uniformly scattered point set among the
low-discrepancy sequences is selected according to the
centered L2-discrepancy (CL2 discrepancy) and then
rearranged to minimize the generalized F-discrepancy (GF
discrepancy). After that, the developed point set is incor-
porated into the maximum entropy method to capture the
fractional moments for deriving the extreme value distribu-
tion for reliability assessment of structural dynamic sys-
tems. Numerical examples are investigated, where the re-
sults are compared with those obtained from Monte Carlo
simulations, demonstrating the accuracy and efficiency of
the proposed methodology.

Keywords Low-discrepancy sequence . Reliability .

Structural dynamic systems . CL2 discrepancy . GF
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1 Introduction

Reliability of structural dynamic systems is defined as the
probability that the dynamic response of structures stays be-
low a prescribed threshold over a given time interval (Goller
et al. 2013). The definition of the above time-dependent prob-
ability, known as the first-passage reliability, has been a per-
sistent challenge in the field of stochastic dynamics of struc-
tures. In the past decades, much progress has been made in
first-passage reliability analysis methodologies. Among
existing methods, the most popular method to evaluate such
probability is the upcrossing method based on the Rice for-
mula (Rice 1944), which has the advantage of efficiency, how-
ever, its accuracy may be poor (Madsen and Krenk 1984) for
structural dynamic systems for the following reasons: (1) the
Rice formula assumes that all the upcrossing rates are inde-
pendent, which may produce large error (Hu and Du 2013),
(2) the joint probability density function (PDF) of the target
response is usually unavailable in practical problems. Though
some empirical modifications have been made to remedy the
drawbacks (Vanmarcke 1975; Preumont 1985), these modifi-
cations are limited to special problems. In contrast, Monte
Carlo simulation (MCS) and its related methods, e.g. impor-
tance sampling, subset simulation (Au and Beck 2003) are the
most widely-used tools for general uncertainty quantification
of structural dynamic systems. The MCS and its related
methods can evaluate the first passage reliability of structures
accurately, but the required computational cost may not be
affordable, especially when large-scale structural dynamic
systems are considered. Further, several techniques based on
the path integral (Iourtchenko et al. 2006; Naess et al. 2011;
Kougioumtzoglou and Spanos 2012) have been developed to
solve the stochastic differential equation to derive the first
passage reliability straightforwardly. However, the computa-
tional efforts related to these techniques could be still
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demanding for practical structural dynamic systems (Spanos
and Kougioumtzoglou 2014). Thus, the first passage reliabil-
ity problem is still an on-going research topic (Hu and Du
2015a). Examples of the recent developments include the total
probability theorem based method (Mourelatos et al. 2015),
the nested extreme response surface method (Wang andWang
2012), the importance sampling approach (Singh et al. 2011),
the Markov chain method (Tont et al. 2010) and the Gamma
process method (van Noortwijk et al. 2007), etc.

It is well-known that low-discrepancy sequences, also
known as quasi-Monte Carlo simulations, have enjoyed
increasing popularity in uncertainty quantification in recent
years (Dai and Wang 2009). The particular interest in ap-
plication of low-discrepancy sequences to structural reli-
ability analysis, specifically to static reliability assessment,
has arisen very recently (Dai and Wang 2009; Nie and
Ellingwood 2004; Zhang et al. 2013). The implementation
is often as simple as replacing the pseudo-random point
set in MCS by the deterministic low-discrepancy point set
in structural reliability analysis. It has been found that the
low-discrepancy sequences always have performance supe-
rior to the pseudo-random number generators. The main
reason behind this situation is that the low-discrepancy
sequences are deterministic sequences, which have much
better uniformity properties than the pseudo-random point
set. In this regard, they may achieve a given accuracy with
far fewer samples. In Ref. (Dai and Wang 2009), the
authors combine low-discrepancy sequences with impor-
tance sampling to investigate four benchmark reliability
problems. In their investigation, several thousands of
points are required to simulate an event with a failure
probability around 1 × 10−4. This computational time could
be called “efficient” in static scenario, however, it is in-
deed computationally inefficient in structural dynamic sys-
tems when the reliability assessment involves time con-
suming time-domain analysis of engineering structures.
As a result, direct use of low-discrepancy sequences to
assess the reliability of structural dynamic systems is not
recommended.

Alternatively, the extreme value of structural dynamic re-
sponse can be used to equivalently replace the first passage
reliability problem (Chen and Li 2007; Li et al. 2007; Xu et al.
2016). The basic idea is to replace the structural dynamic
response in the limit state function with its extreme value
and convert the time-variant problem into its time-invariant
counterpart. If the extreme value distribution (EVD) can be
accurately estimated, the accuracy of reliability analysis will
be higher than the upcrossing rate method since the indepen-
dent upcrossing assumption is eliminated (Hu and Du 2015b).
Besides, the reliability can be assessed directly by a simple
integral once the EVD is available. Therefore, it is of para-
mount importance to evaluate the EVD for reliability assess-
ment of structural dynamic systems, where the tradeoff of

efficiency and accuracy is of great concern in practical
engineering.

Since high-dimensional integrals may be encountered in
the evaluation of EVD (Xu et al. 2012) the low-discrepancy
sequences could be first employed to numerically evaluate
the high-dimensional integrals and then the EVD is deter-
mined accordingly. In other words, the reliability of struc-
tural dynamic systems could be evaluated “indirectly”
based on low-discrepancy sequences. This reveals the pos-
sibility of using the low-discrepancy sequences in the reli-
ability analysis of structural dynamic systems. On the other
hand, it is known that the more uniformity the integration
points are, the more accuracy the numerical integration will
be (Hua and Yuan 1981). The discrepancy, which charac-
terizes the maximum error when replacing the ratio of the
volumes of hyper-cubes by the ratio of the number of points
contained in the volumes (Li and Chen 2009), is an appro-
priate index to measure the uniformity of a point set and
bounds the error of the numerical integration. It is noted
that the discrepancy is actually dependent on the dimension
and the number of points. If the points are uniformly
scattered, the discrepancy will be small. In this regard, a
point set with lower discrepancy is highly desirable for the
EVD evaluation, which involves numerical integration.
Several low-discrepancy sequences have been developed,
e.g. Halton, Hammersley, Sobol sequences, etc. for numer-
ical integration and the sequence with the lowest discrep-
ancy in a given dimension among these low-discrepancy
sequences is preferred. Nevertheless, practical challenges
of using low-discrepancy sequences for numerical integra-
tion still arise. First, it is quite difficult to compute the
discrepancy, especially in high dimensions. Second, the
discrepancy may be only meaningful for the numerical in-
tegration when the number of points is large, which indi-
cates the computational effort could be prohibitively large
if the low-discrepancy sequences are straightforwardly ap-
plied to evaluate the EVD. Thus, when the tradeoff between
efficiency and accuracy is considered, further research on
the use of low-discrepancy sequences for reliability assess-
ment of structural dynamic systems is needed. In the pres-
ent paper, the centered L2-discrepancy (CL2 dispcrepancy)
and the generalized F-discrepancy (GF discrepancy) will be
employed to overcome the mentioned challenges.

The objective of the present paper is to propose a two-step
methodology to apply low-discrepancy sequences to reliabil-
ity assessment of structural dynamic systems. This paper
is arranged according to the following: In Section 2, five
low-discrepancy sequences that have been successfully and
widely applied in many scientific and engineering areas
are introduced. Section 3 is devoted to develop the
new methodology, in which a low-discrepancy sequence is
selected and modified before performing dynamic reliability
analysis. The CL2 and the GF discrepancies are employed
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for this purpose due to their convenience to be computed even
in high dimensions. Then, the modified sequence is incorpo-
rated into the EVD evaluation technique to obtain the EVD for
reliability analysis of structural dynamic systems in Section 4.
Numerical examples to demonstrate the proposed methodol-
ogy are carried out in Section 5. Concluding remarks
are included in Section 6.

2 Brief introduction of low-discrepancy sequences

In this section, five well-studied low-discrepancy sequences
will be introduced. Throughout this paper, the uniform ran-
dom vector is denoted asΘ = [Θ1,Θ2,…,Θd]

T, where d is the
number of random variables. These sequences generate ran-
dom numbers between [0,1]d, which can be then transformed
to the distribution of interest.

Before introducing the low-discrepancy sequences, the
concept of discrepancy needs to be defined. Usually, the star
discrepancy of a point set℘ is considered, which is defined by
(Hua and Wang 2012)

D N ;℘ð Þ ¼ sup
v∈Cd

n ℘; vð Þ
N

−V 0; v½ �ð Þ
� �

ð1Þ

where Cd = [0, 1]d, v = (v1, v2,…vd) ∈Cd, 0 ≤ vj ≤ 1, j = 1, 2,
…, d, n(℘, v) is the number of the points satisfying
‖θq‖ ≤ ‖v‖ (‖⋅‖ is the 2-norm), N is the total number of points
in Cd and V([0, v]) is the volume of the hyper-rectangle

0; v½ � ¼ ∏d
j¼1 0; v j
� �

(Li and Chen 2009). A smaller value of

D(N,℘) indicates the point sequence ℘ is distributed more
uniformly and better represents the uniform distribution. It
will be demonstrated in Section 3 that a more accurate solution
will be achieved in the numerical integration if a sequence
with lower discrepancy is applied.

2.1 Halton sequence

Let p be a prime number, and then any arbitrary integer q can
be represented in the form

q ¼ ∑
M

i¼0
ai qð Þ⋅pi ð2Þ

where ai(q) s are the coefficients for integer q; and
M = [logpq], [logpq] denotes the smallest integer that is larger
or equal to logpq.

From this decomposition, function ϕp(q) ∈ [0, 1] for every
q can be defined as

ϕp qð Þ ¼ ∑
M

i¼0

ai qð Þ
piþ1

ð3Þ

Let pi(1 ≤ i ≤ d) be the first d prime numbers, which is the
prime number seed. Then, the sequence

℘ ¼ q ¼ ϕp1 qð Þ;ϕp2 qð Þ;…;ϕpd qð Þ
� �

;
n

θq ¼ 1; 2;…g
ð4Þ

is called the Halton sequence.
It has been proven that the sequence formed by the first N

(N >max(p1, p2,…, pd)) points has the discrepancy (Halton
1960; Wang and Hickernell 2000)

D N ;℘ð Þ≤N−1 ∏
d

i¼1

pilog piNð Þ
logpi

¼ O N−1 logNð Þd
� � ð5Þ

While the performance of standard Halton sequences is
very good in low dimensions, problems with correlation have
been observed between sequences generated from higher
primes (Hess and Polak 2003). This can cause serious prob-
lems in the estimation of models with high-dimensional inte-
grals. Various methods have been proposed to deal with this;
one of the most prominent solutions is the Halton leaped se-
quence, which uses qL instead of q in the construction of the
standard sequence such that (Kocis and Whiten 1997)

℘ ¼ θq ¼ ϕp1 qLð Þ;ϕp2 qLð Þ;…;ϕpd qLð Þ
� �

;
n
q ¼ 1; 2;…g

ð6Þ

where L is the leap, which is a prime number different from
pi(1 ≤ i ≤ d). The best leap values were found to be31, 61, 149,
409, and 1949 (Kocis andWhiten 1997; Robinson and Atcitty
1999). In the present paper, the leap value 1949 is adopted. In
a Halton sequence, each dimension uses a different base.

2.2 Harmmersley sequence

Hammersley sequence is constructed based on the Halton se-
quence, and could be considered as a variant of Halton se-
quence. Let d ≥ 2 and pi(1 ≤ i ≤ d − 1) be d − 1 distinct prime
numbers, the corresponding q -th d -dimensional Hammersley
point is

℘ ¼ θq ¼ 2q−1
N

;ϕp1 qð Þ;ϕp2 qð Þ;…;ϕpd−1 qð Þ
� 	

;



q ¼ 1; 2;…;Ng

ð7Þ

where N is the total number of Hammersley points.
The discrepancy gives

D N ;℘ð Þ≤N−1 ∏
d−1

i¼1

pilog piNð Þ
logpi

¼ O N−1 logNð Þd−1
� � ð8Þ
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2.3 Sobol sequence

Here, the Sobol sequence in just one dimension is illustrated.
With the aim being to generate a sequence of values θ1, θ2,…,
0 < θq < 1, first a primitive polynomial of degree s in the field
Z2 could be expressed as (Joe and Kuo 2008; Joe and Kuo
2003; Bratley and Fox 1988)

θs þ a1θ
s−1 þ…þ as−1θþ 1 ð9Þ

where each coefficient ai is 0 or 1.
Then, a set of direction numbers ν1, ν2,… are defined

by

νq ¼ mq=2
q ð10Þ

where mq is an odd integer, 0 <mq < 2q.
Once a polynomial is chosen, its coefficients can be used to

define a recurrence for calculating νq, thus

νq ¼ a1νq−1⊕a2νq−2⊕…⊕as−1νq−sþ1

⊕νq−s⊕ νq−s=2
s� �
; q > s ð11Þ

where ⊕ denotes a bit-by-bit exclusive-or operation. For ex-
ample, if s = 3 and a1 = 0, a2 = a3 = 1, we have

νq ¼ νq−2⊕νq−3⊕ νq−3=2
3

� �
; q > 3 ð12Þ

Then, let m1 = 1,m2 = 3,m3 = 7 with the corresponding
νq =mq/2

q i.e. ν1 = 0.1, ν2 = 0.11, ν3 = 0.111. The recurrence
of ν4, ν5, ν6 can be obtained by

ν4 ¼ ν2⊕ν1⊕ ν1=2
3

� �
¼ 0:11⊕0:1⊕0:0001
¼ 0:0101

ð13Þ

ν5 ¼ ν3⊕ν2⊕ ν2=2
3

� �
¼ 0:111⊕0:11⊕0:00011
¼ 0:00111

ð14Þ

ν6 ¼ ν4⊕ν3⊕ ν3=2
3

� �
¼ 0:0101⊕0:111⊕0:000111
¼ 0:101011

ð15Þ

Equivalently, the recurrence in terms of mq can be
expressed as (Joe and Kuo 2003)

mq ¼ 2a1mq−1⊕22a2mq−2
⊕…⊕2s−1as−1mq−sþ1

⊕2smq−s⊕mq−s

ð16Þ

Using the primitive polynomial of degree s, the valuesm1,
m2,…,ms can be chosen freely provided that eachmq (q ≤ s) is
odd and mq < 2q. Then, subsequent values ms + 1,ms + 2,… are
determined by the recurrence.

Finally, the sequence is generated by

θq ¼ b1ν1⊕b2ν2⊕… ð17Þ

where …b3b2b1 refers to the binary representation of q.
Generalizing this procedure to d dimensions, the Sobol

sequences can be generated accordingly

℘ ¼ θq ¼ θ1q; θ
2
q;…; θdq

� �
;

n
q ¼ 1; 2;…g

ð18Þ

The detailed algorithm for generating Sobol sequences is
elaborately explained in Ref. (Bratley and Fox 1988).

For Halton and Hammersley sequences, large prime num-
bers may be involved in high-dimensional problems. Besides,
the seeds pi(1 ≤ i ≤ d) are different from each other. In contrast,
the Sobol sequence uses the same prime number, which is 2,
in all dimensions as the seed to generate points

q ¼ ∑
M

i¼0
ai qð Þ⋅2i ð19Þ

It has been proven that Sobol sequence achieves the fol-
lowing discrepancy (Bratley and Fox 1988)

D N ;℘ð Þ≤CdN−1 logNð Þd
þ O N−1 logNð Þdþ1

� � ð20Þ

where Cd = 2d/(d ! × (log2)d).

2.4 Faure sequence

Faure sequence is a permutation of Halton sequence, but it
uses the same base p for each dimension (Faure 1992). The
base p can be chosen as the smallest odd prime integer such
that p ≥ d. It should be noted that the j th dimension of a d
dimensional Faure sequence is different from that of a d' (d ≠
d') Faure sequence because the base p is different. First, the
following transformation T is performed

T ϕp qð Þ� � ¼ ∑
M

i¼0

bi qð Þ
piþ1

ð21Þ

where bi qð Þ ¼ ∑
M

l¼i
Ci

lalmodp and Ci
l denote binomial coeffi-

cients and coefficients bi(q) s are actually a permutation of the
ai(q).

The Faure sequence is defined by using successive trans-
formations:

℘ ¼ θq ¼ ϕp qð Þ; T ϕp qð Þ� �
;…; Td−1 ϕp qð Þ� �� �

;
q ¼ 1; 2;…g ð22Þ

The discrepancy of the sequence satisfies

D N ;℘ð Þ≤CdN−1 logNð Þd ð23Þ
where Cd is a constant dependent on d and p (Brandimarte 2014)
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Cd ¼ 1

d!
⋅
p−1ð Þd

2log pð Þ ð24Þ

2.5 Niederreiter sequence

Let us define an elementary interval in base p as an interval of
the form

E ¼ ∏
d

j¼1

Aj

pD j
;
Aj þ 1

pD j

� 	
ð25Þ

where Aj andDj are integers satisfyingDj ≥ 1 and 0 ≤ Aj ≤Dj −
1 (Tuffin 1996).

Let 0 ≤ t ≤m be integers. A (t, s) sequence in base p is a
sequence θq if, for all integers k ≥ 0, such that for every inter-
val in base p of volume 1/pm − t, there are exactly pt points
among the pm with kpm ≤ q ≤ (k + 1)pm.

The Niederreiter sequence is a d dimensional (t, s) se-
quence in base p defined as

℘ ¼ θq ¼ ∑
M

i¼1

y 1ð Þ
q;i

piþ1
;…; ∑

M

i¼1

y dð Þ
q;i

piþ1

 !
;

(

q ¼ 1; 2;…;g
ð26Þ

with

y jð Þ
q;i ¼ ∑

M

r¼0
c ji;rar qð Þ ð27Þ

where c ji;r are pre-calculated elements (see Ref. (Harald 1992)).

The discrepancy of the sequence satisfies

D N ;℘ð Þ≤N−1 logNð Þd ð28Þ

The general differences among these low-discrepancy se-
quences are discussed and can be found in Ref. (Tuffin 1996).
Figure 1 shows the two-dimensional scatter plots with the same
sample size 500 for these low-discrepancy sequences, the star
discrepancies of which are 0.0056, 0.0024, 0.0076, 0.0080 and
0.0056, respectively. In this regard, the Harmmersley sequence,
which possesses the lowest discrepancy, is regarded as the most
uniformly distributed sequence in this case. However, when the
dimension becomes large, it is always very difficult to compute
the star discrepancies. Therefore, efficient methods for comput-
ing the discrepancies need to be investigated.

3 The proposed two-step methodology using
low-discrepancy sequences

The low-discrepancy sequences above have beenwidely applied
in many fields of numerical integration analysis. Since there are
available subroutines written in MATLAB ® to generate these
low-discrepancy sequences (Burkardt 2015), they are quite easy

to implement in a computer-aided analysis. Another advantage
of using these low-discrepancy sequences is that their power
degrades little with increasing dimension. The low-discrepancy
sequences, which are deterministic sequences, combine the ad-
vantage of a random sequence where points can be added incre-
mentally, with the advantage of a lattice where there are no
regions of points with higher density than others.
Notwithstanding, some practical difficulties still emerge:

(1) The first challenge is that how to decide which sequence
should be adopted to achieve the best result when the
total number of points N is given.

(2) Another challenge is that the theoretical bound of the
discrepancy may only have meaning at large values of
N for a relatively large dimension d.

To overcome these challenges, a two-step methodology is
developed.

3.1 Step 1

As is mentioned, the discrepancy is a measure of the sequence
℘. If a smaller value of D(N,℘) is considered, more accurate
solution may be achieved with the same number of points (Dai
and Wang 2009), which is guaranteed by the well-known
Koksma-Hlawka inequality (Hua and Wang 2012)

∫Cd f θð Þdθ− n
N

∑
N

q¼1
f θq
� ������

�����
≤TV fð Þ⋅D N ;℘ð Þ≤TV fð Þ⋅DB

ð29Þ

where TV( f ) is the total variation of the function f andDB is the
theoretical bound of the discrepancy.

Since a non-uniform random vector, denoted as ~Θ ¼
~Θ1; ~Θ2;…; ~Θd
� �T

can be transformed to be uniform one, we
also have

∫Ω ~Θ
f ~θ
� �

d~θ−
1

N
∑
N

q¼1
f ~θq

� ������
�����

¼ ∫Cd f R‐1 θ½ �� �
dθ−

1

N
∑
N

q¼1
f R‐1 θq

� �� ������
�����

¼ ∫CdG θð Þdθ− 1

N
∑
N

q¼1
G θq
� ������

�����
≤TV Gð Þ⋅D N ;℘ð Þ

ð30Þ

where G(θ) = f(R‐1[θ]) and R‐1 is the transformation.
The equations above indicate that the discrepancy D(N,℘)

bounds the error of the multi-integral. However, the effort to
compute the discrepancies, except for some analytically ele-
gant results for special cases, is usually prohibitively large due
to the so-called “curse of dimensionality”.
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Alternatively, in the present paper, the centered L2 –dis-
crepancy (Hickernell and Wang 2002), which is denoted as
CL2 discrepancy herein, is suggested as the index to deter-
mine which sequence poses the most uniform property.

The formula of CL2 discrepancy reads

CL2 N ;℘ð Þ2 ¼ 13

12

� 	d

−
2

N

∑
N

k¼1
∏
d

j¼1
1þ 1

2
θ j;k−0:5
�� ��− 1

2
θ j;k−0:5
�� ��2� 	

þ 1

N2 ∑
N

k¼1
∑
N

j¼1
∏
d

i¼1
1þ 1

2
θi;k−0:5
�� ��þ 1

2
θi; j−0:5
�� ��− 1

2
θi;k−θi; j
�� ��� � ð31Þ

The advantages of using CL2 discrepancy are

(a) invariant to the rotation of the coordinate system,
(b) convenient for computation.

Similar to (29) and (30), there exists (Dick and
Pillichshammer 2010; Song and Chen 2015)

∫Cd f θð Þdθ− 1

N
∑
N

q¼1
f θq
� ������

�����
≤ fk k2⋅CL2 N ;℘ð Þ

ð32Þ
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∫Ω ~Θ
f ~θ
� �

d~θ−
1

N
∑
N

q¼1
f ~θq

� ������
�����

≤ Gk k2⋅CL2 N ;℘ð Þ
ð33Þ

where ‖f‖2 and ‖G‖2 are the quantities similar to the total
variation of the function.

Therefore, the CL2 discrepancy can be utilized as the index
to select “the most uniform” point set among the low-
discrepancy sequences above as the basic point set, which is
denoted as ℘S = {θq = (θq, 1, θq, 2,…, θq, d), q = 1, 2,…, N}.
Then, the basic point set can be transformed to be the point
set in the interested distribution domain, which is denoted as

~℘S ¼ ~θq ¼ ~θq;1; ~θq;2;…; ~θq;d
� �

; q ¼ 1; 2;…;N
 �

.
The CL2 discrepancy of each point set when d = 5 with

different numbers of samples (N = 100, 200, 300 and 400) are
listed in Table 1. It can be seen that the CL2 discrepancy
generally decreases when the number of points increases,
which indicates “more uniformity” can be reached by increas-
ing the number of points. Table 2 shows the CL2 discrepancy
of each point set with a fixed number of points (N = 200) but
increasing dimension (d = 2,5,10 and 13). It is noted that the
CL2 discrepancy increases with the dimension, indicating the
uniformity of low-discrepancy sequences with a fixed number
of points may get worse as the dimension becomes large.

3.2 Step 2

The bound in (29) gives no meaningful information until a
very large number of points is used. Considering a realistic
engineering problem in which a multiple degree of freedom

(MDOF) system under dynamic excitations with possibly
strong nonlinearity and several random variables are involved,
the computational cost of such stochastic dynamic systems
may be intractable.

In the original low-discrepancy sequences, all the generat-
ed points are deemed equally important for propagation/
transformation to the domain of interest. When transformed
to the domain of interest, however, the original sequences
actually no longer have the characteristics of low-discrepancy.
This could be the reason for the prohibitive computational cost
of using these sequences for structural dynamic problems with
a relatively large dimension d. To overcome the difficulty, the
selected sequence ℘S (or ~℘S ) together with their equal
weights, say 1/N, according to the CL2 discrepancy needs to
be rearranged. One of the possible ways of improving the
accuracy and efficiency is constructing non-equal weights
for the sequence (Chen and Zhang 2013).

Further, the points in the selected sequence are usually
not adequately uniformly scattered in the transformed
space. To characterize the non-uniformity, the non-equal
weight for each point needs to be determined. To this end,
the space Ω ~Θ is partitioned by adopting the selected se-

quence ~℘S ¼ f~θq ¼ ~θq;1; ~θq;2;…; ~θq;d
� �

; q = 1, 2,…, N} as
the nucleus of the Voronoi cells (Conway and Sloane
2013), which are defined as

Ωq ¼ ~θ∈ ~Θ s ~θ; ~θq

� �
≤s ~θ; ~θ j

� �
for all j≠q

���n o
ð34Þ

where s ~θ; ~θq
� �

denotes the distance between the points ~θ

and~θq.
Figure 2 illustrates the Voronoi cells in the two-

dimensional standardized normal random-variate space.

Table 1 CL2 discrepancy (d = 5)

Number of points 100 200 300 400
Sequence

Halton 0.0426 0.0252 0.0178 0.0142

Harmmersley 0.0371 0.0210 0.0149 0.0116

Sobol 0.0485 0.0271 0.0182 0.0143

Faure 0.0419 0.0270 0.0198 0.0146

Niederreiter 0.0496 0.0282 0.0189 0.0146

Table 2 CL2 discrepancy (N = 200)

Dimension 2 5 10 13
Sequence

Halton 0.0071 0.0252 0.1058 0.1910

Harmmersley 0.0045 0.0210 0.0999 0.1862

Sobol 0.0073 0.0271 0.1040 0.1905

Faure 0.0094 0.0270 0.3362 0.5851

Niederreiter 0.0062 0.0282 0.1324 0.2632

-3 -2 -1 0 1 2 3
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-2
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0

1
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3

x1

x 2

Fig. 2 Voronoi cells in two dimensional standardized normal random-
variate space
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Clearly, Ωq, q = 1, 2,…,N is considered as a partition of
the distribution domain Ω ~Θ, namely

∪Nq¼1Ωq ¼ Ω ~Θ; Ωq∩Ωk ¼ ∅; for q≠k ð35Þ

which means the partitions are mutually exclusive and ex-
haustive of the entire domain.

Then, the positive weight, which is the assigned probabil-
ity, for each point is (Chen et al. 2009)

ωq ¼ ∫ΩqpΩ
~Θ

~θ
� �

d~θ ð36Þ

A numerical algorithm to calculate the integral for the
weight (36) can be found in Ref. (Chen et al. 2009).

Thereby, the extended Koksma-Hlavka inequality (29) can
be represented as (Chen and Zhang 2013)

∫Ω ~Θ
f ~θ
� �

d~θ− ∑
N

q¼1
ωq f ~θq

� ������
�����

≤TV Gð Þ⋅DGF N ; ~℘S

� � ð37Þ

where DGF(N,℘) denotes the generalized F-discrepancy (GF
discrepancy), which is defined as

DGF N ; ~℘S

� �
¼ max

1≤ j≤d
DF; j N ; ~℘S

� �� �
ð38Þ

where

DF; j N ; ~℘S

� �
¼ sup

~θ∈ℝ

FN ; j
~θ
� �

−F j
~θ
� ���� ��� ð39Þ

is the marginal F-discrepancies in the direction

~θ j; j ¼ 1; 2;…; d. Herein, F j
~θ
� �

denotes the marginal
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cumulative density function (CDF) of ~θ j and FN ; j
~θ
� �

is the

empirical marginal CDF of ~θ j

FN ; j
~θ
� �

¼ ∑
N

q¼1
ωq⋅I ~θq; j≤~θ

n o
ð40Þ

where ~θq; j is the j-th component of ~θq.

It is noted that the computation of DGF N ; ~℘Sð Þ only in-
volves d one-dimensional empirical CDF evaluations, which
could be very efficient regardless of the dimension d. In addi-
tion, it has been proven that (Chen and Zhang 2013)

DGF N ; ~℘S

� �
≤D N ; ~℘S

� �
ð41Þ

which indicates that the sequence with unequal weights can
achieve lower error bound compared to that of the equal-
weighted sequence using the same number of pointsN. In other
words, the computational accuracy could be significantly im-
proved by using the sequence with unequal weights when the
same efficiency is achieved. In addition, the smallerDGF(N,℘)
is, the better the accuracy of the numerical integration would be.
It is also worth pointing out that the sequence with the smaller
D(N,℘) is preferred, which can further reduce DGF(N,℘) ac-
cording to (41). This could illustrate the reason why we need to
select “the most uniform” sequence in accordance with the CL2
discrepancy in the first step. Therefore, the GF discrepancy is
adopted as the objective function in optimally rearranging the

sequence ~θq, q = 1, 2,…,N (the coordinate of each point). The
optimization problem is conducted such that

(b) CDF(a) extreme value distribution
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find ~θq

minimize DGF

s:t: μl
j≤~θq; j≤μ

u
j

ð42Þ

where μl
j and μ

u
j are the truncated lower and upper bounds for

~Θ j.
In practice, some approximation methods can be employed

(Chen et al. 2016) for simplifying the optimization problem
above. Although the resulted point set is usually sub-optimal,
it still performs quite well to minimize the GF discrepancy

significantly. Then, the rearranged points ~θq and their corre-
sponding weights ωq, q = 1, 2,…,N, are formulated based on
the low-discrepancy sequences.

To make this point clearer, a one-dimensional case with 5
points are used for the illustration, which is shown in Fig. 3.
First, the uniform point set ({θ1, θ2,…, θ5}) is transformed to

be the point set ( ~θ1; ~θ2;…; ~θ5
 �

) using the probability distri-
bution of interest. Then, the distribution is partitioned via
Voronoi cells {Ω1,Ω2,…,Ω5} and the weight for each point
can be calculated by (36). In the one dimensional case, the

Voronoi cell of the point ~θq is the interval Ωq ¼ ~θq;L; ~θq;U
� �

and the weight for each point is the area over the distribution
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in the interval Ωq, i.e. ωq ¼ ∫ΩqpΩ ~Θ

~θ
� �

d~θ ¼ ∫
~θq;U
~θq;L

pΩ ~Θ

~θ
� �

d~θ.

Finally, the positions of these points are rearranged to mini-
mize the GF discrepancy.

To summarize, the two-step methodology is proposed below:

Step 1: Select the most uniformly scattered sequence
among the introduced low-discrepancy sequences ac-
cording to the CL2 discrepancy as the basic point set.
Then, transform the basic point set to the point set in
the interested distribution domain.
Step 2: Calculate the weight for each point and
then conduct an optimization to rearrange the se-
lected point set such that it minimizes the GF
discrepancy.

The proposed methodology shows potential for im-
proving the efficiency of uncertainty quantification of
structural dynamic systems. In the next section, the ap-
plication of the proposed algorithm to the reliability
assessment of structural dynamic systems will be further
explored.

4 The maximum entropy principle based method
for reliability assessment of structural dynamic
systems

4.1 The formulation of reliability assessment of structural
dynamic systems

Without loss of generality, the state equation of a nonlinear
structural dynamic system can be expressed as

X˙ ¼ A X; ~Θ; t
� �

ð43Þ

with the initial condition

X tð Þ t¼t0j ¼ x0 ð44Þ

where X ¼ X 1;X 2;…;Xm; Ẋ 1; Ẋ 2;…; Ẋ mð ÞT ; m is the de-
gree of freedom of the structure; A = (A1, A2,…, A2m)

T is the
deterministic operator.

For a well-posed structural dynamic system, the solu-

tion to (43) exists, is unique and must be a function of ~Θ
(Li and Chen 2009). We can assume the solution takes the
form

X tð Þ ¼ H ~Θ; t
� �

ð45Þ

and thus the velocity takes the form

X˙ tð Þ ¼ h ~Θ; t
� �

ð46Þ

where h ~Θ; t
� � ¼ ∂H ~Θ; t

� �
=∂t.

The components of (45) and (46) are

X l tð Þ ¼ Hl ~Θ; t
� �

ð47Þ

Table 3 Structural parameters
Storey number The lumped mass (×105kg) The lateral stiffness (×108N/m)

1 3.487 0.882

2 3.852 0.875

3 3.225 1.758

4 2.887 1.854

5 2.667 1.662

6 2.558 1.654

7 2.558 1.618

8 2.558 1.618

9 2.558 1.618

10 2.558 1.618

11 2.558 1.618

12 2.558 1.618

13 2.558 1.618

Table 4 CL2 discrepancy (15 random variables)

Number of points 100 200 300 400 500
Sequence

Halton 0.4114 0.2788 0.2213 0.1842 0.1603

Harmmersley 0.4006 0.2723 0.2130 0.1774 0.1533

Sobol 0.3740 0.2579 0.2031 0.1658 0.1480

Faure 0.7846 0.7583 0.7483 0.7442 0.7433

Niederreiter 0.5496 0.3817 0.2811 0.2132 0.1632
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X˙ l tð Þ ¼ hl ~Θ; t
� �

ð48Þ

where the subscript “l” denotes the l-th component. For sim-
plicity, the subscript “l” will be omitted hereafter to remove
additional confusion.

Then, the first passage reliability for structural dynamic
systems can be defined as

R ¼ Pr X tð Þ∈ΩS ; t∈ 0; T½ �f g ð49Þ
where Pr denotes the probability andΩS is the safe domain. In
the present paper, the symmetric double boundary is specifi-
cally employed such that

R ¼ Pr X tð Þj j≤xB; t∈ 0; T½ �f g ð50Þ
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in which xB is the threshold.
As is discussed, the dynamic reliability can be evaluated

straightforwardly and conveniently from the extreme value
distribution (Chen and Li 2007). Thus, the equivalent form
of (50) is

R ¼ Pr X ext ≤xB;f g ð51Þ
where X ext ¼ max

t∈ 0;T½ �
X tð Þj jð Þ is the extreme value associate to

the failure criterion.

Once the EVD pXext
xð Þ is obtained, it is convenient to per-

form a simple one-dimensional integration to give the dynam-
ic reliability

R ¼ ∫xB0 pXext
xð Þdx ð52Þ

Then, the task is now to evaluate the extreme value distri-
bution pX ext

xð Þ. To this end, the maximum entropy method

(MEM) will be applied to derive the extreme value distribu-
tion pXext

xð Þ.

4.2 Maximum entropy method (MEM) to derive
the extreme value distribution

The MEM is based on the concept that the distribution that
maximizes the information entropy is the one that is statisti-
cally most likely to occur (Kapur and Kesavan 1992). In the
context of information theory, the entropy Sext of the EVD
pXext

xð Þ is defined as

Sext ¼ −∫pXext
xð Þln pXext

xð Þ� �
dx ð53Þ

Then, one needs to find pXext
xð Þ that maximizes the entropy

Sext subject to moments constraints

uk ¼ ∫xkpX ext
xð Þdx; k ¼ 1; 2;…; n ð54Þ
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where n + 1 is the number of known integer moments.
The classical solution of this problem is given by

pXext
xð Þ ¼ exp −λ0− ∑

n

k¼1
λkxk

� �
ð55Þ

where λ0, λ1,…, λN are the Lagrange multipliers by solving
the following set equations

λ0 ¼ log ∫exp −λ0− ∑
n

k¼1
λkxk

� �
dx


 �
ð56Þ

uk ¼ ∫xkexp −λ0− ∑
n

k¼1
λkxk

� �
dx; k ¼ 1; 2;…; n

ð57Þ

However, a relatively large number of integer moments are
required to achieve a reasonable accuracy in the modeling of
the distribution tail, which is of great importance to reliability
assessment (Zhang and Pandey 2013). However, the numeri-
cal algorithm may become unstable as the number of integer
moments constraints increases.

4.3 Fractional moments evaluation based on the proposed
methodology

The MEM with fractional moments as constraints has drawn
increasing attention for reliability analysis from the research
community. In such an approach, a finite number of fractional
moments, instead of integer moments, are applied such that

uαk ¼ ∫xαk exp −λ0− ∑
n

k¼1
λkxαk

� �
dx; k ¼ 1; 2;…; n

ð58Þ

where αk is the k th fractional order and uαk is the correspond-
ing fractional moment.

The EVD can be rewritten as

pXext
xð Þ ¼ exp −λ0− ∑

n

k¼1
λkxαk

� �
ð59Þ

The reason for using fractional moments is because a
single fractional moment embodies a large number of cen-
tral moments, i.e. (Zhang et al. 2014; Xu et al. 2017; Xu
2016).

uαk ¼ ∑
∞

i¼0

αk

i

� 	
X 0

αk−iE X ext−X 0ð Þi� � ð60Þ

where X0 denotes the mean of Xext. Thus, a few of fractional
moments can be used to recover the EVD more clearly than
a finite number of integer moments do.

After a series mathematical manipulations, the parameters
α = [α1,…,αn]

T and λ = [λ1,…, λn]
T can be determined by

(Zhang and Pandey 2013)

find α;λ

Min W α;λð Þ ¼ ln ∫exp − ∑
n

k¼1
λkxαk

� �
dx

� �
þ ∑

n

k¼1
λkuαk

8<
:

ð61Þ

Therefore, the EVD pXext
xð Þ can be reconstructed to inves-

tigate the reliability by substituting α and λ into (59).
It is noted that the fractional moments evaluation is of

paramount importance to derive the EVD pXext
xð Þ. This ap-

proach has been studied for static reliability analysis of struc-
tures in Ref. (Zhang and Pandey 2013). In that study, the
response function is decomposed by the dimension reduction
method (Zhang and Pandey 2013). Then, the fractional mo-
ments can be evaluated in a multiplicative form very efficient-
ly. In this regard, the PDF of the response function is captured
by the MEM and therefore the reliability is obtained accord-
ingly. Nevertheless, direct employment of this technique to
structural dynamic systems may yield spurious results for re-
liability assessment. The response function (extreme value) of
a complex structural dynamic system is often very complicat-
ed, implicit and highly nonlinear with respect to the basic
random variables. In this regard, the first-order dimension
reduction modeling of the response function may be not

Table 5 Parameters in Bouc-
Wen model Parameter α A n q p dψ λ ψ β γ dν dη ξ

Value 0.03 1 1 0.25 1000 5 0.5 0.05 40 20 2000 2000 0.99
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adequate, which could induce large error in the moments
evaluation.

Instead, the fractional moment of EVD involves a multidi-
mensional integral such that

uαk ¼ ∫Ω
~Θ
x ~θ
� �αk

p
~Θ
θð Þd~θ; k ¼ 1; 2;…; n ð62Þ

where x ~θ
� �

actually refers to the implicit response function
(extreme value) with respect to the randomness.

This integral can be simply evaluated based on the
rearranged low-discrepancy points and their unequal weights
proposed in Section 3 such that

uαk ¼ ∫Ω ~Θ
x ~θ
� �αk

p
~Θ

θð Þd~θ

¼ ∑
N

q¼1
ωqx ~θq

� �αk

;
k ¼ 1; 2;…; n;
q ¼ 1; 2;…;N

ð63Þ

Thus, the EVD pXext
xð Þ can be evaluated and therefore the

reliability of structural dynamic systems is assessed. It is noted that
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the cost of deriving the EVD pXext
xð Þ is negligible compared to the

cost of performing the series of deterministic dynamic analyses of

structures to obtain x ~θq
� �

, q= 1, 2,…,N,which is reduced using
the rearranged low-discrepancy points.

5 Numerical examples

5.1 A SDOF nonlinear system

Consider a SDOF structure with random parameters subjected
to seismic excitations with random amplitudes. The mass,

stiffness and damping are all taken as dimensionless quanti-
ties. The equation of motion can be expressed as

m€xþ cx˙ þ G xð Þ ¼ F tð Þ ð64Þ
where G(x) = k(x − x3); m, c, k are assumed to be normally
distributed random variables with the mean m0 = 1, c0 =
0.63, k0 = 39.48 and coefficients of variation δm = δc = δk
=0.15; and the external excitation F(t) takes the form such that

F tð Þ ¼ −m ξ1€x
N−S
g tð Þ þ ξ2€x

E−W
g tð Þ

h i
ð65Þ

where €xN−S
g tð Þ and €xE−Wg tð Þ denote El Centro accelerogram in

the N-S and W-E direction, respectively, ξ1 and ξ2 are the
random amplitudes, which are assumed to be normal random
variables with the means 2m/s2, 1.5m/s2 and the standard de-
viations of 0.6m/s2, 0.3m/s2. Thus, five random variables are
involved in predicting the structural response x(t).

The extreme value Xext in (51) could be denoted as
X ext ¼ max

t∈ 0;T½ �
x tð Þj jð Þ. To derive the probability density distri-

bution pXext
xð Þ for reliability analysis, the fractional moments

evaluation in (63) is implemented. For this purpose, the pro-
posed two-step algorithm is employed to generate the point
set. According to Table 1, Hammersley sequence produces the
lowest CL2 discrepancy among these sequences with the
same number of points in this example. This feature reveals
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that Hammersley sequence is the most uniformly scattered
sequence in this case, which is preferred in the following re-
arrangement of points and weights calculation.

Then, the Hammersley sequence ℘2 is rearranged by the
GF discrepancy based optimization process, where the
rearranged point set is denoted as ~℘2. The fractional moments
of the EVD pXext

xð Þ is assessed by employing the rearranged
point set ~℘2 when the number of samples is specifically
adopted as N = 400. The relative error is defined as

e ¼
uαk

~℘2

� �
−uαk MCSð Þ

��� ���
uαk MCSð Þj j ð66Þ

where uαk
~℘2ð Þ and uαk MCSð Þ are the fractional moments

obtained by the rearranged point set ~℘2 and MCS (105 runs),
respectively.

Figure 4a shows the comparison of the fractional moments
of EVD, where the fractional order varies between [−4,4]. It is
seen the results evaluated by using the rearranged sequence
~℘2 (proposed methodology) and the original sequence ℘2

(without Step 2) accord quite well with that by MCS. As is
known, for reliability problems of structural dynamic systems,
the total computational effort is always governed by the nec-
essary number of deterministic dynamic response analyses of
structures. The computation time of the proposed methodolo-
gy is much less than that of the repeated time-consuming
deterministic dynamic response analyses of structures. In this
regard, the computational time of using the rearranged se-
quence ~℘2 for fractional moments evaluation is almost the
same with that of using the original sequence ℘2, which is
around 4/1000 of that by MCS. However, when the relative
errors are concerned, it is seen in Fig. 4b that the more accurate
fractional moments could be obtained by using the rearranged
sequence ~℘2, where the relative error of using ~℘2 is obviously
smaller than that of using℘2. This manifests that the proposed
methodology can be applied to efficiently and accurately ob-
tain the fractional moments of EVD which are required in the
reliability assessment procedure.

Figure 5a, b depicts the EVD pXext
xð Þ and its cumulative

density function (CDF) by using the MEM, where the initial
fractional orders are adopted as 2.223,-3.127,0.23 and 0.78.
The proposedmethodology is adopted to evaluate the fractional
moments. Likewise, all the results are compared with those
given byMCS. Figure 5c pictures the probability of exceedance
(POE) curves in logarithmic coordinate by the proposed meth-
odology andMCS. It should be noted that the value of the CDF
at a specified abscissa actually gives the reliability in terms of
the prescribed threshold (Chen and Li 2007). Similarly, the
value of the POE at the abscissa provides the corresponding
failure probability. Very good accordance between the results
by the proposed methodology and those of MCS can be ob-
served, indicating the accuracy of the proposed methodology

for reliability assessment of structural dynamic systems based
on the selected low-discrepancy sequence. If Step 2 is not con-
sidered, the comparison of the POE curves in logarithmic scale
obtained from the original sequence℘2 and MCS is pictured in
Fig. 6. Obvious deviation could be noticed between these
curves, which indicates the great necessity of Step 2 in the
proposed methodology. Further, Fig. 7 shows the POE curves
when other low-discrepancy sequences are applied without the
first step in the proposed methodology. It is seen that these POE
curves may deviate from the result by MCS at the region of
small failure probabilities, i.e. pf < 10−3. However, the POE
curve obtained by the proposed methodology always accords
well with that of MCS (Fig. 5c). This also reveals the great
necessity of the first step in the proposed methodology for
reliability analysis of structural dynamic systems.

5.2 MDOF systems

To further validate the proposed methodology, the reliability
of a 13-storey shear structure subjected to ground motions is
studied (Fig. 8). The mass and the stiffness of the structure are
listed in Table 3. Herein, the stiffness of each storey is
regarded as independent normal random variable with coeffi-
cient of variation 0.15. The Rayleigh damping is adopted such
that C = aM + bK, where M, C and K are the initial mass,
stiffness and damping matrices, respectively, and a =
0.2512s−1, b = 0.0082s. The ground motion €xg tð Þ still reads

€xg tð Þ ¼ ξ1€x
N−S
g tð Þ þ ξ2€x

E−W
g tð Þ ð67Þ

In this case, ξ1 and ξ2 are assumed to be normal random
variables with the means 2.5m/s2, 2m/s2 and the standard de-
viations of 0.75m/s2,0.6m/s2.

In this case, a total of 15 independent random variables are
considered. Listed in Table 4 are the CL2 discrepancies with
different numbers of sample size in low-discrepancy se-
quences. From the table, it is seen that Sobol sequence results
in the lowest CL2 discrepancy with the same number of sam-
ples in these sequences. Thus, the rearranged point set ~℘3

based on Sobol sequence is preferred in this case to evaluate
the fractional moments of EVD. In addition, it is noted that
Faure sequence gives the worst CL2 discrepancy, which may
produce some points with infinite values in ~℘4. Thus, the
rearranged point set ~℘4 is not applicable in this case. In this
case, the first inter-storey drift, denoted as X0 − 1(t) is of great
concern for reliability assessment.

5.2.1 Linear structure

First, a linear structure is considered. Then, the rearranged
Sobol sequence with the number of samples N = 500, denoted
as ~℘3, is adopted for fractional moments assessment of EVD
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of X0 − 1(t). The comparisons of the fractional moments of
EVD and the relative errors, where the fractional order varies
between [−4,4] are shown in Fig. 9, where 105 times MCS are
also carried out for comparisons. Similar conclusions in terms
of accuracy of using the proposed methodology for fractional
moments evaluation. Remarkably, it is seen that the proposed
methodology possesses the property that the computational
effort is almost irrelevant with dimension. This feature is quite
attractive in engineering practice, which means even for high-
dimensional cases, say d > 10, only hundreds of deterministic
dynamic response analyses are adequate to accurately obtain
the fractional moments and therefore to assess the reliability.
Besides, the accuracy has been significantly improved by
using the proposed methodology compared with that by the
original Sobol sequence (Fig. 9b) with the same number of
points (without Step 2). It is seen that the relative error of
using the proposed methodology is less than 2% whereas the
relative error of only using Step 1 is as large as 6%.

Figure 10 shows the EVD pXext
xð Þ, its CDF and POE

curves in logarithmic scale, where X ext ¼ max
t∈ 0;T½ �

X 0−1 tð Þj jð Þ,
and the initial fractional orders in MEM are adopted as
0.214, −1.567, 1.123 and 2.12, respectively. Obviously, the
results evaluated by the proposed methodology still has very
good agreements with those by MCS, which manifests the
efficacy of the proposed methodology for reliability assess-
ment of MDOF linear structural dynamic systems. Likewise,
when the Halton, the Hammersley and the Niederreiter se-
quences are employed to generate the basic point set, the
POE curves in logarithmic scale are shown in Fig. 11.
Again, it is noted that these POE curves may deviate from
the result by MCS at the region of small failure probabilities.
In this regard, the great necessity of the first step in the pro-
posed methodology is elucidated again.

Further, when the original Sobol sequence (without Step 2)
is applied to evaluate the fractional moments of EVD in
MEM, the comparison of the POE curves in logarithmic scale
obtained from the original Sobol sequence and MCS is shown
in Fig. 12. It is seen that the POE curves do not align, dem-
onstrating the Step 2 in the proposed methodology can signif-
icantly improve the accuracy of reliability calculation.

5.2.2 Nonlinear structure

Here, a nonlinear MDOF structure is investigated. The Bouc-
Wen model (Wen 1976) is adopted to characterize the nonlin-
ear restoring force, the parameters of which are listed in
Table 5. A typical sample of restoring force v.s. inter-storey
drift is shown in Fig. 13. It is clearly seen that strong nonlin-
earity occurs in the mechanical behavior of the structure under
seismic groundmotions. Similarly, the rearranged point set ~℘3

in the linear counterpart is still adopted to evaluate the frac-
tional moments. Figure 14 shows the fractional moments of

EVD and the corresponding relative errors by the proposed
methodology, where the fractional moments and relative er-
rors by the original sequence without Step 2 in the proposed
methodology is also pictured. It is also noted that the proposed
methodology obviously gives more accurate results than those
of the original sequence. This also validates the efficacy of the
proposed two-step methodology to accurately capture the
fractional moments for reliability assessment.

Pictured in Fig. 15 are the EVD, the CDF and the POE
curves in logarithmic scale by the proposed methodology,
where the initial fractional orders are 0.567, −2.123, 1.124
and 2.12, respectively. Again, very good accordance between
the results by the proposed methodology and MCS could be
observed, which demonstrates the high accuracy and efficien-
cy of the proposed methodology. Figure 16 shows the POE
curves by using other low-discrepancy sequences as the basic
point set without using Step 1 in the proposed methodology to
find the point set with the minimumCL2 discrepancy. Clearly,
it is noticeable that the accuracy of these POE curves in log-
arithmic scale is slightly lower than that of the proposed meth-
odology, especially in the region of small failure probabilities.
This again verifies the great necessity of Step 1 in the pro-
posed methodology. Likewise, if the original Sobol sequence
without Step 2 in the proposed methodology is employed to
obtain the fractional moments of EVD in MEM, the POE
curve in logarithmic scale could severely deviate from that
of MCS, which is shown in Fig. 17. In this regard, the Step
2 is indeed of paramount importance in the proposed method-
ology to improve the accuracy for tail distribution estimation.
It could be concluded that the proposed two-stepmethodology
can even achieve the tradeoff of accuracy and efficiency for
reliability assessment of strongly nonlinear MDOF structural
dynamic systems.

6 Concluding remarks

A new methodology, based on the well-developed low-dis-
crepancy sequences, has been put forward for reliability as-
sessment of structural dynamic systems in the present paper.
Five low-discrepancy sequences- Halton, Hammersley, Sobol,
Faure, and Niederreiter sequences have been revisited.
Among these five sequences, the sequence with the lowest
CL2 discrepancy, that demonstrates the most uniformity was
selected. Then, the selected sequence was rearranged to min-
imize the GF discrepancy, where the Voronoi cell partition
was adopted to calculate the weight for each point.
Therefore, a two-step methodology was developed to select
and rearrange the point set based on low-discrepancy
sequences.

The proposed methodology was demonstrated using the
maximum entropy method with the fractional moments as
constraints to derive the extreme value distribution for
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reliability assessment of structural dynamic systems. The con-
clusions include:

(1) The proposed methodology gives noticeably higher ac-
curacy for fractional moments evaluation than the origi-
nal low-discrepancy point set with the same number of
samples. Besides, the proposed methodology seems to
be irrelevant with dimension to some extent. This means
the fractional moments needed for reliability evaluation
could be efficiently and accurately obtained even for
high-dimensional cases.

(2) The numerical results validate the efficacy of the pro-
posed methodology for reliability assessment of structur-
al dynamic systems, even for very complicated case, e.g.
MDOF hysteretic system subjected to seismic ground
motions. Thus, the proposed methodology is applicable
for general dynamic systems. On the other hand, the
proposed method can be also applied in static cases.
Therefore, the proposedmethodology qualifies as a com-
prehensive tool in the structural reliability community.
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