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Abstract The importance sampling method is an extensively
used numerical simulation method in reliability analysis. In
this paper, a modification to the importance sampling method
(ISM) is proposed, and the modified ISM divides the sample
set of input variables into different subsets based on the con-
tributive weight of the importance sample defined in this pa-
per and the maximum super-sphere denoted by β-sphere in the
safe domain defined by the truncated ISM. By this proposed
modification, only samples with large contributive weight and
locating outside of the β-sphere need to call the limit state
function. This amelioration remarkably reduces the number
of limit state function evaluations required in the simulation
procedure, and it doesn’t sacrifice the precision of the results
by controlling the level of relative error. Based on this modi-
fied ISM and the space-partition idea in variance-based sensi-
tivity analysis, the global reliability sensitivity indices can be
estimated as byproducts, which is especially useful for
reliability-based design optimization. This process of estimat-
ing the global reliability sensitivity indices only needs the
sample points used in reliability analysis and is independent
of the dimensionality of input variables. A roof truss structure
and a composite cantilever beam structure are analyzed by the

modified ISM. The results demonstrate the efficiency, accura-
cy, and robustness of the proposed method.
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1 Introduction

Reliability analysis measures the ability that a system or a
component fulfills its intended function without failures by
taking uncertainties into account. The fundamental problem
is to determine the failure probability with a typical
expressionPf = Pr {g(x) = ε − ψ(x) < 0}, where εis a failure
threshold, ψ(x)is the response function such as the deforma-
tion of structure, g(x)is a limit state function, and x is a vector
of random input variables including the applied loads, mate-
rial properties, operating condition, and geometry or configu-
ration, etc.

Theoretically speaking, the failure probability can be ob-
tained once the cumulative distribution function (CDF) FG(g)
of the limit state functiong(x), is available, i.e., Pf = FG(0).
However, analytical derivation of FG(g)is infeasible for com-
plex limit state function.

During the past several decades, various approximate
methods have been developed to estimate the failure probabil-
ity. The first-order reliability method (FORM) (Hasofer and
Lind 1974; Zhao and Ono 1999a) and the second-order reli-
ability method (SORM) (De Der Kiureghian 1991; Zhao and
Ono 1999b) are mainly-used method for their efficiency.
FORM especially is considered as one of the most acceptable
and feasible computational methods, and is developed into
two scenarios. One is the mean value FORM (MVFORM)
by a linearization of the limit state function around the mean
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point of input variables, and the other is the advanced FORM
(AFORM) by linearizing the limit state function around the
most probable point (MPP). However, the accuracy of both
FORM and SORM may be abated when encountering the
strongly nonlinear cases. Besides, the first-order and second-
order partial derivatives of the limit state function g(x) with
respect to the model input variables need to be determined in
advance, respectively. To overcome the shortcoming of the
FORM and the SORM, moment methods for structural reli-
ability are developed (Zhao and Ono 2001; Zhao et al. 2006;
Zhao and Ono 2004). Moment methods needn’t the partial
derivatives of the limit state function and are simple to imple-
ment. However, for some problems with small failure proba-
bility, the moment method cannot provide accurate results.
Besides, the totally different results may be yielded for differ-
ent equivalent formulations of the same limit state function by
the moment methods (Xu and Cheng 2003). The main reason
for error of the moment methods is that the CDF of the limit
state function is difficult to be determined only by its first four
moments, especially in the tail range. In addition, the high
order moments such as the third- and fourth- order moments
for strongly nonlinear limit state function are difficult to esti-
mate accurately. Therefore, the fractional moment based max-
imum entropy is investigated by Zhang and co-workers
(Zhang and Pandey 2013) for reliability analysis, where the
probability density function (PDF) of the limit state function is
approximated by the maximum entropy procedure under the
given fractional moment constraints. This method is superior
to the integral moment constraints because a fractional mo-
ment embodies information about a large number of central
moments (Zhang and Pandey 2013). To efficiently estimate
the fractional moments, Ref. (Zhang and Pandey 2013) pro-
posed a multiplicative form of dimensional reduction method.
The obvious advantage is the rather low computational cost,
but it also has some deficiencies. It limits the positive limit
state function with low interactive effects and the limit state
value cannot be zero when input variables are fixed at their
mean values. To reduce the calls of limit state function, the
limit state function is usually surrogated by the developed
meta-models like quadratic response surface (Kim and Na
1997), neural networks (Papadrakakis and Lagaros 2001),
support vector machine (Song et al. 2013; Bourinet et al.
2011) and Kriging (Echard et al. 2011; Hu and Mahadevan
2016). This type of surrogate method needs a post-processing
computational cost to evaluate the reliability, although the
post-processing computational cost is usually ignored because
it is relatively smaller than that of evaluating the limit state
function, it dose still exist. Therefore, an efficient post-
processing reliability analysis method can enhance the effi-
ciency of meta-model methods effectively.

To avoid estimating themoments and the partial derivatives
of the limit state function, Monte Carlo simulation (MCS), a
universal method is a good choice since it is adapted for all

problems and all distribution types. To improve the efficiency
and accuracy of the direct MCS, variance reduction tech-
niques such as importance sampling method (ISM) (Zhang
et al. 2014; Melchers 1989; Harbitz 1986; Au and Beck
2002; Zhou et al. 2015) should be preferred. The ISM shifts
the sampling center from the mean point of input variables to
the MPP. To further construct the more optimal IS density,
kernel density estimation (Au and Beck 1999) is employed
to estimate the failure probability adaptively.

The modified version of the original ISM is mainly inves-
tigated in this paper to save a part of the computational cost
and enhance the efficiency of the original ISM. Firstly, trun-
cated importance sampling (TIS) procedure (Grooteman
2008) is employed by introducing the β-sphere, where the
sample points dropped into the inner of the β-sphere are all
safe. Therefore, the sample points within the inner of the β-
sphere don’t need to run the true model, and this process is the
first part to save the computational cost for the original ISM.
Secondly, contributive weight function is defined in this paper
by dividing the original PDF by the importance sampling
PDF, which measures the contribution of importance sample
points to the failure probability. Thus, the sample points with
small contribution are selected by defining a specified toler-
ance, and these sample points also don’t need to run the true
model to decide whether failure or not. Due to that the impor-
tance sample points with small contribution usually in the
sparse domain with very small PDF, while the inner of the
β-sphere are usually in the intensive domain with large PDF,
the proposed method decreases the computational cost of the
original ISM from two different domains, and these two do-
mains may be independent or have a small intersection.

By the information of the modified ISM in failure proba-
bility analysis, space-partition method is extended to estimate
the global reliability sensitivity indices which are more useful
in reliability-based design optimization and defined in Refs
(Cui et al. 2010; Li et al. 2012; Wei et al. 2012). The space-
partition method is used in variance-based sensitivity analysis
originally. The proposed method is independent of the dimen-
sionality of the model input variables by repeatedly dividing
the vector of failure indicator values into different subsets
according to different inputs.

The main contributions of this work include: ① modified
ISM is investigated by using β-sphere which appears in TIS
and the contributive weight function defined in this paper to
reduce the computational cost of original ISM from two dif-
ferent domains then to enhance the efficiency of ISM. This
amelioration remarkably reduces the number of limit state
function evaluations required in the simulation procedure,
and it doesn’t sacrifice the precision of the results by control-
ling the level of relative error.② space-partition method com-
bined with the modified ISM technique is proposed to esti-
mate the global reliability sensitivity indices efficiently, and
this method is independent of the dimension of model input
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variables;③ failure probability and global reliability sensitiv-
ity indices are estimated simultaneously by one group of mod-
el evaluations.

The rest of this paper is organized as follows. Section 2
briefly reviews the definitions of the structural reliability and
the global reliability sensitivity indices. Section 3 introduces
the original ISM for reliability analysis briefly and the modi-
fied ISM proposed in this paper elaborately. Along with the
proposed modified ISM, a new computational method of
global reliability sensitivity indices is proposed based on the
space-partition idea in Section 4. Section 5 analyzes a roof
truss structure and a composite cantilever beam structure to
verify the accuracy, efficiency, and robustness of the proposed
method. Finally, conclusions are summarized in Section 6.

2 Reviews of structural reliability analysis and global
reliability sensitivity analysis

2.1 Structural reliability analysis

Suppose the limit state function of the concerned structural
system is Y = g(x), where x = (x1, x2,…, xn) is the random in-
put variable vector and fX(x)is the joint PDF of model input
variables. Given all the input variables are mutually indepen-
dent, the joint PDF can be expressed by a product of the

marginal PDF of xi (i = 1, 2,…, n), i.e., f X xð Þ ¼ ∏
n

i¼1
f X i

xið Þ.
We define the region where the limit state function is less than
zero as the failure domain. Thereof, the failure probability of
this structural system is expressed as follows:

Pf ¼ Pr g xð Þ < 0f g ¼ ∫g xð Þ<0 f X xð Þdx ð1Þ

Equation (1) is a multidimensional integration and the di-
rect method to estimate it is MCS, i.e.,

P̂̂ f MCS ¼ 1

N
∑
N

i¼1
I F xið Þ ð2Þ

where N is the number of sample points and xi(i = 1,…,N)is
generated from fX(x). IF(xi) is the indicator function of the
failure domain and is defined as follows:

I F xð Þ ¼ 1 g xð Þ < 0
0 g xð Þ≥0

�
ð3Þ

2.2 Global reliability sensitivity analysis

To measure the effect of model input variables on the failure
probability, Cui and Li (Cui et al. 2010; Li et al. 2012) pro-
posed the failure probability-based global sensitivity index,
and it is depicted as follows:

δPi ¼ EX i P f −P f jX i

� �2 ¼ ∫þ∞
−∞ P f −P f jX i

� �2 f X i
xið Þdxi ð4Þ

where Pf is the unconditional failure probability and Pf jX i is

the conditional failure probability when Xi is fixed. δ
P
i reflects

the average effect of the input variable Xi on the failure prob-

ability of the model. The higher δPi is, the more importance Xi
is on the failure probability.

Ref. (Li et al. 2012) proven that (4) has the same form with
the variance-based sensitivity index, i.e.,

δPi ¼ EX i P f −P f jX i

� �2 ¼ V E I F jX ið Þð Þ ð5Þ

Wei (Wei et al. 2012) standardized it by dividing (5) by the
unconditional variance of the failure domain indicator func-
tion, that is

Si ¼ V E I F jX ið Þð Þ
V I Fð Þ ð6Þ

Equation (6) indicates that the failure probability-based
global sensitivity index is the first order variance effect of
the failure indicator function. Therefore, methods in estima-
tion of Sobol’ index can be extended to this index.

3 Modified importance sampling method (ISM)
for structural reliability analysis

3.1 Original ISM for structural reliability analysis

For the problem with large failure probability (10−1~10−2), the
MCS is efficient and accurate enough. But for the problem
with small failure probability (10−2~10−3or even small), a
large number of sample points should be generated (more than
104) to guarantee the calculation accuracy. Aiming at the prob-
lem with small failure probability, the ISM is proposed to
improve the calculation efficiency. The formula is

P f ¼ ∫…∫RnI F xð Þ f X xð Þdx

¼ ∫…∫RnI F xð Þ f X xð Þ
hX xð Þ hX xð Þdx ð7Þ

where hX(x) is the importance sampling PDF. The optimal
hX(x) is constructed by the following equation (Melchers
1989; Wei et al. 2014):

hopt xð Þ ¼ I F xð Þ f X xð Þ=P f ð8Þ

Equation (8) indicates that Pf must be obtained in advance
for determining the optimal hX(x), which is impossible be-
cause IF(x)is the integrand and Pf is to be estimated.
Thereof, the optimal importance sampling PDF cannot be ob-
tained feasibly in advance. Generally, the importance

A modified importance sampling method for structural reliability and its global reliability sensitivity... 1627



sampling PDF is constructed by shifting the sampling center
from the mean point of input variables to the MPP because
MPP is the point with highest probability density in the failure
domain.

3.2 Modified ISM for structural reliability analysis

To reduce the calls of model evaluations on ISM, TIS proce-
dure is proposed in Ref (Grooteman 2008) by introducing the
β-sphere shown in Fig. 1 where β is the minimum distance
from the coordinate origin to the failure surface in the standard
normal space, and can be sought by a constrained optimization
procedure, i.e.,

min : jjujj
subject to : g uð Þ ¼ 0

ð9Þ

where u is the uncorrelated normalized variables transformed
from the random variables x by equivalent probability trans-
formation, i.e.,

Φ uið Þ ¼ FX i xið Þ
ui ¼ Φ−1 FX i xið Þð Þ

�
ð10Þ

where FX i ⋅ð Þ is the cumulative distribution function (CDF) of
Xi, Φ(⋅)and Φ−1(⋅) are the CDF and inverse CDF of standard
normal variable, respectively.

Therefore, the indicator function of the outer of the β-
sphere is defined as follows:

Iβ xð Þ ¼ 0 jjxjj < β2

1 jjxjj > β2

�
ð11Þ

where the inner of the β-sphere contains all the safe domain or
a part, and the outer of the β-sphere contains the failure do-
main and a part of safe domain. Thereof, no failure point exists
in the β-sphere and the failure domain indicator function is
revised as follows:

I F xð Þ ¼ 0 Iβ xð Þ ¼ 0
� �

or Iβ xð Þ ¼ 1 and g xð Þ > 0
� �

1 Iβ xð Þ ¼ 1 and g xð Þ≤0
�

ð12Þ

Equation (12) illustrates that a part of safe points dropped
into the β-sphere doesn’t need to call the true model to judge
whether failure or not. Therefore, the failure probability can be
rewritten as follows:

P f ¼ ∫…∫Rn I F xð Þ f X xð Þdx
¼ ∫…∫RnI F xð ÞIβ xð Þ f X xð Þ

hX xð Þ hX xð Þdx

¼ E I F xð ÞIβ xð Þ f X xð Þ
hX xð Þ hX xð Þ

� � ð13Þ

The main difference between the ISM and the TIS method
is that the latter needs to judge if the sample point is contained
in the β-sphere, and if so, the limit state function value doesn’t
need to be estimated for this sample point. To estimate (13),
N sample points of model inputs are generated, and then the
failure probability is estimated by

cPf ¼ 1

N
∑
N

i¼1
I F xið ÞIβ xið Þ f X xið Þ

hX xið Þ ð14Þ

where xi is the ith sample points of model inputs.

The expectation of the estimator P̂ f can be derived as

E cP f

h i
¼ E

1

N
∑
N

i¼1
I F xið ÞIβ xið Þ f X xið Þ

hX xið Þ
� �

¼ E I F xð ÞIβ xð Þ f X xð Þ
hX xð Þ

� �
¼ Pf

ð15Þ

Thus, (14) is an unbiased estimator for the failure probability
Pf.

Depending on the definitions of IF(⋅) and Iβ(⋅), the item I F

xið ÞIβ xið Þ f X xið Þ
hX xið Þ can be calculated as

I F xið ÞIβ xið Þ f X xið Þ
hX xið Þ ¼

0 I F xið ÞIβ xið Þ ¼ 0
f X xið Þ
hX xið Þ I F xið ÞIβ xið Þ≠0

8<: ð16Þ

The sample point in the inner of the β-sphere is absolutely
safe. Generally, the state of the sample point out of the β-
sphere need to be judged beforehand. Equation (16) indicates
that if the sample point xi is safe, the contribution of this
sample point to the denominator of (14) is zero. In contrast,
if the sample point xi is failure, the contribution of this sample

point to the denominator of (14) is f X xið Þ
hX xið Þ. Thus, we define a

contributive weight of sample point as follows:

W xð Þ ¼ f X xð Þ
hX xð Þ ð17Þ

O 1x

2x

failure domain

1 2( , ) 0g x xsafedomain

1 2( , ) 0g x x

limit state surface
1 2( , ) 0g x x

Fig. 1 Geometrical illustration of the TIS procedure

1628 W. Yun et al.



Equation (17) is suitable for the case of single MPP. For
multiple MPPs, the failure probability is estimated by the fol-
lowing equation according to Ref. (Lu and Feng 1995), i.e.,

P f ¼ ∫…∫Rn I F xð Þ f X xð Þdx
¼ ∫…∫RnI F xð Þ f X xð Þ

∑
m

j¼1
hj xð Þ

∑
m

k¼1
hk xð Þdx

¼ ∑
m

k¼1
∫…∫RnI F xð Þ f X xð Þ

∑
m

j¼1
hj xð Þ

hk xð Þdx
ð18Þ

where m is the number of MPPs and hk(x) is the kth impor-
tance sampling PDF by shifting the sample center to the kth
MPP.

Therefore, N number of sample points is generated by hk(-
x)(k = 1, 2,…,m), respectively, and the failure probability is
estimated as follows:

P̂ f ¼ ∑
m

k¼1

1

N
∑
N

i¼1
I F xk;i

� � f X xk;i
� �

∑
m

j¼1
hj xk;i
� �

8>><>>:
9>>=>>;

¼ 1

N
∑
m

k¼1
∑
N

i¼1
I F xk;i

� � f X xk;i
� �

∑
m

j¼1
hj xk;i
� �

ð19Þ

where x
k, i
is the ith sample generated by the kth importance

sampling PDF.

Thus, the contributive weight function of the case of mul-
tiple MPPs is constructed as follows:

W xð Þ ¼ f X xð Þ
∑
m

j¼1
hj xð Þ

ð20Þ

For convenience, the following derivation is based on (17),
and the following derivation is also adapted for the case of
multiple MPPs by substituting (17) with (20).

The generated N sample points are firstly sorted in a de-
scending order according to the values of their contributive
weight indices. Therefore, (14) can be rewritten as

P f ¼ 1

N
∑
k

i¼1
I F xið ÞIβ xið Þ f X xið Þ

hX xið Þ þ ∑
N

j¼kþ1
I F x j

� �
Iβ x j
� � f X x j

� �
hX x j

� �" #
ð21Þ

wh e r e
f X x jð Þ
hX x jð Þ j∈ k þ 1;N½ �ð Þ i s sm a l l e r t h a n a n y

f X xið Þ
hX xið Þ i∈ 1; k½ �ð Þ.

Through ignoring the second sum of the denominator in
(21), the estimation of (21) is expressed as

P kð Þ
f ¼ 1

N
∑
k

i¼1
I F xið ÞIβ xið Þ f X xið Þ

hX xið Þ
� �

ð22Þ

A convergence criterion should be constructed to choose a
proper number of k. Based on the (21) and (22), the relative

error of the failure probability between the current P kð Þ
f and the

true estimate value Pf is computed by

εk ¼
P f −P

kð Þ
f

P f

¼
1=Nð Þ ∑

N

j¼kþ1
I F x j

� �
Iβ x j
� �

f X x j
� �

=hX x j
� �

1=Nð Þ ∑
k

i¼1
I F xið ÞIβ xið Þ f X xið Þ=hX xið Þ þ ∑

N

j¼kþ1
I F x j

� �
Iβ x j
� �

f X x j
� �

=hX x j
� �" #

¼
∑
N

j¼kþ1
I F x j

� �
Iβ x j
� �

f X x j
� �

=hX x j
� �

∑
k

i¼1
I F xið ÞIβ xið Þ f X xið Þ=hX xið Þ þ ∑

N

j¼kþ1
I F x j

� �
Iβ x j
� �

f X x j
� �

=hX x j
� �

¼ 1

1þ
∑
k

i¼1
I F xið ÞIβ xið Þ f X xið Þ=hX xið Þ

∑
N

j¼kþ1
I F x j

� �
Iβ x j
� �

f X x j
� �

=hX x j
� �

ð23Þ

The state of the samples in the first group is identified
accurately by calling the limit state function and judging

whether the sample point is in the β-sphere, thus, ∑
k

i¼1
I F xið ÞIβ

xið Þ f X xið Þ=hX xið Þ is known. In contrast, the state of the sam-
ple point in the second group doesn’t need to be judged due to

its small contributive weight, and ∑
N

j¼kþ1
I F x j

� �
Iβ x j
� �

f X x j
� �

A modified importance sampling method for structural reliability and its global reliability sensitivity... 1629



=hX x j
� �

is an unknown value for the analysts. To control the

error due to ignoring ∑
N

j¼kþ1
I F x j

� �
Iβ x j
� �

f X x j
� �

=hX x j
� �

and

determine a suitable k, the supremum value of ∑
N

j¼kþ1
I F x j

� �
Iβ

x j
� �

f X x j
� �

=hX x j
� �

can be determined by

∑
N

j¼kþ1
f X x j

� �
=hX x j

� �
. Obviously, ∑

N

j¼kþ1
f X x j

� �
=hX x j

� �
is in-

dependent of the indicator function and doesn’t need to call
the limit state function. Based on it, the maximum relative
error of the failure probability given in (22) is estimated as

εmax
k ¼ 1

1þ
∑
k

i¼1
I F xið ÞIβ xið Þ f X xið Þ=hX xið Þ

∑
N

j¼kþ1
f X x j

� �
=hX x j

� �
ð24Þ

Then, the suitable value of k is searched from one to N by
setting εmax

k < Cr (where Cr is the level of accuracy). The
incrementation stops if εmax

k < Cr.

3.3 Computational cost

The aforementioned modification of ISM reduces the number
of limit state function evaluations from two different domains,
i.e., the inner of β-sphere and the region with small contribu-
tive weight indices. Thereof, the sample set can be divided
into three categories, i.e.,

A ¼ xjjjujj < βf g ð25Þ

B ¼ xj f X xð Þ
hX xð Þ <

f X xið Þ
hX xið Þ ∀i∈ 1; k½ �

� �
ð26Þ

C ¼ U−A∪B ð27Þ

where U is the universal set containing all the generated sam-
ple points. Because the sample points in the set A and B don’t
need to call the limit state function, the true number of limit
state function evaluations of this improvement is

Ncall ¼ card C ð28Þ
where card represents the number of elements in the set C.

4 Modified ISM for estimating the global sensitivity
indices

To estimate (5) by the input sample points and relative output
sample points generated in the modified ISM for reliability
analysis, the space-partition method proposed in Ref (Zhai
et al. 2014) is extended in this paper.

Suppose the sample space of input Xi is (bl, bu), and parti-
tion it into s successively equiprobable and non-overlapping
subintervals Ak = [ak − 1, ak), 1 ≤ k ≤ s, where

pk ¼ ∫akak−1 f X i
xið Þdxi. Then, the (6) is equivalently expressed as

Si ¼ 1‐

EAk V I F jX i∈Akð Þð Þ− ∑
s

k¼1
pkVX i E I F jX ið ÞjX i∈Akð Þ

V I Fð Þ
ð29Þ

where EAk ⋅ð Þ is the expectation operator when Xi is fixed in
Ak = [ak − 1, ak)(k = 1, 2,…, s). Ref (Zhai et al. 2014) proved

that ∑
s

k¼1
pkVX i E I F jX ið ÞjX i∈Akð Þ →0 when

Δa ¼ max
k

jak−ak−1j→0. Thus, the approximate expression

of Si in case of Δa→ 0 is

Si≈1−
EAk V I F jX i∈Akð Þð Þ

V I Fð Þ ð30Þ

The law of total expectation in successive intervals without
overlapping is proved as follows:

EAk E I F jX i∈Akð Þð Þ ¼ ∑
s

k¼1
∫akak−1 f X i

xið Þdxi⋅ 1

∫akak−1 f X i
xið Þdxi

∫þ∞
−∞ ∫

þ∞
−∞…∫akak−1 I F xð Þ f X xð Þdxi ∏

n

j¼1; j≠i
dx j

¼ ∑
s

k¼1
∫þ∞
−∞ ∫

þ∞
−∞…∫akak−1 I F xð Þ f X xð Þdxi ∏

n

j¼1; j≠i
dx j

¼ ∫þ∞
−∞ ∫

þ∞
−∞…∫b2b1 I F xð Þ f X xð Þdx

¼ E I Fð Þ

ð31Þ

Based on (31), the law of total variance in successive in-
tervals without overlapping is proved as follows:

VAk E I F jX i∈Akð Þð Þ ¼ EAk E2 I F jX i∈Akð Þ� �
−E2

Ak
E I F jX i∈Akð Þð Þ

¼ EAk E2 I F jX i∈Akð Þ� �
−E2 I Fð Þ ð32Þ
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EAk V I F jX i∈Akð Þð Þ ¼ EAk E I F2jX i∈Ak
� �

−E2 I F jX i∈Akð Þ� �
¼ E I F2

� �
−EAk E2 I F jX i∈Akð Þ� � ð33Þ

Then,

EAk V I F jX i∈Akð Þ þ VAk E I F jX i∈Akð Þð Þð
¼ E I F2

� �
−E2 I Fð Þ ¼ V I Fð Þ ð34Þ

Thus, (30) can be equivalently written as

Si≈
VAk E I F jX i∈Akð Þð Þ

V I Fð Þ ð35Þ

Generally, E(IF| Xi ∈ Ak) is easier to be estimated and re-
quires much fewer sample points in each subinterval Ak than
V(IF| Xi ∈ Ak). Thereof, the conflict between the accuracy of
estimating E(Y| Xi ∈ Ak) and convergence condition Δa→ 0
of (35) can be alleviated.

4.1 Estimation of VAk E I F jX i∈Akð Þð Þ

According to (13), E(IF| Xi ∈ Ak)is estimated as

E I F jX i∈Akð Þ ¼ ∫Ak I F xð Þ f X xð Þ
∫Ak f X i

xið Þdxi
dx

¼ ∫Ak I F xð ÞIβ xð Þ⋅ f X xð Þ
∫Ak f X i

xið Þdxi
⋅
∫Ak hX i xið Þdxi

hX xð Þ ⋅
hX xð Þ

∫Ak hX i xið Þdxi
dx

¼ ∫Ak hX i xið Þdxi
∫Ak f X i

xið Þdxi
⋅∫Ak I F xð ÞIβ xð Þ f X xð Þ

hX xð Þ
� �

⋅
hX xð Þ

∫Ak hX i xið Þdxi
dx

¼ ∫Ak hX i xið Þdxi
∫Ak f X i

xið Þdxi
⋅EAk jh*X xð Þ I F xð ÞIβ xð Þ f X xð Þ

hX xð Þ
� �

ð36Þ

h*X xð Þ ¼
hX xð Þ

∫Ak hX i xið Þdxi
xi∈Ak

0 xi∉Ak

8<: ðwhereÞ

Define IW xð Þ ¼ I F xð ÞIβ xð Þ f X xð Þ
hX xð Þ and make IW(xi) =

0 (i = k + 1, .. ,N) for its small contributive weight. Then,

E I F jX i∈Akð Þ ¼ ∫Ak hX i xið Þdxi
∫Ak f X i

xið Þdxi
1

mk
∑
r¼1

mk

IW x kð Þ
r

� 	
ð37Þ

where mk is the number of sample points x kð Þ
r r ¼ 1;…;mkð Þ

in subinterval Ak.
According to the relationship between expectation and var-

iance, and combining the proved law of total expectation in
successive intervals without overlapping, the estimator of VAk

E I F jX i∈Akð Þð Þ is derived as follows:

VAk E I F jX i∈Akð Þð Þ ¼ EAk E2 I F jX i∈Akð Þ� �
−E2

Ak
E I F jX i∈Akð Þð Þ

¼ EAk E2 I F jX i∈Akð Þ� �
−E2 I Fð Þ ð38Þ

where

EAk E2 I F jX i∈Akð Þ� � ¼ ∑
s

k¼1
Pr X i∈Akf gE2 I F jX i∈Akð Þ

¼ ∑
s

k¼1
Pr X i∈Akf g ∫Ak hX i xið Þdxi

∫Ak f X i
xið Þdxi

1

mk
∑
r¼1

mk

IW x kð Þ
r

� 	" #2

¼ ∑
s

k¼1

∫Ak hX i xið Þdxi

 �2

∫Ak f X i
xið Þdxi

1

mk
∑
r¼1

mk

IW x kð Þ
r

� 	� �2
ð39Þ

E2
Ak

E I F jX i∈Akð Þð Þ ¼ ∑
s

k¼1
P X i∈Akf gE I FjX i∈Akð Þ

� �2
¼ ∑

s

k¼1
∫Ak f X i

xið Þdxi ∫Ak hX i xið Þdxi
∫Ak f X i

xið Þdxi
1

mk
∑
r¼1

mk

IW x kð Þ
r

� 	" #2

¼ ∑
s

k¼1
∫Ak hX i xið Þdxi 1

mk
∑
r¼1

mk

IW x kð Þ
r

� 	� �2
ð40Þ

E2 I Fð Þ ¼ P2
f ≈ P kð Þ

f

� 	2
ð41Þ

4.2 Estimation of V(IF)

According to the relationship between the expectation and the

variance, V(IF) is estimated byP kð Þ
f , i.e.,

V I Fð Þ ¼ E I2F
� �

−E2 I Fð Þ ¼ Pf −P2
f ≈P

kð Þ
f − P kð Þ

f

� 	2
ð42Þ

4.3 The partition strategies

The partition scheme affects the estimations of the global re-
liability sensitivity indices notablely. A larger s may improve
the accuracy of the outer variance and guarantee the conver-
gence condition, yet also reduce the accuracy of the inner
expectation. The inaccurate estimation of the inner expecta-
tion will yield mistakes in estimation of Si. A smaller s may
improve the accuracy of the inner expectation, but decrease
the accuracy of outer variance and destroy the convergence
condition of the space-partition method. Therefore, achieving
a compromise is necessary at a given number of input-output
sample points. To harmonize the number of subintervals and
the number of samples in each subinterval, the medium value

s ¼ ffiffiffiffi
N

p �
is suggested in Ref. (Li and Mahadevan 2016).

Another partition scheme is suggested in this paper. Firstly, a
certain number of sample points are fixed in each subinterval.
In the beginning, when N is small, the each subinterval is long
and the number of samples for estimating the variance in the
out loop are small. Then the estimates of the global reliability
sensitivity indices are quite inaccurate. By increasing N, the
length of each subinterval becomes short and the number of
samples for estimating the outer variance is increased.
Consequently, the accuracy of the inner expectation and outer
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variance are fulfilled, and the convergence condition of space-
partition also is guaranteed by increasing N, the number of
sample points. Fig. 2 shows the process of the proposed alter-
native partition scheme. The blue circle represents the total
sample points, and the red circle represents the boundaries
of each subinterval.

5 Case studies

In this section, a roof truss structure and a composite cantile-
ver beam structure are employed to verify the effectiveness of
the proposed method. In these two engineering studies, low
discrepancy sequence sampling procedure (Sobol 1976; Sobol
1998) is used to generate the sample points of the model input
variables. Moreover, MPP can be searched by many existing
methods (Hasofer and Lind 1974; Rashki et al. 2012). In this
paper, MPP is computed by the advanced first-order reliability
method (AFORM) (Hasofer and Lind 1974). The AFORM
algorithm is global convergent when the limit state function
is continuous and differentiable (Hasofer and Lind 1974).

5.1 Case study I: A roof truss structure

A roof truss is shown in Fig. 3. The top boom and the com-
pression bars are reinforced by concrete. The bottom boom
and the tension bars are steel. The uniformly distribution load
q is applied on the roof truss, which can be transformed into
the nodal load P = ql/4. The perpendicular deflection ΔC of

the node C can be obtained by the mechanical analysis, which
is the function of the input variables, i.e.,

ΔC ¼ ql2

2

3:81

ACEC
þ 1:13

ASES

� �
ð43Þ

where AC, AS, EC, ES, and l denote sectional area, elas-
tic modulus, length of the concrete and that of the steel
bars, respectively. Considering the safety and the appli-
cability, the limit state function is established as fol-
lows:

g xð Þ ¼ ε−ΔC ð44Þ

F

E N/mq
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GE

sA
cA

sA

2 sA 3 sA3 sA

cAcA

cA 0.75 cA 0.75
c
A

P

P

P

G

C

D

A B

0.25l0.25l0.222l0.278l

12l

12l

Fig. 3 The schematic diagram of roof truss
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Fig. 2 The partition scheme
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where ε is the failure threshold. Random input variables
are assumed as the independent normal variables with
the distribution parameters shown in Table 1.

We define the sample reduction ratio to measure the effi-
ciency of each reliability analysis method. The mathematical
expression of the sample reduction ratio is depicted as fol-
lows:

Sample reduction ratio ¼ N−Ncall
N

ð45Þ

where N is the number of samples used in MCS and Ncall is
the used number of samples in the compared method. Ncall
includes the number of samples used to find MPP if used.
Therefore, the higher the sample reduction ratio is, the more
efficient the method is.

Tables 2, 3, and 4 show the results of failure probability
estimated by MCS, ISM, TIS where MPP is searched by 35
model evaluations and the proposed modified ISM with dif-
ferent maximum relative error limits, respectively. From these
three tables, five points can be obtained as follows:

(1). The proposed modified ISM inherits the variance reduc-
tion property of the original ISM, and decreases the
computational cost remarkably by adjusting the maxi-
mum relative error limit flexibly.

(2). The higher the maximum relative error limit is, the larg-
er the sample reduction ratio is.

(3). With the reduction of the maximum relative error limit,
the estimation of the failure probability by the proposed
modified ISM trends towards the true value.

Table 1 The distribution parameter of the input variables of Case study I

Input variables q(N/m) l(m) As(m
2) Ac(m

2) Es(N/m
2) EC(N/m

2)

Mean value 20,000 12 9.82 × 10−4 0.04 1.2 × 1011 3 × 1010

Standard deviation 1600 0.24 5.89 × 10−5 0.008 8.4 × 109 2.4 × 109

Table 2 The estimation of failure probability for the threshold ε = 0.025mwith Cr = 5%

N Method MCS ISM TIS Modified ISM Reference

512 Pf 0.0127 0.0126 0.0126 0.0120 0.0126
Coefficient of variation 0.2905 0.0800 0.0800 0.0799

Ncall 512 512 478 370

Sample reduction ratio – – 6.64% 27.73%

1024 Pf 0.0127 0.0126 0.0126 0.0120

Coefficient of variation 0.1903 0.0571 0.0571 0.0571

Ncall 1024 1024 919 705

Sample reduction ratio – – 10.25% 31.15%

2048 Pf 0.0127 0.0126 0.0126 0.0120

Coefficient of variation 0.1351 0.0333 0.0333 0.0333

Ncall 2048 2048 1791 1374

Sample reduction ratio – – 12.55% 32.91%

4096 Pf 0.0125 0.0126 0.0126 0.0120

Coefficient of variation 0.0846 0.0221 0.0221 0.0221

Ncall 4096 4096 3532 2711

Sample reduction ratio – – 13.77% 33.81%

8192 Pf 0.0125 0.0126 0.0126 0.0120

Coefficient of variation 0.0570 0.0152 0.0152 0.0152

Ncall 8192 8192 7059 5386

Sample reduction ratio – – 13.83% 34.25%

N: The number of samples used in MCS

Ncall: The number of samples used in the compared method

Sample reduction ratio: The ratio of saved sample points in comparison with MCS

“–”represents sample reduction ratio is zero, coefficient of variation is computed by 100 iterations
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(4). The sample reduction ratio of the proposed ISM in this
case study is more than twice as large as that of the TIS

method with the maximum relative error limit being 5%,
is twice as large as that of the TIS method with the

Table 3 The estimation of failure probability for the threshold ε = 0.025mwith Cr = 2%

N Method MCS ISM TIS Modified ISM Reference

512 Pf 0.0127 0.0126 0.0126 0.0124 0.0126
Coefficient of variation 0.2905 0.0800 0.0800 0.0800

Ncall 512 512 478 403

Sample reduction ratio – – 6.64% 21.29%

1024 Pf 0.0127 0.0126 0.0126 0.0123

Coefficient of variation 0.1903 0.0571 0.0571 0.0571

Ncall 1024 1024 919 771

Sample reduction ratio – – 10.25% 24.71%

2048 Pf 0.0127 0.0126 0.0126 0.0123

Coefficient of variation 0.1351 0.0333 0.0333 0.0333

Ncall 2048 2048 1791 1505

Sample reduction ratio – – 12.55% 26.51%

4096 Pf 0.0125 0.0126 0.0126 0.0123

Coefficient of variation 0.0846 0.0221 0.0221 0.0221

Ncall 4096 4096 3532 2974

Sample reduction ratio – – 13.77% 27.39%

8192 Pf 0.0125 0.0126 0.0126 0.0123

Coefficient of variation 0.0570 0.0152 0.0152 0.0152

Ncall 8192 8192 7059 5911

Sample reduction ratio – – 13.83% 27.84%

Table 4 The estimation of failure probability for the threshold ε = 0.025mwith Cr = 0.5%

N Method MCS ISM TIS Modified ISM Reference

512 Pf 0.0127 0.0126 0.0126 0.0125 0.0126
Coefficient of variation 0.2905 0.0800 0.0800 0.0800

Ncall 512 512 478 436

Sample reduction ratio – – 6.64% 14.84%

1024 Pf 0.0127 0.0126 0.0126 0.0125

Coefficient of variation 0.1903 0.0571 0.0571 0.0571

Ncall 1024 1024 919 836

Sample reduction ratio – – 10.25% 18.36%

2048 Pf 0.0127 0.0126 0.0126 0.0125

Coefficient of variation 0.1351 0.0333 0.0333 0.0333

Ncall 2048 2048 1791 1637

Sample reduction ratio – – 12.55% 20.07%

4096 Pf 0.0125 0.0126 0.0126 0.0125

Coefficient of variation 0.0846 0.0221 0.0221 0.0221

Ncall 4096 4096 3532 3237

Sample reduction ratio – – 13.77% 20.97%

8192 Pf 0.0125 0.0126 0.0126 0.0125

Coefficient of variation 0.0570 0.0152 0.0152 0.0152

Ncall 8192 8192 7059 6439

Sample reduction ratio – – 13.83% 21.40%
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maximum relative error limit being 2%, and is approx-
imate 1.5 times as large as that of the TIS method with
the maximum relative error limit being 0.5%.

(5). As the number of samples N increases, the sample
reduction ratio of the modified ISM increases. The
main reason is that as the number of samples N

Table 5 The estimation of failure probability for the threshold ε = 0.028mwith Cr = 2%

N Method MCS ISM TIS Modified ISM Reference

512 Pf 0.00164 0.00159 0.00159 0.00157 0.00158
Coefficient of variation 1.0529 0.1373 0.1373 0.1373

Ncall 512 512 461 369

Sample reduction ratio – – 9.96% 27.93%

1024 Pf 0.00162 0.00159 0.00159 0.00156

Coefficient of variation 0.7327 0.1127 0.1127 0.1127

Ncall 1024 1024 872 681

Sample reduction ratio – – 14.84% 33.50%

2048 Pf 0.00165 0.00159 0.00159 0.00156

Coefficient of variation 0.4466 0.0709 0.0709 0.0709

Ncall 2048 2048 1680 1305

Sample reduction ratio – – 17.97% 36.28%

4096 Pf 0.00162 0.00158 0.00158 0.00155

Coefficient of variation 0.3093 0.0429 0.0429 0.0429

Ncall 4096 4096 3301 2555

Sample reduction ratio – – 19.41% 37.62%

8192 Pf 0.00164 0.00158 0.00158 0.00155

Coefficient of variation 0.1720 0.0285 0.0285 0.0285

Ncall 8192 8192 6548 5052

Sample reduction ratio – – 20.07% 38.33%

Table 6 The estimation of failure probability for the threshold ε = 0.030mwith Cr = 2%

N Method MCS ISM TIS Modified ISM Reference

512 Pf 4.102 × 10−4 4.999 × 10−4 4.999 × 10−4 4.903 × 10−4 4.985 × 10−4

Coefficient of variation 1.9493 0.1365 0.1365 0.1365

Ncall 512 512 444 345

Sample reduction ratio – – 13.28% 32.62%

1024 Pf 4.589 × 10−4 4.989 × 10−4 4.989 × 10−4 4.983 × 10−4

Coefficient of variation 1.2991 0.0898 0.0898 0.0898

Ncall 1024 1024 836 640

Sample reduction ratio – – 18.36% 37.50%

2048 Pf 4.589 × 10−4 4.959 × 10−4 4.959 × 10−4 4.863 × 10−4

Coefficient of variation 0.8117 0.0631 0.0631 0.0631

Ncall 2048 2048 1614 1233

Sample reduction ratio – – 21.19% 39.79%

4096 Pf 4.834 × 10−4 4.994 × 10−4 4.994 × 10−4 4.896 × 10−4

Coefficient of variation 0.5175 0.0533 0.0533 0.0533

Ncall 4096 4096 3203 2413

Sample reduction ratio – – 21.80% 41.09%

8192 Pf 4.907 × 10−4 4.983 × 10−4 4.983 × 10−4 4.886 × 10−4

Coefficient of variation 0.3278 0.0372 0.0372 0.0372

Ncall 8192 8192 6339 4778

Sample reduction ratio – – 22.62% 41.67%
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increases, the samples used to find the MPP can
be omitted in comparison with the savings of sam-
ple evaluations.

To further illustrate the capability of dealing with
small failure probability of the modified ISM, we adjust
the failure threshold for comparison. Tables 3, 5, and
Table 6 give the results of failure probability with dif-
ferent failure threshold, and the maximum relative error
limit is set as 2%. The MPPs are computed by 35, 56,
49 model evaluations for three different failure thresh-
olds, respectively. The following conclusions from the
numerical results are obviously obtained, i.e.,

(1). The proposed modified ISM method is competent for
the case with small failure probability.

(2). Under the acceptable precision level, sample reduction
ratio of the proposed method is twice as large as that of
the TIS method.

(3). Under the same precision level, the smaller the
failure probability is, the bigger the sample

reduction ratio is. The main reasons is that if the
current system is not highly reliable, then the β-
sphere will not be larger and thus the samples in
the β-sphere could be small so that the savings of
function evaluations.

Table 7 shows the results estimated by MVFORM,
AFORM, and MaxEnt + M-DRM. The calls of model
evaluations are 8, 35/56/49, 25, respectively. These are
more efficient than the sampling-based method.
However, the accuracies of these three efficient methods
are lower than those of the sampling-based method for
this problem. It further illustrates the generality of the
sampling-based method.

By reusing the samples generated in failure probability
estimation, the global reliability sensitivity indices can be ob-
tained as byproducts.

Fig. 4 and Fig. 5 show the numerical results of global
reliability sensitivity indices withε = 0.025. From the re-

sults figures, it can be seen that no matter s ¼ ffiffiffiffi
N

p �
or

fixing a certain number of sample points in each

Table 7 The estimations of failure probability of the roof truss structure by other methods

ε(m) MVFORM AFORM MaxEnt + M-DRM Reference

0.025 0.0020 0.0083 0.0118 0.0126

0.028 1.451 × 10−5 9.668 × 10−4 0.0012 0.00158

0.030 2.205 × 10−7 3.329 × 10−4 2.391 × 10−4 4.985 × 10−4

MaxEnt + M-DRM: principle of maximum entropy and multiplicative dimensional reduction method
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N N

N N
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-3

Modified ISM(1)
Reference

Fig. 4 The global reliability sensitivity indices estimated by the modified ISM integration with space-partition method (Modified ISM(1) represents the

partition scheme that s ¼ ffiffiffiffi
N

p �
, and references are the results estimated by MCS with large number of model evaluations)
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Fig. 5 The global reliability sensitivity indices estimated by the modified
ISM integration with space-partition method (Modified ISM(2)
represents the partition scheme that a certain number of sample points

are fixed in each subinterval in advance, and references are the results
estimated by MCS with large number of model evaluations)

Table 8 Numerical results of global reliability sensitivity indices for the threshold ε = 0.025m with Cr = 5%

Model evaluations Method q l As Ac Es Ec

512(370) Modified ISM
Ŝi

0.0401 0.0086 0.0117 0.1413 0.0191 0.0040

SD 0.0078 0.0023 0.0031 0.1077 0.0052 0.0019
64 × 8 = 512 Ref. (Wei et al. 2012)

Ŝi
0.0419 0.0075 0.0104 0.1280 0.0202 0.0029

SD 0.0314 0.0087 0.0123 01409 0.0249 0.0063
1024(705) Modified ISM

Ŝi
0.0409 0.0091 0.0122 0.1417 0.0196 0.0042

SD 0.0084 0.0016 0.0033 0.0877 0.0043 0.0012
128 × 8 = 1024 Ref. (Wei et al. 2012)

Ŝi
0.0409 0.0079 0.0102 0.1199 0.0196 0.0031

SD 0.0202 0.0065 0.0078 0.0886 0.0191 0.0050
2048(1374) Modified ISM

Ŝi
0.0403 0.0091 0.0127 0.1451 0.0205 0.0043

SD 0.0042 0.0011 0.0025 0.0771 0.0036 0.0009
256 × 8 = 2048 Ref. (Wei et al. 2012)

Ŝi
0.0407 0.0075 0.0119 0.1530 0.0200 0.0030

SD 0.0142 0.0044 0.0077 0.1421 0.0116 0.0030
4096(2711) Modified ISM

Ŝi
0.0403 0.0089 0.0127 0.1455 0.0218 0.0042

SD 0.0029 0.0007 0.0017 0.0423 0.0036 0.0006
512 × 8 = 4096 Ref. (Wei et al. 2012)

Ŝi
0.0416 0.0075 0.0115 0.1513 0.0196 0.0030

SD 0.0106 0.0045 0.0047 0.0844 0.0085 0.0025
8192(5386) Modified ISM

Ŝi
0.0404 0.0071 0.0130 0.1449 0.0221 0.0042

SD 0.0024 0.0006 0.0015 0.0245 0.0047 0.0004
1024 × 8 = 8192 Ref. (Wei et al. 2012)

Ŝi
0.0418 0.0079 0.0112 0.1416 0.0197 0.0030

SD 0.0080 0.0030 0.0039 0.0515 0.0070 0.0016
6 × 108 MCS

Ŝi
0.0408 0.0074 0.0107 0.1392 0.0204 0.0022

Numbers in parentheses represent the true number of model evaluations of the proposed modified ISM
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subinterval in advance, the acceptable accuracies can be
achieved in the examples. Table 8 shows the numerical
results of global reliability sensitivity indices estimated
by the proposed modified ISM and the single-loop IS

method proposed in Ref. (Wei et al. 2012). The impor-
tance ranking of the random input variables obtained by
Ref (Wei et al. 2012), modified ISM and MCS are the
same, i.e., Ac > q > Es > As > l > Ec. For each estimate, the

standard deviation (SD) of estimate Ŝi is employed to
measure the convergence. From Table 8, we can clearly
see that SDs of our proposed method are small than
these of the method in Ref. (Wei et al. 2012), thus it
can demonstrate the robustness of the proposed modi-
fied ISM. The potential sources of the slight error of the
proposed modified ISM in global reliability sensitivity
analysis are the slight errors from the modified ISM in
reliability analysis and the space-partition method in
sensitivity analysis.

5.2 Case study II: A Composite cantilever beam structure

A composite cantilever beam structure with the load F0

is shown in Fig. 6. The displacement ΔTip of the free
point is obtained by mechanical analysis of composite
material structure:

ΔTip ¼ F0L3

2h3
E2
L−4GLTETv2LT þ EL ET þ 4GLT þ 2ETvLTð Þ

ELGLT EL þ ET þ 2ETvLTð Þ
� �

ð46Þ

where F0, L and h are the applied load per width,
length of the beam and the height of the beam,

Table 9 Distribution parameters of input variables for Case study II

Input variables Distribution Mean Standard deviation

h(cm) normal 3.81 0.381

L(cm) normal 50.8 5.08

F0(kN/m) normal 350 35

GLT(Gpa) normal 9.38 0.938

vLT normal 0.036 0.0036

EL normal 173 17.3

ET normal 33.1 3.31

Fig. 6 Composite cantilever beam structure model

Table 10 The estimation of failure probability for this composite cantilever beam with ε = 9.59cm and Cr = 2%

N Method MCS ISM TIS Modified ISM Reference

512 Pf 0.0871 0.0874 0.0874 0.0856 0.0876
coefficient of variation 0.0586 0.0339 0.0339 0.0339

Ncall 512 512 526 498

Sample reduction ratio – – −2.73% 2.73%

1024 Pf 0.0875 0.0874 0.0874 0.0857

coefficient of variation 0.0416 0.0212 0.0212 0.0212

Ncall 1024 1024 1036 972

Sample reduction ratio – – −1.17% 5.11%

2048 Pf 0.0875 0.0874 0.0874 0.0856

coefficient of variation 0.0243 0.0140 0.0140 0.0140

Ncall 2048 2048 2046 1919

Sample reduction ratio – – 0.09% 6.30%

4096 Pf 0.0873 0.0875 0.0875 0.0857

coefficient of variation 0.0187 0.0083 0.0083 0.0083

Ncall 4096 4096 4059 3814

Sample reduction ratio – – 0.90% 6.88%

8192 Pf 0.0874 0.0874 0.0874 0.0856

coefficient of variation 0.0121 0.0058 0.0058 0.0058

Ncall 8192 8192 8089 7603

Sample reduction ratio – – 1.26% 7.19%
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respectively. EL, ET, GLT and vLT are the longitudinal
Young moduli, transverse Young moduli, shear modulus

and Poisson ratio, respectively. Considering that the tip
displacement cannot exceed 9.59 cm, the limit state

Table 11 The estimation of failure probability for this composite cantilever beam with ε = 19.59cm and Cr = 2%

N Method MCS IS TIS Modified ISM Reference

512 Pf 0.00199 0.00196 0.00196 0.00193 0.00197
coefficient of variation 0.8122 0.0533 0.0533 0.0533

Ncall 512 512 459 388

Sample reduction ratio – – 10.35% 24.22%

1024 Pf 0.00198 0.00197 0.00196 0.00193

coefficient of variation 0.5307 0.0378 0.0378 0.0378

Ncall 1024 1024 893 750

Sample reduction ratio – – 12.79% 26.76%

2048 Pf 0.00195 0.00197 0.00197 0.00193

coefficient of variation 0.3876 0.0261 0.0261 0.0261

Ncall 2048 2048 1768 1476

Sample reduction ratio – – 13.67% 27.93%

4096 Pf 0.00197 0.00197 0.00197 0.00193

coefficient of variation 0.2216 0.0160 0.0160 0.0160

Ncall 4096 4096 3512 2931

Sample reduction ratio – – 14.26% 28.44%

8192 Pf 0.00197 0.00197 0.00197 0.00193

coefficient of variation 0.1497 0.0117 0.0117 0.0117

Ncall 8192 8192 7030 5835

Sample reduction ratio – – 14.18% 28.77%

Table 12 The estimation of failure probability for this composite cantilever beam with ε = 29.59cm and Cr = 2%

N Method MCS IS TIS Modified ISM Reference

512 Pf 1.074 × 10−4 1.077 × 10−4 1.077 × 10−4 1.056 × 10−4 1.068 × 10−4

coefficient of variation 2.8587 0.0661 0.0661 0.0661

Ncall 512 512 431 335

Sample reduction ratio – – 15.81% 34.57%

1024 Pf 1.074 × 10−4 1.074 × 10−4 1.074 × 10−4 1.052 × 10−4

coefficient of variation 2.8587 0.0473 0.0473 0.0473

Ncall 1024 1024 821 644

Sample reduction ratio – – 19.82% 37.11%

2048 Pf 1.221 × 10−4 1.076 × 10−4 1.076 × 10−4 1.055 × 10−4

coefficient of variation 2.0000 0.0344 0.0344 0.0344

Ncall 2048 2048 1647 1265

Sample reduction ratio – – 19.58% 38.23%

4096 Pf 1.074 × 10−4 1.074 × 10−4 1.074 × 10−4 1.053 × 10−4

coefficient of variation 1.3443 0.0214 0.0214 0.0214

Ncall 4096 4096 3284 2505

Sample reduction ratio – – 19.82% 38.84%

8192 Pf 1.074 × 10−4 1.074 × 10−4 1.074 × 10−4 1.052 × 10−4

coefficient of variation 0.8436 0.0136 0.0136 0.0136

Ncall 8192 8192 6531 4986

Sample reduction ratio – – 20.28% 39.14%
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function of the reliability analysis can be established as
follows:

g ¼ 9:59−ΔTip ð47Þ

All the input variables are normal and mutually indepen-
dent. The distribution parameters are listed in the Table 9.

Table 10 shows the numerical results of failure probability
while ε = 9.59cm and Cr = 2%. The results demonstrate that
the proposedmodified ISM not only inherits the advantages of
the original ISM but also reduces more than 5 % model eval-
uations in comparison with the original ISM. The failure prob-
ability of this case is 0.0876. Themainly reductive direction of
this case study is the small contributive weight domain, and it
hardly has sample points in the β-sphere for β is small in this

case. For comparison, ε is adjusted to 19.59 cm and 29.59cm.
The failure probabilities of the two cases are 0.00197 and
1.068 × 10−4, respectively. They are smaller than that of
9.59 cm failure threshold. From Tables 11 and 12, it can be
seen that the number of sample points in β-sphere increases,
and no matter small failure probability or large failure proba-
bility, the reductive number of model evaluations in the small
contributive weight domain is as much as that in β-sphere.

Table 13 also shows the failure probability of this compos-
ite cantilever beam structure estimated by AFORM and
MaxEnt + M-DRM. AFORM uses 24 model evaluations to
find the MPPs for different failure thresholds, respectively.
MaxEnt + M-DRM only uses 29 model evaluations to esti-
mate the failure probabilities with different failure thresholds.
From Table 13, it obvious that AFORM behaves more accu-
rately than MaxEnt + M-DRM which cannot estimate the
small failure probability accurately for this case study.

By s ¼ ffiffiffiffi
N

p �
partition scheme and reusing the sample

points in failure probability estimation, the global reliability sen-
sitivity indices are computed in Table 14. Results in Table 14
demonstrate the fast convergence of the proposed method com-
pared with the existing efficient single-loop IS method. The
importance rank is h > L >F0 >GLT >EL >ET = vLT, which indi-
cates that the uncertainty of h has the most important effect on
failure probability. By decreasing the uncertainty of h, the most

Table 13 The estimations of failure probability of the composite
cantilever beam structure by other methods

ε(cm) AFORM MaxEnt + M-DRM Reference

9.59 0.0867 0.0882 0.0876

19.59 0.00193 0.00167 0.00197

29.59 1.036 × 10−4 4.677 × 10−5 1.068 × 10−4

MaxEnt + M-DRM: principle of maximum entropy and multiplicative
dimensional reduction method

Table 14 Numerical results of global reliability sensitivity indices with ε = 9.59cmand Cr = 2%

Model evaluations Method F0 L h EL GLT ET vLT

1024(972) Modified ISM
Ŝi

0.0178 0.1548 0.2573 0.0036 0.0151 0.0004 0.0004

SD 0.0021 0.0099 0.0117 0.0008 0.0021 0.0008 0.0009

128 × 9 = 1152 Ref. (Wei et al. 2012)
Ŝi

0.0138 0.1676 0.2660 0.0016 0.0132 0.0003 0.0003

SD 0.0198 0.0492 0.0663 0.0072 0.0225 0.0026 0.0027

2048(1919) Modified ISM
Ŝi

0.0174 0.1534 0.2565 0.0035 0.0159 0.0004 0.0004

SD 0.0013 0.0056 0.0065 0.0006 0.0016 0.0006 0.0006

256 × 9 = 2304 Ref. (Wei et al. 2012)
Ŝi

0.0145 0.1640 0.2699 0.0021 0.0135 0.0003 0.0004

SD 0.0142 0.0291 0.0370 0.0055 0.0139 0.0020 0.0022

4096(3814) Modified ISM
Ŝi

0.0154 0.1512 0.2535 0.0018 0.0144 0.0001 0.0001

SD 0.0009 0.0036 0.0043 0.0003 0.0011 0.0002 0.0002

512 × 9 = 4608 Ref. (Wei et al. 2012)
Ŝi

0.0146 0.1629 0.2676 0.0010 0.0124 1.5e-5 0.0021

SD 0.0092 0.0198 0.0243 0.0039 0.0088 0.0014 0.0016

8192(7603) Modified ISM
Ŝi

0.0152 0.1511 0.2528 0.0008 0.0127 0.0001 0.0001

SD 0.0006 0.0023 0.0028 0.0002 0.0007 0.0002 0.0002

1024 × 8 = 9216 Ref. (Wei et al. 2012)
Ŝi

0.0142 0.1621 0.2697 0.0006 0.0127 -6e-5 0.0002

SD 0.0062 0.0131 0.0168 0.0028 0.0067 0.0011 0.0011

7 × 108 MCS
Ŝi

0.0151 0.1608 0.2701 0.0002 0.0129 0 0

Numbers in parentheses represent the true number of model evaluations of the proposed modified ISM
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reduction of failure probability can be obtained. It is also shown
that the sensitivity indices of ET and vLT are close to zero, thus
the uncertainty of these two input variables can be omitted.

6 Conclusion

This paper aims at improving the efficiency of ISM in reliability
analysis. The proposed modified ISM inherits the advantages of
the original ISM and further reduces the computational cost of
ISM. Firstly, based on the idea of TIS, we screen out the samples
in β-sphere. Secondly, we define the contributive weight as the
ratio of the original PDF to the importance sampling PDF. The
samples with small contributive weight are screened out under
an acceptable precision level. Because of the samples dropped in
β-sphere are safe, they don’t need to run the model to decide
their states. The samples with small contributive weights predi-
cate the small contribution to failure probability. Thereof, we
consider they are safe directly without running the model.
Thus, the proposed modified ISM reduces the computational
cost of ISM from two different domains. Because the modified
ISM is based on the original ISM some limitations of the orig-
inal ISM also exist in the modified ISM. To further estimate the
global reliability sensitivity indices as byproducts, original
space-partition method in variance-based sensitivity analysis is
extended to the global reliability sensitivity analysis, and the law
of total variance in the successive intervals without overlapping
is proved additionally. By analyzing a roof truss structure and a
composite cantilever beam structure, the effectiveness of the
proposed modified ISM in reliability analysis and global reli-
ability sensitivity analysis is verified.
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