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Abstract A vibration isolation system is designed using
novel hybrid optimization techniques, where locations of
machines, locations of isolators and layout of supporting
structure are all taken as design variables. Instead of conven-
tional parametric optimization model, the 0-1 programming
model is established to optimize the locations of machines
and isolators so that the time-consuming remeshing proce-
dure and the complicated sensitivity analysis with respect to
position parameters can be circumvented. The 0-1 sequence
for position design variables is treated as binary bits so as
to reduce the actual number of design variables to a great
extent. This way the 0-1 programming can be solved in a
quite efficient manner using a special version of genetic
algorithm(GA) that has been published by the authors. The
layout of supporting structure is optimized using SIMP
based topology optimization method, where the fictitious
elemental densities are taken as design variables ranging
from 0 to 1. Influence of different design variables is firstly
investigated by numerical examples. Then a hybrid multi-
level optimization method is proposed and implemented to
simultaneously take all design variables into account.

� Jianbin Du
dujb@tsinghua.edu.cn

Pingzhang Zhou
zpz13@mails.tsinghua.edu.cn; zhoupz1991@163.com

Zhenhua Lü
lvzh@tsinghua.edu.cn

1 Department of Automotive Engineering, Tsinghua University,
Beijing, People’s Republic of China

2 School of Aerospace Engineering, Tsinghua University,
Beijing, People’s Republic of China

Keywords Vibration isolation · Location optimization ·
Topology optimization · Multilevel hybrid design · SIMP ·
Genetic algorithm

1 Introduction

Topology optimization of structures considering dynamic
characteristics has drawn the interests of many researchers
since 1990s. Generally speaking, the dynamics related
topology optimization is much more intricate than the one
concerning static characteristics only. Some typical obsta-
cles include the so-called localized modes (Pedersen 2000),
the possible non-differentiability of the eigenfrequencies
(Seyranian et al. 1994; Du and Olhoff 2007; Zhou et al.
2017b) and the higher computational cost when compared
to static analysis (Liu et al. 2015; Yoon 2010).

Basically, existing literatures on the dynamics related
topology optimization can be categorized into three groups:

– In the first group, the eigenfrequencies of structures
are the topic, either the eigenfrequencies of some fixed
orders (Seyranian et al. 1994; Huang et al. 2010; Zhan
et al. 2009; Ma and Kikuchi 1995; Dı́az and Kikuchi
1992; Zhou et al. 2017b) or the eigenfrequency gap (Du
and Olhoff 2007; Jensen and Pedersen 2006; Halkjær
et al. 2006) is taken as the objective function. The
goal is to maximize the eigenfrequency or the eigenfre-
quency gap with limited material usage.

– In the second group, the steady-state frequency
response of structures is of interests and the goal is to
minimize the structural response under the harmonic
excitation of some fixed frequencies or among some
frequency ranges (Jensen 2007). The objective function
may be taken as the dynamic compliance (Ma et al.
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Fig. 1 A vibration isolation system adapted from engineering prac-
tice. The orange one is the supporting structure. The strong oliver ones
(generators) are the machines and the vibration source in this system.
The black ones are the rubber isolators

1993; Olhoff and Du 2016), the (weighted) amplitude
of the displacements (Olhoff and Niu 2016; Yu et al.
2013; Shu et al. 2011) of some specified nodes, etc.

– In the third group, the transient response of structures
is concerned and the aim is to minimize the structural
response at some fixed time or in a time range under
transient time-domain excitation. For an insight into this
group, we recommend the review paper (Kang et al.
2006) and the references therein.

In the simplest vibration isolation theory of single-
dof system, the vibration isolation system is composed
of the vibration source (the machines), the isolators and
the ground. While in engineering practice the supporting
structure is often included in the system to link different
machines and to facilitate the installation and maintenance.

As shown in Fig. 1, in this paper we focus on the design
of an vibration isolation system where both the dynamic
and the static characteristics of the system, as well as the
vibration isolation performance should be considered simul-
taneously. More specifically, the locations of machines, the
locations of isolators and the layout of supporting structure

will all be taken as design variables so that the whole system
can be synthesized.

The continuum (i.e. the supporting structure) will be
designed using normal topology optimization techniques.
When optimizing the locations, the intuitionistic idea of
taking coordinates of isolators and machines as parame-
ters and conducting the parametric optimization to find the
best coordinates would be very inefficient. FEA programs in
solid mechanics are based on Lagrangian mesh, so modify-
ing the coordinates of the isolators would directly lead to the
time-consuming remeshing process. In this paper we will
choose the best locations among some predefined positions.
This way optimizing the locations can be formulated as 0-1
programming problems. By using a special trick that treat-
ing the 0-1 sequence as binary bits, the number of design
variables can be further reduced and the constraints can be
implicitly included in the objective function. So the solution
of the 0-1 programming problems can be quite efficient.

Figure 2 illustrates the simplified model of the orig-
inal physical system(cf. Fig. 1). Considering the essen-
tial difference between the machines, the isolators (which
are modeled as discrete point-masses and spring elements
respectively) and the supporting structure (which is mod-
eled as continuum shell elements), it is both appropriate
and advantageous to design the supporting structure and the
isolators in separate stages by using the strategy of divide-
and-conquer. However the change in the topology of the
structure will surely influence the optimal locations of iso-
lators and machines, and vice versa. So the design of the
supporting structure and the locations should be included
in a closed-loop to fully take into account the interactions
between each other. This way, the whole system may be
designed by the multilevel optimization method.

The techniques of decomposition and multilevel opti-
mization have been discussed extensively in the literature.

Fig. 2 The vibration isolation
system. The machines are
modeled as the point-masses.
Each isolator is modeled as a
springs group (with stiffness in
X, Y and Z directions). Note
that the locations and number of
the isolators, as well as the
locations of machines are indeed
not determined in the beginning,
the isolators and machines in
this figure are only for
illustrative propose. The origin
of the coordinate system is
located at the center of the
upside of the plate
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Readers interested in this topic can refer to the Chapter 11
of Haftka’s monograph (Haftka and Gürdal 2012) and the
references therein. Optimizing the locations of machines
and isolators together with the topology of continuum struc-
tures in an vibration isolation system seems to be new in
the research area of topology optimization and has not been
investigated by others. But optimizing the supports in truss
structures (Tanskanen 2006; Liu et al. 2014; Wang and Chen
1996; Wang et al. 2004; Okwudire and Lee 2013) and con-
tinuum structures (Xia et al. 2014; Xia and Shi 2016) can be
found in the literature.

The remaining parts are arranged as follows. In Section 2
basic FEA procedure is briefly reviewed, followed by some
objective functions that will be used in this paper. In
Section 3 a reference case is introduced to act as a baseline
for all optimized designs. In Section 4 all factors includ-
ing locations of machines, locations of isolators and layout
of supporting structure are considered separately to find out
which factor has the most important influence on objective
functions. In Section 5 all factors are considered simulta-
neously in a multilevel optimization frame to achieve the
goal of synthesizing the whole system. Some discussions
are given in Section 6. Finally in Section 7 some conclusions
are drawn. The sensitivity information of the objective func-
tions w.r.t. elemental fictitious density which will be used in
topology optimization of the supporting structure is given in
the Appendix.

2 Basic FEA procedure and formulation
of objective functions

2.1 Basic FEA procedure

The motion equation of the structural dynamics1 is given by

Mü + Ku = f (1)

where M, K ∈ R
ndof×ndof are the global mass matrix and

stiffness matrix respectively; f , u ∈ R
ndof are the global

load and displacement vector respectively; R is the real
subspace; ndof is the number of DOFs in the FEA model.

The global stiffness matrix is composed of the elemental
stiffness matrix of continuum elements (i.e. the shell ele-
ments in this paper) for supporting structure and the spring
elements for isolators:

K = Ksh + Ksp (2)

1Damping is ignored here but can easily be included if needed.

where sh is short for shell elements and sp is short for spring
elements. Further Ksh and Ksp can be expressed as

Ksh =
nsh∑

i=1

K
sh,e
i (3a)

Ksp =
nsp∑

j=1

K
sp,e
j (3b)

where nsh and nsp are the number of shell elements and
spring elements respectively. The summation symbol stands
for the well-known assembly of the finite elements at corre-
sponding DOFs.

The derivation of K
sh,e
i follows the standard process for

the generation of continuum elements(e.g. isoparametric
element, Gauss integral etc.) while the K

sp,e
j can be given

analytically:

K
sp,e
j =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

kX
j 0 0 −kX

j 0 0
0 kY

j 0 0 −kY
j 0

0 0 kZ
j 0 0 −kZ

j

−kX
j 0 0 kX

j 0 0
0 −kY

j 0 0 kY
j 0

0 0 −kZ
j 0 0 kZ

j

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where kX
j , kY

j and kZ
j are the stiffness of j -th isolator in

global X, Y and Z directions respectively. Notice that only
translational stiffness is considered here.

Equation (4) gives the formula for spring element con-
necting two nodes. If a spring element connects a node to
the ground, the stiffness matrix has simpler form:

K
sp,e
j =

⎡

⎢⎣
kX
j 0 0
0 kY

j 0
0 0 kZ

j

⎤

⎥⎦ (5)

The global mass matrix is composed of the elemental
mass matrix of shell elements for supporting structure and
point-mass elements that are simplifications of machines:

M = Msh + Mpt (6)

where pt is short for point-mass. Further Msh and Mpt can
be expressed as

Msh =
nsh∑

i=1

M
sh,e
i (7a)

Mpt =
npt∑

j=1

M
pt,e
j (7b)

where M
sh,e
i and M

pt,e
j are the elemental mass matrix for i-

th shell element and j -th point-mass element respectively,
npt is the number of point-mass elements.
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The derivation of M
sh,e
i follows the standard process for

the generation of continuum elements while M
pt,e
j is simply

a diagonal matrix:

M
pt,e
j =

⎡

⎢⎣
mX

j

mY
j

mZ
j

⎤

⎥⎦ (8)

where mX
j , mY

j and mZ
j are the mass of j -th point-mass in

global X, Y and Z directions respectively. Normally, mX
j ,

mY
j and mZ

j have the same value.
We are only interested in the steady-state response, so the

force and displacement vector can be expressed as:

u = Ueiωt

f = F eiωt (9)

where i = √−1 is the imaginary unit; U , F ∈ R
ndof are

steady-state amplitudes of dynamic displacement response
and excitation force respectively; ω(unit: rad/s) is the exci-
tation frequency.

Substitute (9) into (1), then the state equation (1) can be
converted into the following form by eliminating the time-
related term eiωt :
(
−ω2M + K

)
U = F (10)

Let S = (−ω2M + K
) ∈ R

ndof×ndof denote the dynamic
stiffness matrix, (10) can be rewritten as

SU = F (11)

Note that when ω = 0, (10) and (11) degenerate into the
static equilibrium equation:

KU sta = F sta (12)

where F sta is the static load vector.

2.2 The formulation of objective functions

Some objective functions should be set up based on the FEA
procedure given in previous section. Only two load cases
(i.e. the static response under the static load f = F sta and
the steady-state response under the harmonic force f =
F eiωEt ) will be considered, we use the subscripts E and 0 to
denote these two load cases. ωE is the working frequency of
the machines.

To this point, we have not discussed on the design vari-
ables (which will be clarified in detail in Section 4) so
temporarily the objective functions will be expressed using
state variable U .

When designing a vibration isolation system, at least the
following factors should be taken into account:

– Vibration isolation performance. The most common
index to judge the performance of an vibration isola-
tion system is the dynamic forces transmitted into the
ground. So this index should be included.

– Dynamic and static safety of the whole system. That is
to say, the system should have enough stiffness under
both static and dynamic load cases. Moreover, it is
well-known in vibration isolation research area that the
seek of vibration isolation performance would sacrifice
the safety of the system. Approximately speaking, to
achieve better vibration isolation performance, a sys-
tem should be as soft as possible; while to ensure the
safety of the system, the system should be as stiff as
possible. That is the reason why the dynamic and static
compliance should be included in the objectives.

2.2.1 Dynamic and static compliance

The compliance is originally defined as the inner product of
excitation force and displacement response. Here we use the
square of the compliance as the first objective function:2

h(U) =
∣∣∣F�U

∣∣∣
2 =

∣∣∣U�F

∣∣∣
2 = U�FF�U (13)

where � denotes the transpose of a matrix.
We are only interested in hE(U) and h0(U) . The for-

mer reflects the dynamic stiffness of the structure under
the working frequency while the latter implies the static
stiffness.

2.2.2 The forces transmitted into the ground

In vibration isolation, special attention is paid to the forces
transmitted into the ground because this revels the vibration
isolation performance. These forces can be calculated using
the displacements at specified DOFs of the isolators:

⎡

⎢⎣
FX

I,j

F Y
I,j

FZ
I,j

⎤

⎥⎦ =
⎡

⎢⎣
kX
j

kY
j

kZ
j

⎤

⎥⎦

⎡

⎢⎣
UX

I,j

UY
I,j

UZ
I,j

⎤

⎥⎦ j = 1, 2, · · · , nI

(14)

where kX
j , kY

j and kZ
j are the stiffness of j -th isolator in

global X, Y and Z directions respectively; UI,j and FI,j are
the displacement and reaction force at j -th isolator; nI is the
number of isolators connected to the ground.

2The square form is preferred simply because the dynamic compliance
may be negative under some frequencies.
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Equation (14) can be rewritten w.r.t. the global displace-
ment vector :

F I =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

FX
I,1

FY
I,1

FZ
I,1
...

FZ
I,nI

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

= GIU ∈ R
3nI (15)

where GI ∈ R
3nI×ndof is a sparse matrix with only a

few nonzeros representing the stiffness of the isolators.
Approximately GI can be expressed as

GI =
nI∑

j=1

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
kX
j

kY
j

kZ
j

⎤

⎥⎦

⎫
⎪⎬

⎪⎭
∈ R

3nI×ndof (16)

where the summation symbol means to arrange the block
matrices columnwise while placing the stiffness terms in the
corresponding DOFs in each row.

Generally there is more than one isolator in the vibration
isolation system, so the forces have to be accumulated to
account for different isolating positions as well as different
directions. This way the following scalar function is set up
to represent the forces transmitted into the ground:

J (U) =
nI∑

j=1

{(
FX

I,j

)2 +
(
FY

I,j

)2 +
(
FZ

I,j

)2
}

= F�
I F I = U�G�

I GIU

(17)

Obviously JE(U) is a measure of the dynamic forces
transmitted into the ground at the working frequency.

2.3 The mathematical model in global form

In the design of an vibration isolation system, the forces
transmitted into the ground are normally the most concerned
index. Additionally the dynamic and static compliances,
which are the indices guaranteeing dynamic and static safety
of the system, should never be ignored. Therefore, it is
straightforward to come up with the following mathematical
model in global form:

find {design variables}
minimize {hE(U), h0(U), JE(U)}
s.t. gk ≤ 0 k = 1, 2, · · · , ncon

(18)

where ncon is the number of constraints, the design variables
and constraints gk will be made clear afterwards.

3 Reference case

First of all a reference case will be given so that the opti-
mized results can be compared with the reference case to

find how much we can gain in objective functions and
which factor would have the most important effects on the
objective functions.

As shown in Figs. 2 and 3, in reference case there are
three machines and four isolators. Some dimensions are
also shown in Fig. 2. Nominal stiffness for all isolators is
kX
j = kY

j = kZ
j = 40N/mm, j ∈ {1, 2, 3, 4}. Since when

carrying out the topology optimization, only γ = 50% (cf.
(30)) material will be used, the thickness of the plate is taken
as t = 5mm in the reference case so that the mass proper-
ties in all cases are identical. Working frequency is ωE =
20Hz = 125.66rad/s. Mass properties of the machines are:
mA = mB = 5kg, mC = 20kg. Since the dynamically
unbalanced forces come from the eccentric mass, they can
be calculated by

fV = muruω
2
E cos(ωEt)

fH = muruω
2
E sin(ωEt) (19)

where the subscript V and E denote vertical and horizontal
direction respectively, mu and ru are the eccentric mass and
distance respectively.

However, by using (10) we cannot model the difference
in phase angle. So we neglect the difference in phase angle
and simply use(units: Newton):

f A = F A sin(ωt) F A = (0, 1000,−1000)

f B = F B sin(ωt) F B = (−1000, 0, −1000)

f C = F C sin(ωt) F C = (0, −4000, −4000)

(20)

where the nonzero values correspond to the amplitudes of
the unbalanced forces in (19). Note that the orientations
of the forces are in different planes simply because the
generators are installed in different directions (cf. Figs. 1
and 2).

It has to be mentioned that, by using constant excitation
forces, the load is actually overestimated. But this treatment
would make the computation results more conservative.

X

Y

Z 5m
m

mA mB

mC

Fig. 3 Reference case. Four isolators(the green circles) located at the
corners of the plate are modeled as springs with stiffness in X, Y
and Z directions. Three machines(the yellow, blue and pink stars) are
modeled as point-masses
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In static case, only the self weight of the generators need
to be considered(units: Newton):

F sta
A = F sta

B = (0, 0, −50) F sta
C = (0, 0, −200) (21)

Detailed objective function values corresponding to the
reference case are listed in Table 2 with label reference case.

4 Single-level design considering different factors
separately

As remarked in previous sections, the state variable U is
affected by several factors: the locations of machines, the
locations of isolators and the layout of supporting structure.
These factors will be considered separately in this section.
Thereafter in Section 5 all these factors will be considered
simultaneously so that the whole system can be synthesized.

4.1 Optimization on locations of machines using GA

Now we consider the optimization on locations of machines.
As shown in Fig. 4, three machines will be installed in yel-
low, blue and pink areas respectively. The stars denote the
possible locations of these machines. In Fig. 5 the labels
of all geometrical nodes are listed. Isolators are all placed
at their reference locations (i.e. the four corners) in this
subsection.

The locations of machines have effects on JE(x), hE(x)

and h0(x). So all these functions are taken as the objective
functions, while the constraints are that only one machine
can actually be installed in each zone:

find xi ∈ {0, 1} i ∈ Q1
⋃

Q2
⋃

Q3

minimize {JE(x), hE(x), h0(x)}

s.t.

⎧
⎪⎨

⎪⎩

∑
i xi = 1 for i ∈ Q1∑
i xi = 1 for i ∈ Q2∑
i xi = 1 for i ∈ Q3

(22)

5m
m

Fig. 4 Consider only the locations of machines. Stars denote the pos-
sible locations of the machines. The stars with lager size denote the
optimal locations obtained by solving (22). Machine 1, 2 and 3 are
installed at yellow, blue and pink areas respectively. Green circles
denote the locations of the isolators
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Fig. 5 Labels of nodes. Note that the nodes in this figure are only
geometrical nodes, not the nodes in FEA model. The number of nodes
in FEA model is much larger

where xi is the topological variable showing the existence
of machine at Node i, if xi = 0 then no machine will be
installed at Node i and the corresponding excitation force
will not be applied, if xi = 1 then the machine is installed at
Node i and the corresponding force will be applied; Q1, Q2

and Q3 are the index sets signifying all possible locations
of machines.

Refer to Figs. 4 and 5, the index sets can be given by

Q1 = {19, · · · , 25, 36, · · · , 42, 53, · · · , 59}
Q2 = {27, · · · , 33, 44, · · · , 50, 61, · · · , 67}
Q3 = {105, · · · , 117}

(23)

where the total number of members in Q1, Q2 and Q3 is 21,
21 and 13 respectively.

Interpolation formula for point-masses and loads are:

m̄
X,Y,Z
j = m

X,Y,Z
j xj

F̄
X,Y,Z
j = F

X,Y,Z
j xj

(24)

where m
X,Y,Z
j and F

X,Y,Z
j are the nominal masses and

forces located at node i, m̄
X,Y,Z
j and F̄

X,Y,Z
j are the actual

masses and forces used in FEA model.
Equation (22) is a multi-objective optimization problem.

A weighted summation of the three sub-objective functions
will be taken as the actual objective function:

g1(x) = α1
JE(x)

J ref
E

+ α2
hE(x)

href
E

+ α3
h0(y)

href
0

(25)

where g1(x) is the weighted objective function; J ref
E , href

E
and href

0 denote the reference values corresponding to Fig. 3;
α1 = α2 = α3 = 1

3 are the weighting coefficients for the
three sub-objectives, respectively.

Now we introduce a trick so that the number of design
variables can be further reduced. Equation (22) is a 0-1
programming model with only linear constraints that are
quite simple indeed. Take machine A(i.e. the yellow zone
in Figs. 4 and 5) as an example, determining location of
machine A can be regarded as putting a ball into a specific
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box among 21 blank boxes. If the boxes are numbered from
0 to 20 sequentially, then all possible positions of the ball
can be expressed using binary sequence of length 5(since
25 = 32 > 21). So for (22), actually only 14(i.e. 5 + 5 + 4)
binary bits are needed to model all possible solutions. The
following MATLAB codes further clarify the idea:

where the input binary variables xA, xB ∈ {00000, · · · ,

11111}BIN, xC ∈ {0000, · · · , 1111}BIN, the decimal vari-
ables xAA, xBB ∈ {0, · · · , 31}, xCC ∈ {0, · · · , 15}. The
variables xAA, xBB and xCC denote the sequence number
for locations of machine A, B and C in the index sets Q1, Q2

and Q3. Since there is redundancy in the binary coding, the
input binary variables are valid only if xAA ∈ {0, · · · , 20},
xBB ∈ {0, · · · , 20}, xCC ∈ {0, · · · 12}, otherwise directly
setting a large number to the objective function. bin2dec is
a built-in function in MATLAB to convert binary string into
decimal number.

We comment here that the abovementioned trick is espe-
cially useful if the number of design variables is large. For
example, if there are in total 1000 possible locations for
machine A, then by using the trick we can use only 10 (since
210 = 1024 > 1000) binary bits to represent all possible
solutions. Also, it should be noted that by using the trick the
linear constraint in (22) is actually implicitly included in the
objection function, so no explicit constraint is needed.

Equation (22) can now be solved in a quite efficient man-
ner by using a special version GA published by the authors
(Zhou et al. 2017a). Some basic parameters for calling the
GA is listed in Table 1. The optimal solution is also shown

Table 1 Basic parameters for the GA

Parameter Value

Population size 51

Crossover rate 90%

Mutation rate 5%

Elitism reservation yes

Maximal generations 50

Use parallel computation yes

Number of workers 6

in Fig. 4 with stars of lager size. The optimal solution (i.e.
the optimal locations of the three machines) is reasonable:
by installing machines closer to isolators both dynamic and
static stiffness can be improved and the forces transmitted
into the ground can be decreased.

The optimal solution is obtained by the GA in less than
20 minutes. The iteration history curve is shown in Fig. 6.
From Fig. 6 it can be seen that the solution process con-
verges quite fast. The optimal solution is indeed found at
about 25th iteration.

The detailed objective function values corresponding to
the optimal solution are listed in Table 2 with case label
machine loci.

4.2 Optimization on locations of isolators using GA

Usually the isolators are selected among some product cat-
alogs, so the stiffness of a isolator is actually determined
when the type and specification is determined. But the
locations of isolators must be designed by the engineers.
As shown in Fig. 7, the green circles show the possible
locations of isolators but in total only 4 isolators will be
installed.

The objective is the same as that of Section 4.1, i.e.
to minimize JE, hE and h0 simultaneously while the con-
straint is that only 4 isolators can actually be used. So the
mathematical model can be given by:

find yi ∈ {0, 1} i ∈ Q4

minimize {JE(y), hE(y), h0(y)}
s.t.

∑
i yi = 4 for i ∈ Q4

(26)

where yj is the topological variable showing the existence
of isolator at Node j .

0 10 20 30 40 50
0.20

0.25

0.30

0.35

0.40

0.45

0.50

g 1
(x

)

generations

Fig. 6 Iteration history for optimizing locations of machines. Vertical
axis shows the weighted objective function value of the best individual
among the population



8 P. Zhou et al.

Table 2 Comparisons between
different designs cases Objective function

JE[N2] hE[N2mm2] h0[N2mm2] g∗

Reference case 1.5 × 107 3.9 × 109 4.0 × 106 1

Machine loci 1.6 × 106 1.2 × 109 1.1 × 106 0.23

Isolator loci 1.3 × 106 1.5 × 109 9.9 × 105 0.24

Layout 4.4 × 105 4.7 × 109 8.9 × 105 0.48

Multilevel 2.0 × 106 1.3 × 107 7.4 × 105 0.11

Multilevel-bias 1.2 × 107 7.7 × 108 1.1 × 106 0.42

*: g = α1
JE

J ref
E

+ α2
hE

href
E

+ α3
h0

href
0

, α1 = α2 = α3 = 1
3

Interpolation formula for the stiffness of isolators is given
by

k̄
X,Y,Z
j = k

X,Y,Z
j yj (27)

where k
X,Y,Z
j and k̄

X,Y,Z
j are the nominal and actual stiffness

of i-th isolator.
The index set (cf. Figs. 5 and 7) for all possible locations

of isolators is given by

Q4 = {1, 5, 9, 13, 17, 35, 51, 69, 85, 103, 119,

137, 141, 145, 149, 153} (28)

where the total number of members in Q4 is 16.
The weighted objective function is given by

g2(y) = α1
JE(y)

J ref
E

+ α2
hE(y)

href
E

+ α3
h0(y)

href
0

(29)

where α1 = α2 = α3 = 1
3 are the weighting coefficients of

the three sub-objectives, respectively.
Following the same trick as described in Section 4.1, (26)

can be transformed into a 0-1 programming model without
constraints. Now we repeatedly select one box among 16
boxes for four times. If by accident in any two times the

5m
m

Fig. 7 Consider only the locations of isolators. Green circles denote
the possible locations of the isolators. Specifically, green circles of
larger size show the optimal locations of isolators by solving (26).
Stars show the locations of machines

same box is selected, we simply set a large number to the
objective function. So in total we need 16 (i.e. 4×4, note that
24 = 16) binary bits to solve (26). The following sample
codes further clarify the idea:

where binary variables are in the range {0000, · · · ,

1111}BIN, decimal variables are in the range {0, · · · , 15}.
The variable xAA, xBB xCC and xDD denote the sequence
number (from 0 to 15) for locations of isolators in the index
sets Q4.

Since the number of design variables in (26) is very
small, the number of design variables are not reduced in
this case. But in the new form we are actually solving a 0-
1 programming problem without any constraint. Also, if the
number of possible locations for the isolators is very large
(say, 1000), then by using the trick the number of actual
design variables can be greatly reduced.

The optimal location of the four isolators is shown in
Fig. 7 with circles of larger size. Iteration history curve is
given in Fig. 8. As can be seen from Fig. 7, the optimal solu-
tion shown in is reasonable: by installing isolators closer to
machines (and the excitation source as well), all the objec-
tive functions (JE, hE and h0) can be improved greatly. The
detailed objective function values corresponding to the opti-
mal solution are listed in Table 2 with case label isolator
loci.
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0 10 20 30 40 50
0.20

0.25

0.30

0.35

0.40

0.45
g 2

(x
)

generations

Fig. 8 Iteration history for optimizing locations of isolators

4.3 Optimization on layout of supporting structure
based on SIMP model

Finally we consider the layout design of supporting struc-
ture. By following previous sections the mathematical
model can be given by

find ρi ∈ [ρmin, 1] i ∈ �

minimize {JE(ρ), hE(ρ), h0(ρ)}
s.t.

∑
i ρ̄iVi ≤ γ

∑
i Vi for i ∈ �

(30)

where ρi is the design variable, ρ̄i is the elemental ficti-
tious density, ρmin = 1 × 10−3 is a small number denoting
the lower bound of the design variable to avoid numerical
instabilities, � is the admissible design domain, γ = 50%
denotes the material volume fraction, Vi is the volume of
i-th element.

The elemental fictitious density ρ̄i is related to the design
variable ρ through filtering process and smooth Heaviside
projection. The filter is given by:

ρ̃i =
∑nsh

j=1 Hijρj
∑nsh

j=1 Hij

(31)

where ρ̃i denotes the filtered elemental density, Hij is the
weighting coefficient defined as

Hij = H̄ij∑nsh
j=1 H̄ij

H̄ij = max{rmin − dist (i, j), 0}
i, j = 1, 2, · · · , nsh

(32)

where dist (i, j) is the Euclidean distance between the geo-
metrical centers of i-th and j -th element. Note that H ∈
R

nsh×nsh is a large but sparse matrix which can be generated
efficiently.

The smooth Heaviside is given by Wang et al. (2011):

ρ̄i = tanh(βη) + tanh(β(ρ̃i − η))

tanh(βη) + tanh(β(1 − η))
(33)

where η = 0.5 is the threshold for fictitious density while
β is a parameter controlling the strength of the projection
process and can be increased from 1 until 128 during the
iteration process (Wang et al. 2011).

The material interpolation follows the famous SIMP
model:

K̄
sh,e
i = K

sh,e
i ρ̄

p
i

M̄
sh,e
i = M

sh,e
i ρ̄

q
i

(34)

where K̄
sh,e
i and K

sh,e
i are the nominal and actual elemental

stiffness matrix for i-th shell element; M̄
sh,e
i and M

sh,e
i are

the nominal and actual elemental mass matrix for i-th shell
element; p = q = 3 is the penalty coefficients (Olhoff and
Du 2016; Olhoff and Niu 2016).

The weighted objective function is given by

g3(ρ) = α1
JE(ρ)

J ref
E

+ α2
hE(ρ)

href
E

+ α3
h0(ρ)

href
0

(35)

To this point, we have not discussed on the influence
of weight coefficients, which will be handled in Section 6.
Here we simply follow the previous sections to use α1 =
α2 = α3 = 1

3 .
The layout optimization (30) is solved using e04wd

in NAG (The Numerical Algorithms Group 2017) tool-
box, which we find quite efficient and robust. e04wd uses
sequential quadratic programming (SQP) method. The sen-
sitivity information of the objective functions can be found
in the appendix section.

Design domain for the layout optimization is shown in
Fig. 9. Note that Fig. 9 is the same as Fig. 3 except that
the thickness in Fig. 9 is 10mm (so that the mass proper-
ties of the optimized design comply with preceding cases).
The final optimized layout is shown in Fig. 10. The detailed
objective function values are listed in Table 2 with case label
layout.

Although the values in Table 2 seems good, the opti-
mized layout in Fig. 10 shows some imperfections: machine
B is supported by a cantilever-like structure, which is unsta-
ble from mechanic intuition. As explained in Section 6, by
modifying the weight coefficients this phenomenon can be
avoided.

5 Multilevel optimization of the system considering
all factors

In this section, all the design variables including locations
of machines, locations of isolators and layout of supporting
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X

Y

Z 10
m
m

mA mB

mC

Fig. 9 Design domain for layout optimization of supporting structure

structure are considered simultaneously. So we attempt to
solve the following problem:

find xi ∈ {0, 1}; yj ∈ {0, 1}; ρk ∈ [ρmin, 1]
minimize {JE(x, y, ρ), hE(x, y, ρ), h0(x, y, ρ)}

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
i xi = 1 for i ∈ Q1∑
i xi = 1 for i ∈ Q2∑
i xi = 1 for i ∈ Q3∑
j yj = 4 for j ∈ Q4∑
k ρ̄kVk ≤ γ

∑
i Vi for k ∈ �

(36)

where i ∈ Q1 ∪ Q2 ∪ Q3, j ∈ Q4, k ∈ �.
Unfortunately directly putting all design variables in one

uniform optimization model would make (36) rather diffi-
cult, if not impossible, to solve for the following reasons:

(1) xi and yj can only take values in {0, 1} and are opti-
mized through genetic algorithm while ρk can take
values in (0, 1] and is optimized by gradient-based
algorithm.

(2) xi , yj and ρk have different influence on the objective
functions. Any changes in xi and yj would directly
result in great changes in the objective functions, while
the perturbation in some ρk may have little influ-
ence on the objective functions. This implies that the
sensitivities of xi , yj and ρk are of different order

Fig. 10 Final optimized topology by taking α1 = α2 = α3 = 1
3 . The

pink circles show that machine A and machine B are weakly supported

of magnitudes. So putting them in a uniform model
would cause numerical difficulties.

Therefore it follows that it is both appropriate and advan-
tageous to design the whole system in two stages. In the first
stage, the locations of machines and isolators are optimized
using genetic algorithm while the layout of the supporting
structure is kept unchanged. In the second stage, the lay-
out is optimized using gradient-based algorithm while the
locations of machines and isolators are kept unchanged. An
iteration is introduced between the two stages in order to
guarantee convergence of the whole design problem (36)
considering all factors, which actually furnishes the strategy
of multilevel optimization (Fig. 11).

Figure 12 shows the design domain. To account for the
volumn fraction γ = %50, the thickness is now 10mm.
Green circles show possible locations for isolators; yellow,
blue and pink stars show possible locations for machine A,
B and C, respectively.

Figure 13 illustrates how the multilevel optimization will
be carried out. The initial values for locations of isolators
and machines are the ones corresponding to the reference
case (cf. Fig. 3), while ρ0 is simply taken as uniform ele-
mental densities. In the first stage, the continuum(i.e. the
supporting structure) is optimized by solving (30) with loca-
tions of isolators and machines fixed. In the second stage,
the locations of the machines and isolators are optimized
while the layout of continuum is kept unchanged. The math-
ematical model for this stage can be given by combining
(22) and (26):

find xi, yj ∈ {0, 1}
minimize {JE(x, y), hE(x, y), h0(x, y)}

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
i xi = 1 for i ∈ Q1∑
i xi = 1 for i ∈ Q2∑
i xi = 1 for i ∈ Q3∑
j yj = 4 for j ∈ Q4

(37)

where i ∈ Q1
⋃

Q2
⋃

Q3 and j ∈ Q4.
At the end of each cycle, the convergence is verified by

checking the differences between the values of all design
variables in current cycle and the previous one. If con-
vergence criteria is not satisfied, the values of all design
variables are passed down to the next cycle to act as the
initial solution.

Figure 14 gives the iteration history of the multilevel
optimization process corresponding to uniform weight coef-
ficients α1 = α2 = α3 = 1

3 . Figure 11 plots the objective
values w.r.t. cycle number, note that each data point in this
figure in fact denotes a complete solution of inner opti-
mization subproblem (either for optimizing the locations of
components or for optimizing the layout of plate). Some
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Fig. 11 Iteration history for the
multilevel optimization.

g = α1
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J ref
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href
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0
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numerical oscillation is present in Fig. 11 simply because of
the update of β (cf. (33)) and the explanation after it.) when
optimizing the layout of plate.

The detailed values for objective functions are listed in
Table 2 with case label multilevel. Note that the computation
burden in the multilevel optimization framework is heavy.
From Fig. 13 it can be seen clearly that in each cycle both
(30) and (37) must be solved. All the numerical results are
computed using a Dell Precision T5610 workstation with
two Intel(R) Xeon(R) CPU E5-2609 v2 processors. When
running GA to optimize locations, 6 workers are used. The
whole computation time for Fig. 14 is about 10 hours, which
is a little long but can be tolerated.

Notice that the final layout of the supporting structure
are also not that perfect since machine B is supported
by a cantilever-like structure. As mentioned at the end of
Section 4.3, this imperfection is due to the uniform weight
coefficients and can be circumvented by decreasing the
value of α1 when optimizing the layout. This issue will be
revisited in Section 6.2 in detail.

10
m
m

Fig. 12 Design domain for multilevel optimization

6 Discussions

6.1 The influence of different factors

As can be seen from Table 2, all the considered factors
(i.e. locations of machines, locations of isolators and layout

Start

Set ref

0 ,x x ref

0 ,y y T

0 1, ,1 ,ρ

Solve Eqs.(30) to optimize layout of 

supporting structure with                               ,

obtain 

Solve Eq.(37) to optimize locations of

machines and isolators with          , obtain  kρ ρ

kρ

andk kx y

1 1andk kx x y y

1k

1k kcheck convergence:

1 0k kx x x

1 0k ky y y

1 0k kρ ρ ρ

Stop

Yes

No

Fig. 13 The flowchart of multilevel optimization
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2elcyC1elcyC0elcyC

Cycle 3

Cycle 6

Cycle 4

Cycle 7

Cycle 5

Fig. 14 Iteration history of the multilevel optimization. In each cyle the weight coefficients are α1 = α2 = α3 = 1
3

of supporting structure) have great influences on objec-
tive functions. The results with single-level optimization in
Section 4 reveal that the performance of the whole system
can be improved by takeing any one factor into account
only. However, when comparing between these factors, it
seems that the objective functions are much more sensi-
tive to the locations of machines and isolators than the
layout of the supporting structure. This observation may
sounds surprising to the topology optimization community,
but is reasonable in vibration isolation research area. Recall
that when designing a vibration isolation system, the most
important consideration is the selection and arrangement of
isolators as well as machines.

On the other hand, in some specific case the design of the
supporting structure should be given enough attention. A typi-
cal example is the design of floating raft in a submarine (Niu
et al. 2005; Yang et al. 2017; Meng et al. 2011), where quite
a lot of machines are installed on a single huge floating raft
that is linked to the wall of the submarine through isolators.
From Table 2, we can see that by incorprating both the locations
of components and the layout of continuum into a multilevel
optimization framework, better design can be obtained.

6.2 The influence of weight coefficients

In previous sections the weight coefficients are simply set
to be uniform. However, the weight coefficients α1, α2, α3

in (35) warrants some special attention.

As can be seen from Fig. 10, machine B is weakly sup-
ported by a cantilever-like structure, which may be instable
from mechanic intuition. We mention that, if (31) and (33)
are not applied, the elements near the isolators would also be
very weak (i.e. ρi → 0). In Fig. 14 the similar phenomenon
occurs for machine B.

The reason for this phenomenon is the existence of JE in
(30). Minimization of JE implies that the forces transmit-
ted into the ground are to be minimized. So it follows that
the optimal layout would be the ones cutting off all possible
forces transmission paths (then JE = 0). However, due to
the existence of hE and h0, the optimization program would
not completely cut off the forces transmission paths, but
form some very weak elements to support the machines.

In a vibration isolation system, the most important task
for the supporting structure is to link different machines and
to supply a stable platform for installing and maintaining the
machines. While the isolators, on the other hand, play the
key role in improving the vibration isolation performance.
More specifically, when designing the supporting structure,
the basic requirements are that it should be stable, both stat-
ically and dynamically. Therefore it is reasonable to value
hE and h0 much more than JE when carrying out the design
of supporting structures.

Figure 15 gives the multilevel optimization results with
biased weight coefficients. When optimizing layout of con-
tinuum α1 = 0, α2 = α3 = 0.5 is used while α1 = α2 =
α3 = 1

3 is used when optimizing locations. As can be seen
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Cycle 0 2elcyC1elcyC

Cycle 3 5elcyC4elcyC

Fig. 15 Final optimized system with biased weight coefficients. When optimizing locations, the weight coefficients are α1 = α2 = α3 = 1
3 ,

while optimizing layout α1 = 0, α2 = α3 = 0.5

from Fig. 15, the final optimized layout of the supporting
structure is much more stable than the one optimized with
uniform weight coefficients. However no free lunch can be
expected, as shown in the last line of Table 2, the final
objective function values would increase when using biased
weight coefficients.

However, it has to be admitted that in general there
is no universal principles on the choice of weight coeffi-
cients. The designers should make their decisions depending
on specific occasion and purpose. Calculating the Pareto
curve/surface would offer useful information in some cases,
but would consume a large amount of computing resources.
Engineering experiences are also important to judge the fea-
sibility of the optimized designs and to make the optimized
designs acceptable in engineering practice.

7 Conclusions

In engineering practice the optimization of continuum in a
vibration isolation system usually comes together with the
optimization on locations of machines and isolators. The
former has received extensive attentions in structural topol-
ogy optimization research area while the latter has not. In
this paper we make some preliminary attempts to design
the whole vibration isolation system by hybrid multilevel
optimization methods, where the locations are optimized
through genetic algorithm while the layout of supporting
structure is optimized by the famous density-based topol-
ogy optimization methods. Effectiveness of the proposed
method is demonstrated by a numerical example adapted
and simplified from engineering practice. Numerical results

show that the hybrid multilevel optimization framework
performs quite well.
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Appendix: Sensitivity information

In this section we give the sensitivity information which is
needed when solving (30). Keep in mind that only ρi is
taken as design variable in (30).

A.1 The sensitivity of U w.r.t. ρ̄

According to the motion equation (11), U can be expressed as

U = S−1F (38)

Differentiating the above equation w.r.t. ρi gives

∂U

∂ρ̄i

= −S−1 ∂S

∂ρ̄i

U (39)

and
∂S

∂ρi

is given by:

∂S

∂ρ̄i

= 3ρ̄2
i

(
−ω2M

sh,e
i + K

sh,e
i

)
(40)

A.2 The sensitivity of h w.r.t. ρ̄

Differentiate h = U�FF�U w.r.t. ρ̄i gives

∂h

∂ρ̄i

= 2U�FF� ∂U

∂ρ̄i

(41)
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Substitute (38–40) into (41) gives

∂h

∂ρ̄i

= −2U�FU� ∂S

∂ρ̄i

U

= −6x2
i

[
U�FU�

(
−ω2M

sh,e
i + K

sh,e
i

)
U

] (42)

Note that (42) can be effectively evaluated in the elemen-

tal level. Now
∂hE

∂ρ̄i

and
h0

ρ̄i

can be easily given:

∂hE

∂ρ̄i

= −6x2
i

[
U�FU� (

−ω2
EM

sh,e
i + K

sh,e
i

)
U

]

∂h0

∂ρ̄i

= −6x2
i

[
U�F staU�K

sh,e
i U

]
(43)

A.3 The sensitivity of JE w.r.t. ρ̄

Differentiating JE = U�G�
I GIU we have:

∂JE

∂ρ̄i

= −2U�G�
I GIS

−1 ∂S

∂ρ̄i

U (44)

A.4 Density filter and projection operator

Now we consider how to transform
∂JE

∂ρ̄i

,
∂hE

∂ρ̄i

,
∂h0

∂ρ̄i

into
JE

ρi

,

hE

ρi

,
h0

ρi

. By using the chain rule, according to (31) and (33)

we have:

∂hE

∂ρi

=
nsh∑

j=1

∂ρ̃j

∂ρi

dρ̄j

dρ̃j

∂hE

∂ρ̄j

(45)

In matrix form we have:

dhE

dρ
= H�

⎡

⎢⎢⎢⎢⎢⎣

∂ρ̄1

∂ρ̃1
. . .

∂ρ̄nsh

∂ρ̃nsh

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

∂hE

∂ρ̄1
...

∂hE

∂ρ̄nsh

⎤

⎥⎥⎥⎥⎥⎦
(46)

By replacing hE with h0 or JE, similar equations can be
obtained and are omited here.
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