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Abstract This article describes a parametric shape opti-
mization approach using vertical or horizontal structures
with a fine parametrization of their center lines and pro-
files. In this context horizontal means a lateral connection
from left to right and vertical means a bottom-up connec-
tion. These structures are projected to a pseudo density field
associated with a fixed mesh using a differentiable map-
ping. This enables the use of existing topology optimization
tools with respect to the solution of the state problem based
on the pseudo density field. The approach belongs to a
class of geometry projection onto a fictitious domain meth-
ods. It therefore shares the property that sensitivity analysis
is reduced to extend the well known gradient calculation
from topology optimization by chain using the sensitivity
of the mapping from shape variables to pseudo density.
The contribution lies in the combination with our specific
shape parametrization and the associated regularization.
Optimization problems can be formulated concurrently in
terms of shape variables and pseudo density. We discuss reg-
ularization, periodicity constraints, symmetry formulations
and overhang constraints in terms of shape variables. Vol-
ume and perimeter constraints are easily formulated in terms
of the pseudo density. We see our approach as being particu-
larly beneficial for certain problem classes where it may be
difficult to restrict the design space, e.g. restricting isolated
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structures or holes or where a strict control of solid to void
transition is necessary. Consequently, we show examples
for phononic band gap maximization, boundary driven heat
optimization and perimeter maximization for a flow prob-
lem. We also present a formulation of overhang constraints
for additive manufacturing in terms of shape variables.

Keywords Topology optimization · Parametric shape
optimization

1 Introduction

Topology optimization and shape optimization represent
two key approaches to structural optimization. Numerous
variants of these approaches with differing degrees of com-
plexity have been proposed. While Sigmund and Maute
(2013) have attempted to provide an overview of the range
of adaptations proposed, it is almost impossible to provide
a comprehensive overview of the field due to the wealth
of research opportunities it provides and its consequent
dynamic growth.

In the following, we briefly recall the fundamental ideas
of density-based topology and shape optimization. To illus-
trate these ideas, we adopt a stiffness maximization problem
for a linear elastic setup discretized by the finite element
method as a model.

For density-based topology optimization the standard
approach is based on the SIMP1 model introduced in
Bendsøe (1989). Typically the design space consists of all N

cells of the simulation mesh. The design variables are called
pseudo density ρ ∈ R

N with each component ρe ∈ (0, 1].
In the case considered here, it is necessary to regularize the
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design, see Sigmund and Petersson (1998), e.g. by apply-
ing a density filter, see Bruns and Tortorelli (2001). In the
framework of the finite element model, a piecewise constant
material approximation is used, which is constructed from
local elasticity tensors [c]e(ρ) = μe(ρ) [c]0 parametrized
by the function μe(ρ) ∈ (0, 1] and a given material [c]0. The
function μ : RN → R

N may contain the density filter and a
nonlinear mapping, like the power law, to drive the compo-
nents of the physical pseudo density ρ̃ = μ(ρ) toward the
bounds zero and one, as only these have a straightforward
physical interpretation as void and solid, respectively.

Despite being extremely versatile, powerful and success-
ful in both academic and industrial real world applications,
density-based topology optimization in its basic form is
remarkably easy to implement and apply. Regarding imple-
mentation we refer to the famous 99-lines implementation
in MATLAB, Sigmund (2001), and the subsequent imple-
mentation by Andreassen et al. (2011). In a particular sense,
topology optimization is easy to use as no preliminary
design is required - one starts with a constant density on a
regular mesh of uniform quadrilaterals or hexahedrons.

However, density-based topology optimization has one
drawback: the representation of the boundary between solid
and void. Due to regularization this interface is generally
blurred by some layers of cells with intermediate values
of physical pseudo density. This effect can be reduced by
projection methods (based on Guest et al. (2004), see also
Sigmund (2007)). If, however, in the extreme case a perfect
solid-void physical design is achieved, any curved bound-
ary is subject to jagged edges. The standard remedy is finer
mesh resolution, but due to the uniform regular mesh a
global refinement is required that is computationally rather
expensive.2

A large class of design constraints, such as minimal/
maximal feature size constraints, are modeled indirectly by
the aforementioned projection-based filters, see Guest et al.
(2004) and Guest (2009), respectively. Also robust design
(Wang et al. 2011) or even overhang conditions for addi-
tive manufacturing (Langelaar 2017) and many more design
requirements are realized by filters. A recent overview with
detailed discussion can be found in Lazarov et al. (2016).
This implicit handling of design constraints is very efficient
given the large number of design variables in density-based
topology optimization, ranging from numbers in the thou-
sands to numbers in the millions. However, expressing
design constraints implicitly has its limits as we will see
later in the course of this paper.

In contrast to density-based topology optimization, in
shape optimization structures are defined by their surfaces.
The mathematical approach is typically formulated in an

2Local mesh refinement, as in Maute and Ramm (1995), does not
appear to be widely applied.

infinite dimensional setting, see e.g. Sokolowski and Zole-
sio (1992) or Haslinger and Mäkinen (2003). An initial
design must be provided for shape optimization. In gen-
eral, the optimization method conserves topology, i.e. the
number of holes remains constant. Hence, the topology of
the initial design restricts the admissible shapes and thus
has great influence on the quality of the optimal design.
There are methods available to overcome this restriction,
e. g. by insertion of holes based on the topological deriva-
tive, see Novotny and Sokołowski (2012). However, this
is an involved process in terms of theory and technical
implementation.

For numerical realization of the shape optimization, the
initial design has to be tessellated to solve the state prob-
lem. In contrast to topology optimization only the structure
and not the void is treated, which can save a significant
part of the computational cost but loses the simplicity of
a uniform mesh. As the shape is defined by the surface
of the mesh, the boundary nodes must be moved within
optimization according to the shape derivative. This leads
to issues with mesh quality, necessitating common tech-
niques such as mesh smoothing and/or remeshing. These
issues were recently addressed in Christiansen et al. (2015),
however, with an implicit shape handling. Alternatively, the
shape derivative may be expanded from the boundary to the
interior nodes by solving an additional partial differential
equation, which leads to a more robust mesh deformation,
see e.g. Gangl et al. (2015) or Semmler et al. (2015).

Using each surface node in shape optimization as a
design variable is called the independent node movement
approach as described by Imam (1982). An alternative
approach is the parameter-free shape optimization. This
approach differs from parametric shape optimization in that
it requires no parametrization from the user. While it pro-
vides a large space of admissible shapes, it also comes with
its own challenges in terms of regularization and feature size
control, see e.g. Le et al. (2011). In the course of the opti-
mization process, insertion or deletion of boundary nodes
may be necessary. This generally prevents the use of first
order black-box optimizers, like implementations of MMA
(Svanberg 1987) or SNOPT (Gill et al. 2002). As a conse-
quence, constraint functions need to be handled indirectly.
Furthermore, no rigorous convergence criteria are available.

In classical shape optimization the surface is indirectly
parametrized by a small number of parameters, see e.g.
Haftka and Grandhi (1986). Conveniently, this corresponds
to the construction of geometries by spline functions in
computer aided design (CAD). Here, the mapping from the
design parameters onto the boundary nodes is differentiable
and thus allows gradient based optimization, see Braibant
and Fleury (1984). In contrast to parameter-free shape opti-
mization, the number of design variables is finite and fixed,
allowing the use of state-of-the-art black-box optimizers.
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The choice of the parametrization is a critical task for
the user in determining the optimized design. The design
freedom in shape optimization is typically small in com-
parison to topology optimization, thus the user requires a
much clearer idea of the intended design. However, for
some applications, this is more a feature than a limitation,
consider e.g. wing profile design or sizing of a lattice.

There is a further important class of structural optimiza-
tion we want to mention only briefly. Level-set methods in
their most common approaches perform shape optimization
on a fixed grid such that remeshing is not an issue. Interfaces
can be crisp and certain topological changes come without
difficulties. We refer to the excellent review paper (van Dijk
et al. 2013). Indeed, the geometry projection methods intro-
duced below have some similarities with some approaches
of the level-set method, e.g. the property of being topology
optimization methods and the way geometries are projected
onto the analysis mesh.

In this paper, we integrate parametric shape optimization
into a topology optimization setup, generating the discrete
vector of pseudo densities ρ from shape parameters s by a
differentiable mapping T : s �→ ρ. Our method thereby
belongs to a class of geometry to fictitious domain pro-
jection methods, with which we share the basic properties.
For the pseudo density based parametrization of the finite
element model (including possible adjoint systems) and
the calculation of the gradient, any existing topology opti-
mization implementation can be used without modification.
There is even no requirement for filtering and penaliza-
tion, resulting in a one-field SIMP model following the
notation of Sigmund and Maute (2013), as there is no dis-
tinction between pseudo and physical density fields. In
general, the parametrization of the geometry can be arbi-
trary. However, in this article we investigate a very simple
shape parametrization based on structures using sizing and
geometry parameters. Our parameters explicitly describe
location and width of geometries. Geometries are also used
for thickness control in density-based topology optimization
by Zhou et al. (2015) and the level set method by Allaire
et al. (2016), however, the geometries and their location are
given implicitly.

The mentioned class of geometry projection methods
encompasses methods where low dimensional geometries
are projected onto a fixed discretization. Some approaches
appear to have been developed independently, but early ref-
erences can be found with respect to shape optimization
based on a fixed mesh. The analysis of the infinite dimen-
sional setting of so called fictitious domain methods in
shape optimization without an intermediate mapping func-
tion is given in Haslinger and Mäkinen (2003), i.e. a mesh
cell is either solid or void. In Norato et al. (2004) a fil-
ter type mechanism is added, leading to a smooth mapping
resulting in intermediate density values at the boundary. In

Norato et al. (2004) a single explicit geometry (an ellipse)
is used and analyzed thoroughly. Also an implicit bound-
ary is formed based on a polygonization of a fixed set of
radial basis functions, albeit no further details are given. The
implicit design description by a union of geometrical prim-
itives has been presented by Saxena and coworkers in the
form of the Material Mask Overlay Strategy (MMOS). In
Saxena (2008) and several following publications with sim-
ilar content, circular objects of solid or void are introduced
with the design variables location, radius and a solid/void
flag. These objects may overlap and the optimization is
performed via a gradient-free genetic algorithm. In Sax-
ena (2011) only circular void objects are considered and
the mapping onto pseudo density values is performed via a
smoothed Heaviside function such that gradient-based opti-
mization can be applied. The void objects can arbitrarily
overlap and the shape of the solid design is only implicitly
given as the complement of the union the void objects. Other
work using freely movable solid or void objects modeled by
varying geometric primitives includes (Zhang et al. 2016)
using quadrilaterals, who call their method moving mor-
phable components (MMCs). Bars with half circular ends
are used in Norato et al. (2015), who call their method geom-
etry projection. The same objects are used in Hoang and
Jang (2016), with a different geometry-to-density mapping
and handling of overlaps. All the methods which are based
on the aggregation of many primitive geometries share the
fact that holes can appear arbitrarily, we therefore consider
them as topology optimization methods. Shape optimiza-
tion projected onto a fictitious domain can be found with an
implicit shape representation in Norato et al. (2015), based
on radial basis functions, and Dunning (2017) based on a
level set approach. In Gersborg and Andreasen (2011) Heav-
iside projection topology optimization is shown for single
horizontal variables. This could be seen a simplified sin-
gle vertical structure of our approach. However, it is more
similar to a reduced topology optimization.

We have specific optimization problems in mind where
the design freedom of topology optimization is in some way
too large and the exclusion of undesired designs is difficult.
For a number of examples, see Section 4. For such problems
the restricted and tightly controllable design freedom of
parametric shape optimization is beneficial. The proposed
shape mapping approach is accompanied by the easy mesh
handling of topology optimization rather than the issues
mentioned above in classical shape optimization. As a trade-
off we have to accept the blurred and rasterized boundary
known from topology optimization, albeit we have more
control on the transition zone than in topology optimization.
An additional motivation for the approach might be the use
of numerical methods, such as Lattice Boltzmann Methods
or the Discrete Dipole Approximation (Yurkin and Hoek-
stra 2007), which greatly rely on a uniform mesh and are
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thus difficult to combine with classical shape optimization
methods.

The method we present here is focused on only a few
richly parametrized structures in contrast to many sim-
ple parametrized geometric objects. We view the resultant
reduced and tightly tunable design space as a beneficial fea-
ture for certain problem classes. A special feature of our
parametrization is, that we have the first and second order
derivatives of the shape design variables in the sense of local
constraints at hand, with allows a precise regularization of
the problem. In this sense, our method is close to classical
parametrized shape optimization. However, mesh handling
does not need to be implemented and existing topology
optimization code can be reused. Moreover, design based
criteria like resource and perimeter constraints are very easy
to formulate based on density values.

The paper is organized as follows. Section 2 introduces
the shape parametrization as well as the density mapping
and discusses associated smoothness issues. In Section 3
we address shape regularization and symmetry handling.
Section 4 provides examples where we benefit from shape
mapping compared to topology optimization and conclu-
sions are provided in Section 5.

2 Design parametrization

Throughout this paper we consider a design composed from
a set S of horizontal and vertical strips. In the following dis-
cussion we begin with a single horizontal strip S as depicted
in Fig. 1. Vertical strips are treated accordingly, multiple
and overlapping structures are discussed in Section 2.2. For
illustrative purposes, we use standard compliance minimiza-
tion examples in this section, being aware that parametrized
shape optimization is not necessarily beneficial for this
application.

2.1 Single structure

We assume the unit square Ω = [0, 1]2 as the design
domain, regularly discretized by N2 quadrilateral finite ele-
ments Ωe as in Fig. 1. We now introduce fixed horizontal
coordinates

xi = i − 1

N
, i = 1, . . . , N + 1.

Assigned with these coordinates, we define the map

I : [0, 1] → {1, . . . , N + 1}
x1 �→ �x1 N� + 1,

where �·� is the floor function.
The horizontal strip is described by center nodes

ai (ai) = (xi, ai)
�, 1 ≤ i ≤ N + 1, (1)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

a1 a2 a3

a4

a5

a6

w1

w1

w2

w2

w3

w3

w4

w4

w5

w5 w6

w6

FEM
cell

p

p

S

integration points

ρ1 ρ
2 ρ3

...

p1

p1

x1

x2

Fig. 1 Based on a square 5 × 5 grid, a single parametrized horizontal
structure is defined. The N +1 variables a1, . . . , a6 (green) denote the
height in x2 coordinates of the center line of the strip at the x1 positions
0.0, 0.1, . . . , 1.0. The corresponding points a1, . . . , a6 are given by
(1). The profile variables w1, . . . , w6 (red) give the half strip height
in ± x2 direction, see (2) and (3). The discrete vector of nodal design
variables (a1, . . . , a6) is denoted as a, the discrete vector of profile
variables (w1, . . . , w6) is denoted as w

where A∗− ≤ ai ≤ A∗+ are nodal design variables. With
profile design variables wi , we further define for all 1 ≤ i ≤
N + 1 points

pi (ai, wi) = (xi, ai + wi)
� (2)

p
i
(ai, wi) = (xi, ai − wi)

�. (3)

The design variables form the vector of nodal variables
a = (a1, a2, . . . , aN+1) and profile variables w =
(w1, w2, . . . , wN+1). Using (2) and (3) we introduce the
piecewise linear functions

p(a, w; x1) = t (x1)pI (x1)
+ (1 − t (x1))pI (x1)+1 (4)

p(a, w; x1) = t (x1)p
I (x1)

+ (1 − t (x1))p
I (x1)+1

, (5)

with t (x1) = N (x1 − xI (x1)) for 0 ≤ x1 ≤ 1, which defines
the lower and upper boundary of the single horizontal
structure S(a, w).

2.1.1 The shape mapping T

With a(x1) and w(x1) we denote the linear interpolation of
the corresponding variables aI (x1) and aI (x1)+1, wI(x1) and
wI(x1)+1, respectively, constructed precisely as in (4). For
brevity of notation we do not explicitly note the dependence
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of a and w on the design variables a and w. The struc-
ture S(a, w) can be expressed by a height function with
values 1 within the structure and 0 outside. A smoothed
one-dimensional height function is shown in Fig. 2 and
given as

tβ(a(x1), w(x1), x2) =

⎧

⎪

⎨

⎪

⎩

1 − 1

eβ(x2−a(x1)+w(x1)) + 1
1

eβ(x2−a(x1)−w(x1)) + 1
,

where the first case 1 − . . . holds for x2 ≤ a(x1), cor-
responding to the left section in Fig. 2 and β > 0 is a
smoothing parameter. The function is based on scaled and
shifted hyperbolic tangent functions. Note that the function
approaches 0 and 1 arbitrary fast with sufficient high β,
but analytically never reaches 0 and 1. However, the non-
differentiability of tβ for x2 = a(x1) is purely theoretical
and numerically unimportant, see also Section 2.1.5.

Now the pseudo density variables ρe with 1 ≤ e ≤
N2 are assigned to finite elements and evaluated as ρe =
Te(a, w) with

Te : RN+1 × R
N+1 → [ρmin, 1]

and

Te(a,w)=ρmin + (1−ρmin)

∫

Ωe

tβ(a(x1), w(x1); x2) d(x1, x2).

(6)

The integration is performed numerically using sufficiently
many integration points.

The partial derivatives ∂tβ
∂ai

and ∂tβ
∂wi

are easy to calculate
and depicted in Fig. 3. See also Section 2.1.5 for a discus-
sion of the differentiability of Te with respect to the profile
width and β.
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Fig. 2 The smoothed height function tβ (a(x1), w(x1); x2) to be eval-
uated at each integration point, see Fig. 1
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Fig. 3 The derivatives of tβ (a(x1), w(x1); x2) (Fig. 2) with respect to
the nodal position a (solid) and profile thickness w (dashed)

2.1.2 Model problem

We now formulate a first parametric shape optimization
problem in algebraic form:

min
a,w

f �u (7)

s.t.: K(ρ)u = f (8)

ρe = Te(a, w), 1 ≤ e ≤ N2 (9)

v(ρ) = 1

N2

N2
∑

e=1

ρe ≤ V ∗ (10)

a ∈ [0, 1]N+1 (11)

w ∈ [W ∗−, W ∗+]N+1. (12)

The compliance minimization problem (7) is formulated
in terms of the shape variables a and w. The state prob-
lem (8) is formulated in terms of pseudo density ρ. Both the
state problem and the mapping T from the shape variables
to ρ (9) are treated implicitly. Note that the resource con-
straint (10) is formulated in ρ. There is no direct resource
constraint on the shape variables. The bounds of the shape
variables are given in terms of the unit meter. We assume as
design domain a unit square, hence every nodal variable ai

may take any value within the full x2 range.

2.1.3 Sensitivity analysis

In topology optimization, it is well known how the sensi-

tivities ∂f �u(ρ)
∂ρ

and ∂v(ρ)
∂ρ

are obtained. The derivative of
any function f (ρ(a, w)) with respect to s, either the nodal
position a or profile w, is given by the chain rule as

∂f

∂si
=

N2
∑

e=1

∂f

∂ρe

∂Te

∂si
. (13)

We note that at most 2N summands of N2 are non-zero.
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(b) optimized shape variables (c) SIMP reference(a) pseudo density

Fig. 4 The test case for the single horizontal structure example of
Section 2.1.2: a optimized shape mapped to pseudo density; b visual-
ization of optimal shape variables. The nodal positions ai stay at their

initial position 0.5; c standard SIMP optimization result as reference.
The compliance in (a) is 67% worse than the SIMP result

2.1.4 A Single structure example

Figure 4a shows the setup for the symmetric single structure
compliance minimization problem (7) . . . (9). The volume is
restricted to 50%. Initial value for all design parameters are
ai = .5 and wi = .25. The discretization is N = 50 which
holds for all examples, if not noted otherwise. The profile
is practically unbounded with W ∗− = 0.005 and W ∗+ = 0.5,
β is chosen as 75. Figure 4b displays the optimized shape
variables.

The shape gradient (13) collects the sensitivities with
respect to ρ only at the boundary of the shape. This is due
to the construction of tβ , see Fig. 3; within or outside of

the structure ∂tβ
∂ai

and ∂tβ
∂wi

quickly approach zero. Evaluating
the sensitivities at the integration points of (6), we can visu-
alize the gradient mapped to the design domain. Figure 3
shows that location but not the value varies, therefore we
visualize in Fig. 5b the profile sensitivity weighted by the
compliance gradient of Fig. 5a. As expected, the gradient is
constant in the optimum, see also the bottom line in Fig. 5c.

The curve for the final profile sensitivity in Fig. 5c shows
for the first and last shape variable only half the magni-
tude. This is explained by (13) where only N instead of 2 N

non-zero summands correspond with the first and last shape
variables. The sensitivity of the nodal variables has a pos-
itive and negative value on the shape boundary. With the

symmetric ∂f �u
∂ρe

the shape derivatives sums to zero in the
initial and final design, as shown in the upper line in Fig. 5c.

2.1.5 Minimal profile width

Considering tβ in Fig. 2 with w = 0, a kink with height 0.5
would appear. By integration in (6), the resulting unscaled
pseudo density would always be smaller 0.5. The kink is
clearly non-differentiable and therefore to be avoided. To
this end we are interested in a minimal profile variable w,
which guarantees a sufficiently smooth structure represen-
tation. The function tβ becomes smooth when the tangent
for the left and right side of tβ in a is sufficiently flat. This
means that the derivative of tβ , see Fig. 3, approaches zero
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optimization; b taking the influence of the profile variables into account, see Fig. 3; c sensitivities of the shape variables, see (13)



A combined parametric shape optimization and ersatz material approach 1303

close enough. Note that zero can be approached only asymp-
totically. Thus our goal is to derive a bound for w such that
the none-smoothness in a is sufficiently small.

The left side of ∂tβ/∂w is given as

∂tβ(a, w, x, β)

∂w
= β eβ (x−a+w)

(eβ (x−a+w + 1)2
.

To have a sufficiently smooth transition we require

∂tβ(a = x, w, β)

∂w
≤ ε.

Solving for w, we obtain

w(β, ε) =
ln

(

β−2 ε+
√

β2−4 β ε

2 ε

)

β
≈ ln β

ε

β
, (14)

depicted in Fig. 6. For a small profile variable w large β is
required. This also means that for small β the bound W ∗−
needs to be sufficiently large according to (14).

In the sense of β-continuation, W ∗− might be subject to
adjustment also. In the presence of a volume constraint this
might have a significant impact on the design. Fortunately
β-continuation is not necessary to the author’s experience.

Leaving the non-differentiability issue aside, the profile
variable w could get negative such that structure vanishes
completely.

2.2 Overlapping structures

The single structure cantilever in Fig. 4a performs relatively
poorly, with a compliance 76% higher than the standard
SIMP solution shown in Fig. 4c. Obviously a single struc-
ture design space is too restrictive for the problem, which
requires multiple structures.

0

50

100

150

200

250

300

350

400

450

500

 0  0.1  0.2  0.3  0.4  0.5

be
ta

profile variable w

ε=1e-4
ε=1e-6
ε=1e-8

Fig. 6 Relationship of minimal profile variable w and β according to
(14). If the desired minimal profile width variable is 0.1, one has to
choose β ≥ 200 with a smoothness criterion ε = 1 · 10−8, see (14)

In the following, the set of horizontal or vertical struc-
tures S is denoted as S. The linear interpolations of the nodal
and profile variables now depend on the structure S and the
parameter x1.

We discuss two approaches to handle overlapping of
multiple structures. To this end, we extend (6) as

Te(a, w, S) = ρmin + (1 − ρmin) T (·)
e (a, w, S),

where T
(·)
e is either given by (15) or (16). The first approach

T max
e =

∫

Ωe

max
S

(

tβ(a(S, x1), w(S, x1); x2)
)

d(x1, x2)

(15)

simply chooses for every integration point the structure with
the highest value which contributes to ρe and to the deriva-
tive ∂Te

∂s
. The resulting density distribution is depicted in

Fig. 7a. In Fig. 7c the sensitivity with respect to the nodal
shape parameters is shown. Due to the max operator in (15)
this approach is not differentiable.

A smooth approach is given by

T τ
e =

∫

Ωe

τ

(

∑

S

tβ/2(x2, a(S, x1), w(S, x1))

)

d(x1, x2),

(16)

where the density values of all shapes are summed to ρ̃ and
limited to ρmax = 1 by the smooth function τ

τ(ρ̃) = 1 − 1

e11 (ρ̃−.5) + 1
. (17)

(a) (b)

(c) (d)

Fig. 7 Two approaches to overlap structures: a The non-smooth max
approach (15) and its sensitivity with respect to the nodal shape param-
eters (c); b and d show the differentiable approach (16) based on the
smoothing function τ (17), see also Fig. 8. Note that ρ is piecewise
constant on the finite elements but the sensitivities are evaluated on the
level of integration points
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The resulting density distribution is shown in Fig. 7b and
the sensitivity with respect to the nodal shape parame-
ters is shown in (d). To compensate the effect of τ , we
parametrize t with β/2. In Fig. 8 two shapes tβ(a) and
tβ(b) are shown. These functions are sufficiently well repro-
duced by τ(tβ/2(a)) and τ(tβ/2(b)). The effect of treating
two overlapping structures by (16) is illustrated in Fig. 8.

3 Optimization models based on the shape
mapping

3.1 Regularization

We extend and solve the model problem (7) . . . (9) with
two horizontal shapes, hence doubling the number of vari-
ables. The parameters are the same as in Section 2.1.4. The
resulting density shown in Fig. 9, is not only similar to the
topology optimized design in Fig. 4c but even has a slightly
better compliance. This is possible because the density fil-
ter for the SIMP design does not directly correspond to the
β value for the shape mapping problem (here β = 75).
The visualization of the shape variables in Fig. 9 reveals
a jagged shape boundary which can also be observed to
a less extend in Fig. 4b. This reminds of issues found in
classical shape optimization when each boundary node is a
design variable. In shape optimization the reason is given as
abuse of numerical finite element approximations akin the
checkerboards in density-based topology optimization, see
references given in Le et al. (2011). Seemingly this effect
also holds for the projected density-based design, albeit not
visually perceivable with the pseudo density field generated
by (16).

In contrast to choosing a coarser and/or higher order
boundary representation or variable filtering as in Le et al.
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Fig. 8 Visualization of the shape overlapping T τ
e (16) applied in

Fig. 7b: applying τ(ρ̃) to the sum of two shifted shapes the contribu-
tion of the right shape is perfectly canceled. Moving the right structure
to the left, essentially doubling a single shape, the resulting function
differs significantly from the original shape

(2011) we choose to control the first and second spa-
tial derivative of the shape variables. The single structure
problem (7) . . . (9) extended to a regularized two structure
problem is given as

min
a,w

f �u (18)

s.t.: K(ρ)u = f (19)

ρe = T τ
e (a, w), 1 ≤ e ≤ N2 (20)

v(ρ) ≤ V ∗ (21)

|ai − ai+1| ≤ a∗/N, i ∈ I1 ∪ I2 (22)

|wi − wi+1| ≤ w∗/N, i ∈ I1 ∪ I2 (23)

|ai−1 − 2 ai + ai+1| ≤ c∗/N, i ∈ Y1 ∪ Y2 (24)

ai ∈ [0, 1]2(N+1) (25)

wi ∈ [W ∗−, W ∗+]2(N+1), (26)

with the index sets I1 = {[1, . . . , N}, I2 = {N +
2, . . . , 2N + 1}, Y1 = {2, . . . , N} and Y2 = {N +
3, . . . , 2N + 1}.

The positional and profile shape variables are regularized
by slope constraints. The discrete control of the spacial gra-
dient of design parameters was first introduced to topology
optimization in Petersson and Sigmund (1998). However, it
did not find much application in topology optimization due
to the large number of local constraints with O(2 N2) for
two space dimensions. In (22), the constant a∗ allows global
control on the design space. With a horizontal spacing of
1/N and a maximal vertical spacing |ai+1 − ai | = 1/N , the
slope is |1| which corresponds to 45◦. We usually choose
a∗ slightly larger than 1 such that a global rotation of the
structure by ≈ 45◦ is feasible. As the direction of the pro-
file width variable is axis aligned and not orthogonal to the
orientation of the structure, the actual minimal width of the

structure depends on that angle and is by a factor of
√

1
2

for 45◦ thinner than for the axis aligned case. The same
way, prescribed and maximal thickness can be achieved, but
clearly not precisely as the cross-section diameter. The slope
regularization of the profile variables (23) has a much lower
impact, we usually choose w∗ to a∗/2.

Note that within the bounded slope undesired high oscil-
lations of the boundary are still feasible. However, choosing
the slope bounds tighter might have a significant impact on
the achievable design. A more local control is accomplished
by the curvature constraint (24). The parameter c∗ gives
direct control on the smoothness of the shapes and is an
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Fig. 9 A variant of the problem
depicted in Fig. 4 with two
horizontal structures without
regularization

important tuning parameter. An appropriate choice depends
on the particular problem setting, here we let c∗ = 0.2. For
the profile variables, usually no curvature constraints are
necessary.

Note that slope and curvature constraints cannot super-
sede each other. While slope constraints have a more global
control of the design, curvature constraints control the local
smoothness.

Figure 10 shows the design obtained for problem (18)
. . . (26). The shape variables are regularized and result in
an almost identical mapped pseudo density distribution. The
optimization process benefits from the regularization as it
requires only a third of the iterations. The principal design
was obtained after eight iterations.

3.2 Control of the design

3.2.1 Periodic structures

A simple way to enforce periodic structures is via the
constraints

|ak − ak+N+1| = 0,

|wk − wk+N+1| = 0,
(27)

where k ∈ {1, N + 2, 2(N + 1) + 1, . . .}. Alternatively
one of the variables could be eliminated, but with the
given formulation, the constraints can be easily relaxed
by inequality constraints or used to formulate anti-periodic
constraints. When we use the periodicity constraint we also
adapt the constraints for slope and curvature control.3 There
an additional slope constraint

|a1 − aN+1| ≤ a∗/N
|w1 − wN+1| ≤ w∗/N

3We note that the periodic design constraint is no replacement for
periodic boundary conditions on the state problem.

and additional curvature constraints

|aN+1 − 2 a1 + a2| ≤ c∗/N
|aN − 2 aN+1 + a1| ≤ c∗/N.

Figure 11 shows as a reference the solution of a particu-
lar test case without periodicity constraints. The parameters
follow Section 2.1.4, however the discretization is increased
to N = 100. The design composed by one horizontal and
one vertical structure is very close to a corresponding SIMP
result. In Fig. 12 the periodicity constraints (27) are applied.
Also slope (22) and curvature (24) constraints are modified
with respect to periodicity. The compliance of the periodic
design is 7.3% worse than in the reference case.

3.2.2 Symmetric structures

Symmetric designs are easily realized by repeating design
variables. For instance, the square symmetric structure to be
used in Section 4.1 can be generated by three reflections as
shown in Fig. 13. Restricting the discussion to nodal shape
parameters, there are 4 (N + 1) parameters of which only
N/2 are actually free design parameters. We assume the
parameters of the horizontal structure in the lower left quad-
rant as design variables (left part of the blue structure in
Fig. 13). The remaining part of this structure in the lower
right quadrant is given by the equation

aN−i = (x(i), ai)
� , i ∈ [1, N/2].

The resulting horizontal structure is reflected horizontally
to a second structure (here the green structure in the upper
quadrants) via

a(N+1)+i = (x(i), 1 − ai)
� , i ∈ [1, N + 1].

Finally, the first structure is reflected diagonally twice to the
red and cyan structures, realized by the equations

a2(N+1)+i = (ai, x(i))� , i ∈ [1, N + 1],
a3(N+1)+i = (1 − ai, x(i))� , i ∈ [1, N + 1].
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Fig. 10 Regularized variant of
the problem depicted in Fig. 9
with almost identical resulting
compliance. The only visual
difference in the pseudo density
field is a solid 2 × 2 block in the
left part of the gap

Fig. 11 A diagonal central
force is applied within a fully
supported domain

Fig. 12 The problem in Fig. 11
with periodicity constraints (27)
and periodic slope and curvature
constraints
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Fig. 13 Compliance
minimization for a square
symmetric design with four
symmetry axes. The design
consists of two horizontal and
two vertical structures with only
1/8 of the parameters being free
design parameters. The profile is
fixed to 0.05, β = 75, N = 200
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3.2.3 Overhang constraints

In additive manufacturing, overhanging structures are typi-
cally difficult to realize. Two standard remedies are to add
support structures to be removed after manufacturing and/
or a limit on the angle of overhanging structures. In the con-
text of topology optimization (Gaynor and Guest 2016) and
(Langelaar 2017) presented density filter based approaches.
We also refer to this work for more background information
about the topic.

The principal idea in realizing overhang constraints with
shape mapping is to apply slope constraints on the inter-
face nodes ai ± wi . Horizontal and vertical structures need
different constraints, see Fig. 14. For a horizontal structure
only the lower boundary nodes ai − wi need to fulfill local
constraints

|(ai+1 − wi+1) − (ai − wi)| ≥ o∗/N, (28)

where o∗/N expresses the limiting angle of the structure.
For our setting o∗ = 1 corresponds to the common 45◦
bound for overhanging structures. While the upper bound

on the absolute value in the slope and curvature constraints
can be reformulated as a two sided constraint

|g(s)| ≤ g∗ → −g∗ ≤ g(s) ≤ g∗,

this is not possible for a lower bound condition of type (28).
Here the abs function needs to be approximated as

|g(s)| ≈
√

g(s)2 + ε2 − ε,

which results in nonlinear local constraints.
For vertical structures we need to restrict for the left

boundary only overhangs to the left

(ai+1 − wi+1) − (ai − wi) ≤ o∗/N (29)

and overhangs to the right on the right boundary as

(ai+1 + wi+1) − (ai + wi) ≤ o∗/N. (30)

Fig. 14 Overhang constraints
for horizontal and vertical
structures. Red lines show active
overhang constraints, dashed
orange lines show inactive
overhang constraints, green
dotted lines show interfaces
where overhang constraints are
not required. Note that the
horizontal structure requires a
support structure in the center
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(a) standard SIMP (b) shape mapping

Fig. 15 a Classical topology optimization of a cantilever with verti-
cal load on the upper left tip and full support on the right side with a
volume constraint of 0.3. Areas with infeasible overhang are marked;
b corresponding shape mapping with overhang constraints, see also
Fig. 16b. N = 100, β = 50

This allows us to formulate the compliance minimization
problem outlined in Fig. 15 with overhang constraints as

min
a,w

f �u

s.t.: K(ρ)u = f

ρe = T τ
e (a, w), 1 ≤ e ≤ N2

v(ρ) ≤ .3

|(ai+1 − wi+1) − (ai − wi)| ≥ 0.9/N, i ∈ I1

(ai+1 − wi+1) − (ai − wi) ≤ 1.1/N, i ∈ I2

(ai+1 + wi+1) − (ai + wi) ≤ 1.1/N, i ∈ I2

|ai−1 − 2 ai + ai+1| ≤ .4/N, i ∈ Y1 ∪ Y2

|wi−1 − 2 wi + wi+1| ≤ .5/N, i ∈ Y1 ∪ Y2

ai ∈ [0, 1.5], i ∈ K1

ai ∈ [0, 1], i ∈ K2

wi ∈ [0.1, 1.1], i ∈ K1 ∪ K2,

with the additional index sets K1 = {1, . . . , N + 1} and
K2 = {N + 2, . . . , 2(N + 1)} for the horizontal and
the vertical structure, respectively. Note that we relax the
45◦ angle for the overhang constraints a little. Additional
regularization is necessary in the form of rather relaxed
curvature constraints for the nodal and profile variables.
We allow the horizontal structure to move outside the
design domain. The upper bound of the profile is practi-
cally unlimited, the volume constraint takes the limiting
role.

The reference topology optimization without overhang
constraints and the shape mapping solution with over-
hang constraints are shown in Fig. 15. The difference in
obtainable compliance is shown in Fig. 16a, this depends
strongly on the volume constraint. Note that we used a
rather simple setup with only one horizontal and vertical
structure.

As mentioned above, kinks for horizontal structures as
shown in Fig. 14 are not directly prohibited. An indirect
approach is to apply strong enough curvature constraints,
enforcing an arc at the kink that would be infeasible with
respect to the horizontal overhang constraints where the
secants are too flat.

A direct variant to prevent kinks for horizontal structures
is to replace (28) by linear monotonicity constraints. How-
ever, it is then necessary to decide from the outset whether
a structure shall grow upwards

(ai+1 − wi+1) − (ai − wi) ≥ o∗/N

or vice versa

(ai − wi) − (ai+1 − wi+1) ≥ o∗/N.

Fig. 16 a Showing several
topology optimization
(w/o overhang constraints)
and shape mapping problems
(with overhang constraints)
for different volume constraints;
b The shape parameters
corresponding to Fig. 15b
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Fig. 17 a Convergence history
for the single and two structure
cantilever from Figs. 4a and 10
and the SIMP reference Fig. 4c;
b Convergence history for the
square symmetry example in
Fig. 13
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3.3 Convergence

In Fig. 17 we show convergence plots from selected exam-
ples. We use the SQP solver SNOPT4 but the method
of moving asymptotes could also be used. Additionally to
SNOPT’s KKT stopping criterion, we stop when there is
successively no significant change in the cost function
value.

Generally the design changes very fast toward the final
design, the first iteration usually comes with the biggest
change.

In contrast to standard density-based topology optimiza-
tion, strong KKT optimality criteria are numerically diffi-
cult or impossible to reach. We repeated the single cantilever
example from Fig. 4 with very strict stopping criteria with
different choices of β for (6). Each design obtained in this
way visually shows no difference to Fig. 4b. As in Fig. 5c
we explore the gradient with respect to the profile variables
for the converged design. While a constant gradient is to be
expected, Fig. 18 shows the gradient to become more and
more jagged with increasing β. We assume this behavior to
be correlated with the problems to achieve a low numerical
KKT optimality criterion, caused by a too steep hyperbolic
tangent function in combination with a fixed discretization
of the underlying mesh. Nevertheless, we do not observe a
need for continuation of β. Of course this is only true if the
required KKT condition is not to small.

4 Examples

In this section we present applications where we view
shape mapping as a viable alternative approach to topology
optimization.

4See Gill et al. (2002).

4.1 Phononic band gap optimization

Topology optimization of phononic band gap structures,
introduced in Sigmund and Jensen (2003), yields periodic
designs which suppress transmission of vibrations for a
wide frequency range. However, the standard solutions are
composed of solid material embedded within a weaker
matrix material and are therefore bi-material designs.

It is inherently difficult to find connected solid/void band
gap designs exhibiting a certain stiffness. Not only are the
standard maximal band gap and maximal stiffness designs
mutually exclusive, the band gap optimization is also known
for non-smoothness issues caused by multiple and switch-
ing eigenvalues. Nevertheless, in Bilal and Hussein (2012)
an in-plane design with a normalized band gap of 0.77 is
presented as the best known connected design of its kind.
Meta-heuristics have been applied to find the design.

With topology optimization, the requirement of a
connected structure needs to be formulated directly or
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Fig. 18 Zoom on final profile sensitivity as in Fig. 5c with different β
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Fig. 19 a The square
symmetric reference structure
obtained in Warmuth and
Körner (2015) in a tiled
visualization; b The dispersion
diagram shows that for all wave
directions the eigenfrequencies
up to the 8th mode are below
500 Hz and above 1000 Hz for
the 9th and higher modes

(a) repeated reference design
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indirectly by the problem formulation. With parametric
shape optimization, the design space solely consists of
connected structures, so it is not necessary to model the
requirement.

Here we choose a sine like lattice structure from War-
muth and Körner (2015) as reference and initial design

which can be expressed, using square-symmetry, by a single
structure, see Fig. 19.

To explore the potential of the reference structure, we
restrict the design space to a vicinity of the reference nodal
shape parameters a∗

i extracted from Fig. 19a. The problem
formulation for the maximization of the relative band gap

Fig. 20 Optimized phononic
band gaps structure starting
from the design in Fig. 19. The
center nodes ai are only allowed
to move within 20% of the
structural width

(a) density field (b) shape variables

(c) repeated reference design
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with two auxiliary variables γ (half band gap) and α (gap
center frequency) between the 8th and 9th mode reads as:

max
a,w,α,γ

2 γ

α − γ

s.t.: ωjl ≤ α − γ, 1 ≤ j ≤ K, 1 ≤ l ≤ 8

ωjl ≥ α + γ, 1 ≤ j ≤ K, 8 ≤ l ≤ 12
(

K(Kj , ρ) − ω2
j lM(ρ)

)

�j l = 0, 1 ≤ j ≤ K, 1 ≤ l ≤ 12

ρe = T τ
e (a, w)

|ai − ai+1| ≤ 1.5/N

|wi − wi+1| ≤ .5/N

|ai−1 − 2 ai + ai+1| ≤ .1/N

|wi−1 − 2 wi + wi+1| ≤ .1/N

|ai − a∗
i | ≤ 0.05

wi ∈ [0.01, 0.05]N/2,

plus the square symmetry conditions from Section 3.2.2 for
nodal and profile parameters. The resolution N is chosen to
be 200 for a unit square, resulting in N/2 nodal and profile
shape variables due to square symmetry, β = 400. K repre-
sents the number of discrete wave vectors to calculate. The
result of the optimization is shown in Fig. 20.

The relative band gap is improved from 0.88 to 2.22,
which corresponds to a normalized band gap (2 γ /α) of
1.05. However without considering minimal feature size and
stiffness, this cannot be directly compared with the result in
Bilal and Hussein (2012).

Optimizing for lower modes even larger relative band
gaps can be obtained. However, a full discussion of this
issue would go beyond the scope of this presentation and
will be studied in a forthcoming publication by the authors.

4.2 Boundary driven heat optimization

The following linear and static heat optimization example
can be seen as a first step toward the optimization of a

Fig. 22 Temperature for the design from Fig. 21. The right image
shows the interface temperature subject to the tracking cost function.
Perfect tracking cannot be achieved

catalyst optimization problem. We assume an exothermic
reaction at the interface of a lattice representing the catalyst
support structure. At the upper and lower boundary of a
unit domain, homogeneous Dirichlet boundary conditions
are applied.

For a boundary driven heat source we use nodal pseudo
densities dj = D(ρ) for all nodes 1 ≤ j ≤ (N + 1)2 calcu-
lated from the adjacent element pseudo densities. The heat
source only heats the interface between solid and void. It
can be formulated as the right hand side of the static heat
state equation as

fj = f ∗ 4 dj (1 − dj ), 1 ≤ j ≤ (N + 1)2,

with f ∗ a given constant heat source applied to a grayness
term. The objective is to find a design which tracks the tem-
perature at the interface to a given reference temperature
u∗, e.g. because the temperature is ideal for the reaction to
take place. It is expected that any interface too close to the
homogeneous Dirichlet boundary conditions. will be cooled
to a too low temperature and any interface too far from the
boundary conditions is likely to be insufficiently cooled and
therefore heated above u∗.

Fig. 21 Optimized density and
structures for the interface
driven heat tracking problem in
Section 4.2. The profiles of one
vertical and two horizontal
structures are optimized. No
symmetry conditions are
applied. N = 100, β = 100
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(a) reference design (b) perimeter constraint

Fig. 23 a Solution of a standard minimal pressure topology optimiza-
tion problem with active minimal volume bound v(ρ) = 0.2. The
perimeter results in q(ρ) = 0.011; b Design for added perimeter
constraint q(ρ) = 0.033 based on a Heaviside projection filter. The
original pressure drop is 1% better than in (b)

The optimization problem reads as

max
w

∑

j

4 dj (1 − dj )(uj − u∗)2

s.t.: K(ρ)u = f

ρe = T τ
e (a, w), 1 ≤ e ≤ N2

dj = D(ρ) ∈ [0, 1](N+1)2

|wi − wi+1| ≤ 1.1/N

|wi−1 − 2 wi + wi+1| ≤ .5/N

wi ∈ [0.05, 0.45]
ai = 0, i ∈ I1

ai = 1, i ∈ I2

ai = .5, i ∈ I3,

with I1 = {1, . . . , N + 1} and I2 = {N + 2, . . . , 2 (N + 1)}
the index sets of two horizontal structures (blue and green in
Fig. 21b) and I3 = {2 (N +1)+1, . . . , 3 (N +1)} a vertical
structure (red color).

The obtained result of the shape mapping problem is
shown in Figs. 21 and 22. The benefit of shape mapping lies

here in the clear definition of the interface by the shape to
density mapping T (6), where tβ strictly defines the width of
the interface. It is noted that in such cases, where the objec-
tive is very sensitive with respect to intermediate pseudo
density values classical density-based topology optimiza-
tion tends to optimize merely the grayness of the interface
rather than the topology. A rigorous treatment of stress
constraints suffers from a similar issue, see e.g. Bruggi
(2008).

4.3 LBM based flow optimization

Another route toward catalyst optimization is to maxi-
mize the length of the solid/void interface with a concur-
rent pressure drop minimization. We choose to model the
fluid dynamics by the Lattice Boltzmann method based on
the topology optimization approach given in Pingen et al.
(2007). The state variables are the discrete D2Q9 probabil-
ity distribution functions f from which the local pressure
p(f ) can be calculated.

For the approximation of the perimeter we use the simple
taxicab norm q, which counts the grayness difference over
all element to element edges and is normalized to 1 for a
perfect checkerboard structure. This structure is infeasible
with shape mapping and regularized topology optimization.

q(ρ) = 1

2 N(N − 1)

N
∑

k=2

N
∑

l=1

|ρkl−ρk−1,l |+
N

∑

k=1

N
∑

l=2

|ρkl−ρk,l−1|.

The taxicab norm favors 45◦ angles; a discussion of this
issue and higher order perimeter approximations is given in
Petersson et al. (1999).

We optimize the profiles of two horizontal and two ver-
tical structures. To prevent covering the inflow and outflow
with the vertical structures, in each area, we set the structure
center nodes a far outside of the design domain.

Fig. 24 Pressure drop
minimization with given active
minimal perimeter bound
q(ρ) ≥ 3.3/N . The inflow is on
the lower left side, outflow on
the upper right side. The velocity
magnitude of the laminar flow is
depicted on the left. On the right
the optimized profiles of two
horizontal (blue and green) and
two vertical structures (red and
cyan) are shown. The center
nodes of the structures were not
subject to optimization
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Fig. 25 Modified LBM
pressure drop minimization with
active perimeter bound
q(ρ) ≥ 2.8/N and additional
slope constraints (34). While the
shape mapping result in Fig. 24
comes with a pressure drop 30%
larger than the reference design
in Fig. 23a, the pressure drop
obtained here is 166% larger

The optimization problem reads as

min
w

1

Ninlet

inlet
∑

j

pj (f ) − 1

Noutlet

outlet
∑

j

pj (f )

s.t.: R(f (ρ))) = 0
ρe = T τ

e (a,w)

q(ρ) ≥ 3.3/N

|wi−1 − 2 wi + wi+1| ≤ .4/N

wi ∈ [0, 0.7].

The problem is discretized with N = 100, β = 150. The
multi-objective problem is solved by minimizing the pres-
sure drop for a given lower perimeter bound. We note that a
single straight interface

∑N
l=1 |ρk l − ρk−1 l | has a perimeter

value q(ρ) = .5/N .
A standard pressure drop minimization by topology opti-

mization without explicit perimeter control results in a
perimeter of ≈ 1.1/N for v(ρ) = 0.2, see Fig. 23a. Com-
pared to the reference solution in Fig. 23a, the pressure drop
for the design in Fig. 24 is 30% larger for a three times larger
perimeter q(ρ) = 3.3/N .

In Fig. 23b we show the result of a topology optimiza-
tion problem with the same perimeter bound as for the shape
mapping problem in Fig. 24. To this end, we applied a
Heaviside projection filter (Guest et al. 2004). The minimal
pressure is only slightly changed with respect to the refer-
ence design but holes are formed which are not connected
to the in- or outflow and thus not accessible for the fluid.

However, we should note that in the shape mapping for-
mulation cavities with almost no flow are also formed, see
Fig. 24. This reveals a limitation of the presented method;
feature size of the structures can be formulated but there
is no formulation for the gap between structures. Between
two structures of common orientation this could easily be
formulated as

(aB+i − wB+i ) − (aA+i + wA+i ) ≥ g∗, 1 ≤ i ≤ N + 1,

(31)

where the variables for the lower/left structure start with
index A − 1 and the for the upper/right structure with
B −1, respectively. In the present example with vertical and
horizontal structures one could declare void regions as

ai + wi ≤ b∗
i , i ∈ V1 (32)

ai − wi ≥ b∗
i , i ∈ V2, (33)

where V1 and V2 are index sets such that b∗
i describes a void

geometry. An obvious drawback of that approach for the
LBM problem is clearly, that such a fixed void area is dif-
ficult to define a priori. Alternatively slope constraints can
be applied, however, again the choice of the slope bound is
not easy to determine a priori. A bound for 45◦ still allows
partially common interface for the structures, but numerical
experiments show for the addition of constraints

|ai+1 − ai | ≤ 1/N (34)

in Fig. 25 that no thin cavities occur, however we can only
achieve a maximal perimeter of ≈ 2.8/N which comes
with a poor pressure drop 166% larger than the reference
design. Obviously, the pressure drop minimization problem
with prescribed perimeter is a challenging problem. While a
naive density-based topology optimization expectedly fails,
also a shape mapping formulation yielding satisfactory
results could not be found.

5 Conclusion and outlook

We have presented a parametric shape optimization where
horizontal and vertical structures are mapped to a pseudo
density field on a fixed regular mesh. The structures are
characterized by central nodal and profile thickness vari-
ables associated which the grid nodes of the underlying
mesh.

The proposed method belongs to a class of geometry pro-
jection to fictitious domain methods. Hence it shares the
property that the differentiable structure to mesh mapping
results in a pseudo density field. Such a pseudo density field



1314 F. Wein, M. Stingl

is also used in classical SIMP based topology optimization.
Therefore an existing density-based topology optimization
implementation can be reused, including sensitivity analysis
and calculation of gradients for arbitrary problems.

The approach is related both to classical parametric shape
optimization and to rising field of geometry projection
methods. Comparing this approach with classical paramet-
ric shape optimization, no remeshing is required. However,
the sharp boundaries are lost as the structure to shape map-
ping introduces blurred interfaces. The volume can easily be
calculated based on the pseudo density field. If we compare
the structure to pseudo density mapping with geometry pro-
jection, as in Norato et al. (2015) or Hoang and Jang (2016),
it is performed in a similar manner, but our design repre-
sentation does not allow arbitrary placement and rotation of
(many) sizable geometric objects in the design domain.

Existing geometry projection methods either define the
design or void area by the union of explicitly given simple
geometries, what we consider as topology optimization, or
perform shape optimization with an implicitly given shape
representation. In both cases, essentially arbitrary designs
are possible. Whereas the parametrization by horizontal and
vertical structures results in a significantly limited design
space. However, we see the limited design space in combi-
nation with design regularization5 as beneficial for specific
problem classes. In these cases a free topology optimization
tends to result in undesired designs and modeling the actual
requirements is non-trivial. In contrary, it is unlikely that
the presented method shows significant benefit for problems
which can already be solved painless with established meth-
ods. Three examples showing potential for our method are
given in Section 4.

For the phononic band gap maximization, we require
horizontally and vertically connected structures, while iso-
lated unconnected solid material would exhibit dramatically
superior performance. By structural parametrization the
connection is compulsory with indirect feature size control
via bounds on the profile variables.

For the boundary driven heat source optimization prob-
lem, we benefit from an explicit interface modeling, leaving
no room for the optimizer to satisfy the temperature tracking
by tuning intermediate material only. We note that precise
interface control is also possible in topology optimization
by Heaviside projection filtering and robust formulations as
in Wang et al. (2011) with a careful continuation strategy
for the projection parameter.

For the indirect perimeter maximization flow problem,
topology optimization would result in undesired cavities.

5Slope constraints, curvature constraints and possibly overhang con-
straints.

This can be avoided by structural parametrization. However,
care is still required, as almost isolated cavities are formed,
see Fig. 24.

The simple parametrization of horizontal and vertical
structures by center node and profile variables shows itself
to be surprisingly versatile. Fixing either the central nodal
variables or the profile variables or bounding them in the
vicinity of some reference design allows easy modeling
of requirements beyond classical modeling of topology
optimization problems. Despite the limited design space,
surprisingly complex designs are found, including differ-
ent topologies. Only orthogonal parametrization within a
rectangular design domain has been considered. A more a
more complex analytical domain could be embedded within
a larger shape domain, see the overhang and LBM exam-
ple. A more complex shape parametrization, e.g. diagonal or
curved, could be realized by an additional coordinate trans-
formation. However, we did not investigate this at present
time.
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