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Abstract In this paper, an optimum design method for buck-
ling restrained brace frames subjected to seismic loading is
presented. The multi-objective charged system search is de-
veloped to optimize costs and damages caused by the earth-
quake for steel frames. Minimum structural weight and mini-
mum seismic energy which including seismic input energy
divided by maximum hysteretic energy of fuse members are
selected as two objective functions to find a Pareto solutions
that copes with considered preferences. Also, main design
constraints containing allowable amount of the inter-story
drift and plastic rotation of beam, columnmembers and plastic
displacement of buckling restrained braces are controlled. The
results of optimum design for three different frames are ob-
tained and investigated by the developed method.

Keywords Energy based design . Buckling restrained brace
frame . Non-linear response history analysis . Optimization .

Charged system search

1 Introduction

During the last two decades, with rapid population growth and
dynamic economic developments, the demand for residential,
mixed use and commercial buildings has been increasing

significantly all around the world. Due to the excessive in-
crease in height of buildings in this era, there is a significant
impact on the methods of analysis and design as well as using
appropriate resistant systems and materials for buildings. On
the other hand, with increasing height, seismic loads increase
exponentially proportional to the structure’s height. So, the
seismic design of these buildings in the high seismic zones
becomes very important. Due to increasing the number of
degrees of freedom in buildings, advanced methods of analy-
sis should be employed in order to predict the actual behavior
of these structures. These advanced analysis methods should
cover all key factors such as geometric nonlinearities (p-delta
effects), inelastic material, imperfection geometry, etc. So, a
non-linear analysis is required to consider above factors for
structural designs. In general, two types of nonlinear analysis
approaches for building frameworks are categorized based on
the method of modeling the plastification of members as: the
distributed or lumped plasticity. The distributed plasticity
method, also called the plastic-zone method, discretizes the
structural members into many line segments, and further sub-
divides the cross-section of each segment into a number of
finite elements (Chen and Toma 1994; Chen et al. 1996;
Ziemian and McGuire 2002). The lumped plasticity method,
also widely known as the plastic-hinge method, assumes that
plasticity is concentrated at a zero-length plastic hinge section
at the ends of the elements. Other regions in the frame ele-
ments are assumed to behave elastically (Spacone et al. 1996;
Alemdar and White 2005; Hjelmstad and Taciroglu 2005).

Until now, very limited researches have been performed on
the second-order finite-element plasticity analysis of steel
frame structures under earthquake excitations. Foley and
Vinnakota (1997, 1999a, b) developed a nonlinear finite ele-
ment program for the second-order distributed plasticity anal-
ysis of multi-story planar steel frames under static loadings.
After that, in order to improve computational performance,
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Foley (2001) proposed parallel processing and vectorization
in which the main structure is separated into several sub-
structures for reducing the number of unknown system equa-
tions. Teh and Clarke (1999) presents a co-rotational formu-
lation of a spatial beam element for the purpose of 3D plastic-
zone analysis of steel frames composed of compact tubular
and open sections with no significant torsional warping.
Alemdar andWhite (2005) shows several beam–column finite
element formulations for full nonlinear distributed plasticity
analysis of planar frame structures. Scott et al. (2008) pro-
posed a framework for simulating the response of frame mem-
bers with material and geometric nonlinearities by using the
equations of beam mechanics. They also proposed a new
method for computing the sensitivity of the responses of
force-based beam–column elements when the displacement
field is not specified (Scott et al. 2004). Chiorean (2009) in-
troduced another efficient computer-based method for analyz-
ing inelastic space steel frames with non-linear flexible joint
connections and large deflections. He used the most refined
type of second order inelastic analysis, the plastic zone
analysis. Then, Thai and Kim (2011a, b) presents a fiber
beam–column element which considers both geometric and
material nonlinearities for steel frames. At their work, the
geometric nonlinearities are captured using stability functions
obtained from the exact stability solution of a beam–column
subjected to axial force and bending moments. Then, a beam–
column element formulation and solution procedure for non-
linear inelastic analysis of planar steel frame structures under
dynamic loadings is presented by Nguyen and Kim (2014)
and Nguyen et al. (2014), which the spread of plasticity is
considered by tracing the uniaxial stress–strain relationship
of each fiber on the cross section of sub-elements.

In addition to the utilized analysis method in the design of
structures, more attentions should be paid to constructional
costs of buildings. So, the use of appropriate tools to optimize
the structures is very affordable. In this regard, Degertekin
(2008) developed harmony search algorithm for optimum de-
sign of steel frames. The objective is to obtain minimum
weight of frames by selecting suitable sections from a standard
set of steel sections such as American Institute of Steel
Construction (AISC) wide-flange (W) shapes. Degertekin
and Hayalioglu (2010) developed a harmony search-based
algorithm to determine the minimum cost design of steel
frames with semi-rigid connections and column bases under
displacement, strength and size constraints. Daloglu et al.
(2016) investigated the effect of soil-structure interaction on
the optimum design of steel space frames using some meta-
heuristic algorithms. Truong and Kim (2017) proposed an
effective numerical procedure for reliability-based design op-
timization (RBDO) of nonlinear inelastic steel frames by in-
tegrating a harmony search technique (HS) for optimization
and a robust method for failure probability analysis. Kaveh
and BolandGerami (2017) utilized an enhanced colliding

bodies algorithm for optimal design of large-scale space steel
frames. Then, Kaveh et al. (2017) indicated optimum seismic
design of 3D steel moment frames with different types of
lateral resisting systems according to the AISC-LRFD design
criteria. These frames are analyzed by Response Spectrum
Analysis (RSA), and optimization process is performed using
nine different well-established meta-heuristic algorithms.

This paper presents the Charged System Search algorithm
(CSS) approach (Kaveh and Talatahari 2010a, b, c; 2012 as
the optimization tool for finding nonlinear seismic optimum
design of steel frames with buckling restrained braces (BRBs).
In the CSS, each possible solution is considered as a Charged
Particle (CP), where each CP is treated as a charged sphere
that can exert an electrical force to other agents (CPs). The
quantity of the resulting electric force exerted to each agent is
calculated by the laws of Coulomb and Gauss from electro-
statics. The CSS also uses the governing laws of motion from
the Newtonian mechanics to determine the position of CPs.
Application of these laws provides a good balance between
the exploration and the exploitation of the algorithm (Kaveh
and Talatahari 2010a). Since the defined problem contains
different objectives, a Multi-objective Charged System
Search algorithms (MoCSS) is utilized, here. The rest of the
paper is as follows: in Section 2, the nonlinear finite element
beam-column formulation is presented. The formulation of
the optimization problem is presented in Section 3. Sections
4 and 5 describe the single objective (standard) and multi-
objective CSS algorithms, respectively. An overview of
multi-criteria decision making method is described in section
6. Then, the numerical investigation is presented in Section 7.
Finally, Section 8 concludes the paper.

2 Nonlinear finite element beam-column formulation

The nonlinear time history analysis is the best tool currently
available for predicting building responses at different inten-
sity levels of the ground motion. Various aspects of nonlinear
analysis such as acceptance criteria, element discretization and
assumptions on modeling of energy dissipation through vis-
cous damping are required to use specific features of the ana-
lytical model of the system with various behavioral effects
which captured in the nonlinear component models. So, iden-
tification of the nonlinear finite element modeling in this anal-
ysis is crucial. Structural nonlinearities can be specified as:

1. Geometrical nonlinearities: The effect of large displace-
ments on the overall geometric configuration of
structures.

2. Material nonlinearities: The yielding effects of structur-
al members are simulated in accordance with the stress-
strain relations of materials.
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3. Boundary nonlinearities, (displacement dependent
boundary conditions): The most frequent boundary non-
linearities are encountered in contact problems.

Among these, geometric and material nonlinearities are
two major concerns in the nonlinear analysis of steel struc-
tures. The nonlinearity properties of structural members can
generally be represented by using advanced analytical finite
element models. Meanwhile, the structural responses, such as
displacements and internal forces, are approximated for each
element step by step according to nonlinear time-history anal-
ysis procedure. To simulate material nonlinear property of a
structural member, either “concentrated plasticity with elastic
interior” or “distributed plasticity” models can be used
through various approaches. A concentrated plasticity analy-
sis is often an approximate method where it separates axial
force-moment interaction from the member behavior, while
for reaching a real behavior of the element, the integration of
the sectional response contribution along the element length is
required. On the other hand, the gradual spread of yielding can
be accurately captured by a distributed plasticity analysis
method since the stress state is being updated with respect to
responses of the integrated member sections. Therefore, this
research utilizes a distributed plasticity model for modeling
nonlinear beam-column elements.

The distributed plasticity model of a beam-columnmember
can be simulated either by displacement-or force-based for-
mulations. Following the standard displacement-based ap-
proach, the transverse and axial displacements of a beam-
column member are expressed as appropriate interpolation
functions of the nodal displacements. To approximate the non-
linear displacement field in the displacement-based formula-
tion, several elements are required along the length of a frame
member to represent the distributed plastic behavior if the
axial force becomes large. On the other hand, the force-
based beam-column element employs section forces interpo-
lation functions to formulate element flexibility matrix with
respect to the element nodal forces. So, in the force-based
elements with using just one force-based element to simulate
the nonlinear behavior of a frame member is enough to main-
tain equilibrium along the element (even in the range of non-
linear response) (Neuenhofer and Filippou 1997). In this pa-
per, we utilized force-based distributed plasticity nonlinear
beam-Column elements to simulate the nonlinear behavior
of the frame members.

According to the co-rotational formulation (Crisfield
1991), each element is modeled in the basic system with-
out rigid body modes and the specific transformation is
employed to transform the basic variables to the global
system. The basic (rotating) and global coordinate sys-
tems of a beam-column element are shown in Fig.1. The
material nonlinearity within the basic system is represent-
ed by a discrete number of cross sections (which are

located at the control points of the numerical integration
algorithm along the length of the element). Moreover,
these sections (i.e., 5 cross sections as shown in Fig.1)
can be further subdivided into fibers such that the nonlin-
ear sectional response can be obtained through the inte-
gration of the fiber responses with respect to the given
material constitutive relationship rather than a directly de-
fined force-deformation relationship curve. For the two-
dimensional elements, Wand V are the element force and
deformation vectors respectively; and S and D are the
corresponding sectional force and deformation vectors,
respectively.

In the force-based method, the force interpolation functions
are employed to approximate the force field within a segment
of the element. The relation between the nodal force vector
and internal section force vector is described as:

S xð Þ ¼ a xð Þ:W ð1Þ
where a(x) contains the force interpolation functions. Those
interpolation functions can be readily obtained from the equi-
librium of axial forces and bending moments within the ele-
ment:

a xð Þ ¼ 1 0 0
0

x
L
−1

x
L

" #
ð2Þ

The compatibility relationship between the section and el-
ement deformations can be determined by employing the prin-
ciple of virtual force, as:

V ¼ ∫l0a
T D dx ð3Þ

The linearization of (3) with respect to the basic forces
gives the element flexibility matrix:

F ¼ ∂V
∂W

¼ ∂V
∂D

:
∂D
∂S

:
∂S
∂W

¼ ∫l0a
T f sa dx ð4Þ

While the control sections are subdivided, the strain distri-
bution in a section x of the element can be determined based
on the assumption that the plane section remains plane and
normal to the longitudinal axis. Then the corresponding stress-
es and tangent modulus with respect to the strain values at
each fiber are computed according to the material constitutive
relation. Subsequently, the section stiffness, ks(x), and
resisting force, S(x), are evaluated through numerical integra-
tion schemes. The section stiffness is then inverted to obtain
the flexibility matrix, fs(x). Then, the element flexibility ma-
trix, F, is computed from (4). So, the relation between the
element deformation, V, and the section deformation, D, can
be numerically expressed as:

V ¼ ∑ Np
m¼1 aTD

��
x¼ξm

� �
ωm ð5Þ
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where ξ and ω are locations and associated weights of
the Np integration points over the element length [0, L],
respectively. Gauss–Lobatto quadrature is used in force-
based elements because it places integration points at
the element ends, where the bending moments are larg-
est in the absence of member loads. A graphical repre-
sentation of the five-point (NP = 5) Gauss–Lobatto quad-
rature rule applied to (5) is shown in Fig. 2, (Scott and
Fenves 2006).

3 Design problem formulation

The general formmulti-objectives of energy-based BRB
frames design contains the cost, seismic input energy and
seismic dissipated energy. Also, we considered plastic hinge
rotations and plastic displacements of members and inter-story
drifts as constraints. The following subsections presents the
mathematical relations regarding these matters.

3.1 Objective functions

In this study, two objective functions concerning structural
cost and seismic energy (seismic input energy / seismic dissi-
pated energy) under earthquake loads are defined. The first
objective function can be formulated as follows:

fit1 ¼ min 1� ∑ne
k¼1ρeLkAk þ 5� ∑nBRB

k¼1ρBRBLkAk
� � ð6Þ

where, Ak is the design cross-sectional area variable for
member k; Lk is the total length of design group k; ne
and nBRB are the number of design variables for frames
and bracing, respectively; and ρe and ρBRB are the mate-
rial mass density for beams and columns as well as brac-
ing systems, respectively.

The second objective contains the earthquake energy
which is based on the earthquake input energy to minimize

and the absorbed seismic energy by fuse members to maxi-
mize and it can be defined as follows:

fit2 ¼ min Êi=β̂ð Þ ð7Þ
where Ei is the total input energy to the structure floors;

Êi ¼ ∑n f

m¼1Ei;m ð8Þ

in which, nm is the number of the degree-of-freedom.
Earthquake input energy not only depends on the type of
seismicity but also depends on the type of structural design.
Thus by choosing the appropriate design of structures, work or
earthquake input energy can be optimized and structural sta-
bility under seismic loads will be increased. In the above
equation, the absorbed seismic energy by fuse members, β,
is selected to be maximize by energy dissipating in BRBs than
other structural members. Therefore, we use it in the denom-
inator of (7). Here, β is equal to β ¼ Ehf=Eh, in which Ehf is
the total hysteretic energyof fuse members (BRBs) and Eh is
the total hysteretic energy.

3.2 Design constraints

Constraints on the design are intended as performance and
side constraints. In this paper performance limitations are clas-
sified into two forms: plastic hinge rotations and plastic dis-
placements of members and inter-story drifts, as:

φq≤φ0 ; q ¼ 1; 2;…; nB&C

� �
ð9Þ

Δr ≤Δ0 ; r ¼ 1; 2;…; nBRB
� �

ð10Þ
δs≤δ0 ; s ¼ 1; 2; ::; nsð Þ ð11Þ
where, φq and Δr are the member-end plastic rotations and
displacements, respectively; φ0 and Δ0 are the allowable
values of members end plastic rotations and displacements,
respectively; δs is the values of the s-th inter-story drift and

Fig. 1 Basic (rotating) and global
coordinate system, (Neuenhofer
and Filippou 1997)
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δ0 is its allowable values. nB&C and ns are the number of total
beam-column elements and total stories of the structure,
respectively.

On the other hand, the side constraints which are con-
sidered in selected sections are related to factors such as:
availability, febricity, physical limitations, etc. The beams
and columns section are allowed to be standard AISC sec-
tions while the braces are selected from cruciate sections
defined by the authors:

Al∈Cl

Bm∈Dm

�
ð12Þ

where Cl and Dm are the set of discrete sections available
for beams-columns and BRBs, respectively and Al and Bm

are the element section of beams-columns and BRBs mem-
bers for variable l and m, respectively.

4 Standard charged system search

The charged system search is based on electrostatic and
Newtonian mechanics laws. The Coulomb and Gauss laws
provide the magnitude of the electric field at a point inside
and outside a charged insulating solid sphere, respectively, as
follows (Halliday et al. 2008):

Eij ¼
keqi
a3

if rij < a

keqi
r2ij

if rij > a

8>><
>>: ð13Þ

where ke is a constant known as the Coulomb constant; rij is
the separation of the center of sphere and the selected point; qi
is the magnitude of the charge; and a is the radius of the

charged sphere. Using the principle of superposition, the
resulting electric force due to N charged spheres is equal to
(Halliday et al. 2008):

F j ¼ keq j∑i;i≠ j
qi
a3
rij:i1 þ qi

r2ij
:i2

 !
ri−r j
ri−r j
�� �� i1 ¼ 1; i2 ¼ 0↔rij < a;

i1 ¼ 0; i2 ¼ 1↔rij≥a;

(

ð14Þ

Also, according to Newtonian mechanics, we have
(Halliday et al. 2008):

Δr ¼ rnew−rold ð15Þ

v ¼ rnew−rold
tnew−told

¼ rnew−rold
Δt

ð16Þ

a ¼ vnew−vold
Δt

ð17Þ

where rold and rnew are the initial and final position of a
particle, respectively; v is the velocity of the particle; and a
is the acceleration of the particle. Combining the above
equations andusing Newton’s second law, the displacement
of any object as a function of time is obtained as:

rnew ¼ 1

2

F
m
:Δt2 þ vold:Δt þ rold ð18Þ

Inspired by the above electrostatic and Newtonian mechan-
ics laws, the CSS algorithm was presented as (Kaveh and
Talatahari 2010a):

First, an array of charged particles (CPs) with random
positions and zero velocities are initialized. Then based
on the values of the fitness function for the CPs, a num-
ber of the best CPs are stored in the charged memory
(CM). For generating the new CPs as candidates of

Fig. 2 Evaluation of force-based
element compatibility relation,
(Scott and Fenves 2006)
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solutions, the attracting force vector for each CP is cal-
culated as follows:

F j ¼ qj∑i;i≠ j
qi
a3
rij:i1 þ qi

r2ij
:i2

 !
pij X i−X j
� �

;

j ¼ 1; 2;…;N

i1 ¼ 1; i2 ¼ 0↔rij < a

i1 ¼ 0; i2 ¼ 1↔rij≥a

8><
>:

ð19Þ

where Fj is the resultant force affecting the jth CP.
By moving the CPs toward their new positions, the new

results are obtained:

X j;new ¼ rand j1:ka:F j þ rand j2:kv:V j:old þ X j;old ð20Þ

V j;new ¼ X j;new−X j;old

Δt
ð21Þ

where randj1 and randj2 are two random numbers uniformly
distributed in the range (0, 1). ka is the acceleration coefficient;
kv is the velocity coefficient to control the influence of the
previous velocity. If each new CP exits from the allowable
search space, its position should be corrected using the HS-
based handling approach (Kaveh and Talatahari 2009a, b).
Finally, if some new CP vectors are better than the worst ones
in the CM, in terms of their objective function values, they
will be included in the CM and the worst ones will be exclud-
ed from the CM. The above mentioned process is repeated
until a terminating criterion is satisfied.

5 Multi-objective charged system search

Multi-objective optimization problems consist of several ob-
jectives that are necessary to be handled simultaneously. In
many problems there are two or more, sometimes competing
or incommensurable objective functions have to beminimized
concurrently. In contrast to the single-objective optimization
case, multi-objective problems are characterized by trade-offs
and, thus, there is a multitude of Pareto optimal solutions,
which correspond to different settings of the investigated
multi-objective problem. So, some changes and some addi-
tional steps are considered in the pure charged system search
algorithm for change into multi-objective optimization proce-
dure. Similar to all other multi-objective optimization algo-
rithm, the MoCSS can be used for any problem defined as
multi-objective one. However in this paper we applied this
method for energy based design of BRB frames. Unlike other
current proposals to extend evolutionary algorithms to solve
multi-objective optimization problems, our algorithm uses a
secondary (i.e., external) repository of charged particles that is
later used by other particles to determine their own positions
and velocities.

This algorithm consists of the following steps:

& Level 1: Initialization

Step 1. Initialization. Initialize the parameters of the
CSS algorithm. Initialize an array of charged particles
(CPs) with random positions. The initial velocities of
the CPs are taken as zero. Each CP has a charge of mag-
nitude (qi) defined considering the quality of its solution
as:

qi ¼ ∏NObj

k¼1

fitk ið Þ−fitk worstð Þ
fitk bestð Þ−fitk worstð Þ ; i ¼ 1; 2;…;N

ð22Þ

where NObj is the number of objective function, fitk(best)
and fitk(worst) are the best and the worst fitness value of
kth function; fitk(i) represents the fitness value of agent i.
Step 2. CP ranking. Sort the CPs according to Pareto
optimal solutions.
Step 3. CM creation. Store the CPs which is on the first
front Pareto curve as shown in Fig.3.

& Level 2: Search

Step 1. Force determination. Determine the probability
of moving each CP toward the others considering the
following probability function:

Pij ¼ 1 rank ið Þ > rank jð Þ
0 else

�
ð23Þ

Fig. 3 Evaluation the best non-dominate Pareto archive
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and calculate the attracting force vector for each CP
as follows:

F j ¼ qj∑i;i≠ j
qi
a3
rij:i1 þ qi

r2ij
:i2

 !
pij X i−X j
� �

;

j ¼ 1; 2;…;N

i1 ¼ 1; i2 ¼ 0↔rij < a

i1 ¼ 0; i2 ¼ 1↔rij≥a

8><
>:

ð24Þ
where Fj is the resultant force affecting the jth CP.

Step 2. Solution construction.Move each CP to the new
position and find its velocity using the following
equations:

X j;new ¼ rand j1:ka:F j þ rand j2:kv:V j:old þ X j;old ð25Þ

V j;new ¼ X j;new−X j;old ð26Þ

where randj1 and randj2 are two random numbers
uniformly distributed in the range (0, 1).

Step 3. CP position correction. Similar to the standard
CSS, the positions of violated CPs are corrected by using
the HS-based handling approach by applying one of the
following rules for the violated component of the CP:

a) selecting a new value for the violated CP from
CM,or

b) choosing a value from neighboring of the best CP,
c) using a random value.

Step 4. CP ranking. Evaluate the objective values of the
new CPs and determine the rank of them. The compari-
son of solutions is done in three ways (either in tourna-
ment selection, or dominance concept):

1. Two feasible solutions, choose the one with the best
objective function(s). It means that XA is said to
dominate another XB, if:

fitk X Að Þ≤ fitk X Bð Þ→ for all indices k∈ 1; 2;…;Nobj

n o
fitl X Að Þ < fitl X Bð Þ→for atleast one index l∈ 1; 2;…;Nobj

n o
8<
:

ð27Þ

2. An infeasible and a feasible solution, choose the
feasible one.

3. Two infeasible solutions, choose the one with the
lowest sum of normalized constraint violations.

Step 5. CM updating. For CM updating, the following
steps are performed:
5–1) Pool creating:All new generated CPs in the current
iteration as well as all stored ones in the CM accumulated

to a pool as shown in Fig. 4, then the first Pareto solution
of these solutions are selected as new CM.
5–2) Remove close CPs: Find the distance between all
non-dominated solutions at CM as follows:

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Nobj

k¼1 uk fitk ið Þ−fitk jð Þð Þð Þ2
q

ð28Þ

Fig. 4 Updating the CM

Optimum energy-based design of BRB frames using nonlinear response history analysis 1011



where uk is a constant and chosen to make all uk(fitk)
close to each other, then remove some near non-
dominated solutions from the CM.

& Level 3: Controlling the terminating criterion
Repeat the search level steps until a terminating criterion

is satisfied.

6 Overview onMulti-criteria decision making
method

The multi-criteria decision making (MCDM) is a branch of a
general class of operations research models which deal with
decision problems under the presence of a number of decision
criteria. Whether in our daily lives or in professional settings,

Fig. 5 Frame structures and their related group numbers, a) 6 story, b) 12 story, c) 18 story
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there are typically multiple conflicting criteria that need to
be evaluated in making decisions. Cost or price is usually
one of the main criteria, although some measure of quality
is typically another criterion that is in conflict with the
cost. So, the MCDM is further divided into multi-
objective decision making (MODM) and multi-attribute
decision making (MADM) (Climaco 1997). There are
several methods in each of above categories that share
common characteristics of conflict among criteria, incom-
parable units and difficulties in selection of alternatives.
In multiple objective decisions making a set of objective
functions is optimized subject to a set of constraints and
alternatives are not predetermined. The most satisfactory
and efficient solution is sought and is not possible to
improve the performance of any objective without
degrading the performance of at least one other objective.
In multiple attribute decision making, a small number of
alternatives are to be evaluated against a set of attributes
which are often hard to quantify. The best alternative is
usually selected by making comparisons between alterna-
tives with respect to each attribute.

Many different approaches can be used for the
MCDM process (Fishburn 1970). A simple method is
the multi-criteria tournament decision making method
(MTDM) (Parreiras et al. 2005). According to the pref-
erences of a human decision maker, this method provides
the ranking of alternatives from best to worst. So, it has
another positive aspect, involving few input parameters,
just the importance weight of each criterion. This method
introduces a function, R, capable of reflecting the
MCDM global interests. First, each possible solution is
compared to the others with considering only the kth-
criterion in order to find this function. The pairwise com-
parisons are performed through the tournament function,
Tk(a, A), which counts the ratio of times alternative a
wins the tournament against each other b solution from
A. So, with considering that a is a non-dominated point
in the objective space, Tk(a, A) can be stated as:

Tk a;Að Þ ¼ ∑∀bϵA;a≠b
tk a; bð Þ
Aj j−1ð Þ ð29Þ

where:

tk a; bð Þ ¼ 1 if fitk bð Þ − fitk að Þ > 0
0 otherwise

�
ð30Þ

The tournament functionassigns a score to each solu-
tion in the Pareto front. The assigned score as a perfor-
mance measure provides a distinct ordering of the ele-
ments of A for each criterion. In order to generate the
global ranking, taking into account all criteria and their
respective weights, wi (priority factors), the scores are
aggregated into the global ranking function, R. The

weighted geometric mean is considered as the aggrega-
tion function in this paper, therefore:

Ra ¼ ∏Nobj

k¼1Tk a;Að Þwi

� � 1
Nobj ð31Þ

where Nobj is the number of objective functions. In ac-
cordance with the following conditions, the priority
weights must be specified by the MCDM, namely:

wi > 0 and∑Nobj

i¼1 wi ¼ 1; ð32Þ

The ranking index, R(a), gives an idea of how much each
alternative is preferred to the others. In other words: if R(a) >
R(b), then, a is preferred to b, and when R(a) = R(b), then a is
indifferent to b.

7 Numerical examples

7.1 Problem description

Three building frameworks are considered for numerical in-
vestigation of energy based optimum seismic design using the
developed MoCSS algorithm. These structures are in
California/Nevada at latitude 36.9° N and longitude 120° W.
The structural layout is symmetric in each direction and seis-
mic lateral loads are resisted by a pair of 3-bay concentrically

Table 1 Section sets for design variables of CBFs

Variable Section Sets A(cm2) I(cm4) Z(cm3)

Beam & Column
sections (297number)

W4X13 24.70 470.34 102.91

W6X9 17.29 682.61 102.09

.

.

.

.

.

.

.

.

.

.

.

.

W64X798 1509.67 2,605,609 58,501.82

W36X848 1606.44 2,805,400 62,762.46

BRBs sections
(150 number)

Sec 1 0.51 --- ---

Sec 2 1.22 --- ---

.

.

.

.

.

.

.

.

.

.

.

.

Sec 149 269.41 --- ---

Sec 150 272.51 --- ---

Table 2 Acceptance criteria for nonlinear procedures structural steel
components

Fuse Members Non-Fuse Members

Braces in Tension 13ΔT Beams 0.25θy ~ 1 θy
Braces in Compression 8ΔC Columns 0.25θy ~ 1 θy
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braced frames located at the primate of the building. Each bay
has 6.35 m wide center-to-center and all stories are 3.81 m
high. The structures have 6, 12 and 18 stories, respectively.
For reducing the search space and analysis time, we grouping
the design variables of frames into 6, 16 and 24 groups for
these examples, respectively as illustrated in Fig. 5. For each
frame, the seismic weights of floors, and the roof are 790 KN,
604 KN, and the linear distributed loads of floors and roof are
equal to 13.83 KN/m and 10.5 KN/m, respectively.

The steel material used for beam and column members is
ASTM A992 (Fy = 50 ksi), while ASTM A36 or SN 400B
(Fy = 42 ksi) is considered for the BRBs core material. Also,
all columns and beams are selected from 297W shape sections
(AISC 2010) and all of BRBs sections are selected from 150
predetermined cruciate sections as presented in Table 1. The
detailed properties of the different W-shaped sections are avail-
able in the manual of the American Institute of Steel
Construction (AISC 2010). The plastic rotation limit φ0 for
all beam and columns and the plastic displacement limits Δ0

for braces are given in Table 2. The inter-story drift limit δ0 is
t a k e n a s 2 . 0 % o f s t o r y h e i g h t ( i . e . , δ 0

=3810 × 0.025 = 76.2 mm, Fishburn 1970).
As mentioned earlier, the nonlinear time history analysis is

an analysis tool for optimum energy based design of RBRFs.
Since the selection of an appropriate record of groundmotions
has a large impact on the results of the nonlinear time history
analysis, the average results of 7 earthquake records or the
maximum results of 3 earthquake records should be selected
according to FEMA-450 recommendation for non-linear time
history analysis. Since the developed optimization method is
an iterative process, so we use 3 records of earthquake for
mitigating calculation burden. These three earthquake records
are selected and scaled according to the maximum considered
earthquake (MCE) spectral response acceleration as presented
Table 3, (Climaco 1997). It is assumed that the site is Class D
or stiff soil. The response spectra of selected ground motions
and design spectra (with probability of 2% in 50 years) are
shown in Fig. 6.

Fig. 6 Site design spectra and
response spectra of selected
ground motions

Table 3 Selected ground motion records parameters

Record name Earthquake
magnitude

PGA (g) PGV
(cm/
s)

Closest to fault
rupture (km)

Scale Factors

6 story 12 story 18 story

Kobe-
Kakogowa00

6.9 0.251 18.7 26.4 3.63 3.63 3.63

Imperial valley-H-E12140 6.5 0.2663 17.6 18.2 2.47 2.47 2.47

Northridge-
Bluff Rd. 00

6.7 0.179 9.4 12.3 8.68 13.21 13.21
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7.2 Parameter setting

It is known that there is no universal optimization method
applicable to an arbitrary problem. Our method follows
this point as well. However for the defined structural prob-
lem in this paper, the MoCSS method works better than the
others. Some reasons are that the MoCSS utilizes all CPs
while other methods use just some selected agents. Also,
the MoCSS utilizes the controlling rules for moving the
CPs; while the MoPSO, as an example, just can detect
the direction of the movement and the amount of it is se-
lected randomly. Besides, MoCSS has a memory for saving
the so far best solutions and it uses an advanced constraint
handling approach (HS-Based method) as described in
Step 3 of the algorithm. These all raise the power of the
algorithm. This means that the influence of the parameters
of the algorithm is less for this method than other ones. As
a result in this paper, the parameters of ka and kv are simply
set to unit. However, since these parameters control the
exploitation and exploration of the algorithm (Kaveh and

Talatahari 2010a), one can reach better results by adjusting
suitable amounts for them. Considering the complexity of
the presented problem in this paper, it seems that these
simple values are applicable. The number of agents is tak-
en as 100, the maximum number of iterations is set to 200
and a = 1 and kt = 0.75. In addition to the MoCSS, we uti-
lized a real coded NSGA-II (Deb et al. 2002) with a pop-
ulation size of 100, a crossover probability of 0.9 (pc =
0.9), tournament selection, a mutation rate of 1/Nvar
(where Nvar is the number of decision variables), and dis-
tribution indexes for crossover and mutation operators are
t aken a s η c = 20 and ηm = 20 , r e spec t i v e l y ( a s
recommended in Deb et al. 2002). Also, the MOPSO
(Coello and Lechuga 2002) is used with a population of
100 particles, an archive size of 100 particles, a mutation
rate of 0.5, and30 divisions for the adaptive grid (Coello
and Lechuga 2002). For all examples presented in this pa-
per, the number of fitness function evaluations (structural
analysis) in the multi-objective optimization phase is re-
stricted to 20,000.
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Fig. 7 Pareto fronts of three
methods for the 6-story Frame

Table 4 Comparison of the extreme results for the three frame optimization problems

Optimization method MoCSS (present work) NSGA-II MoPSO Max fit1 Max fit2

6-story Frame

Obtained extreme values [59.0, 1.30] [59.2, 1.56] [58.8, 1.63] 60 4
[24.1, 3.54] [29.30, 4.02] [28.16, 3.75]

12-story Frame

Obtained extreme values [252.00, 4.52] [255, 5.28] [252.4, 4.99] 255 8.25
[138.3, 7.99] [175.13, 8.16] [159.31, 8.04]

18-story Frame

Obtained extreme values [444.3, 2.10] [448.4, 3.19] [444.3, 2.25] 450 16
[284.1, 14.22] [318.6, 15.49] [312.1, 15.19]
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7.3 Results

Table 4 presents the extreme values obtained by the MoCSS,
MoPSO and NSGA-II for the three examples. It should be
noted that the maximum allowable values for the objectives
are considered as reported in the tables. According to Table 4
for 6-story example and those points which fit2 is more im-
portant than fit1, the MoCSS yields 25% and 20% better than
the MoPSO and NSGA-II, respectively. These values are 10%
and 16.8% for the second example. Also, for the 18-story
frame MoCSS can find 14.22 for the second objective while
the final result of the MoPSO and NSGA-II are 15.19 and
15.49, respectively.

When the weight (fit1) is considered as the main objective,
for the first example the results of MoCSS are16% and 21.5%
better than those of the MoPSO and NSGA-II, respectively.
For the 12 story frame, the best weight obtained by the

MoCSS, MoPSO and NSGA-II are 138.3, 159.31 and
175.13 tons, respectively. Also for the 18-story frame,
MoCSS can find 284.90 tons while the final result of the
MoPSo and NSGA-II are 312.46 and 318.63 tons, respective-
ly. Clearly, the best results are obtained by the MoCSS. The
Pareto fronts of three methods for the first example are pre-
sented in Fig. 7. Also, Figs. 8 and 9 showthe Pareto fronts for
the second and third examples, respectively. According to
these figures, the results of the MoCSS are obviously better
than the two other methods.

To clarify the values of design constraints, we normal-
ized and plotted the values of constraints for the best
results (with the smallest weight) obtained by the
MoCSS as shown in Fig. 10 for the last frame as an
example. Since the conditions of the structures vary in
every time step of the earthquake for each node, to obtain
a single number for comparison we chose the maximum
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Fig. 9 Pareto fronts of three
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value of the time history. It is obvious that if maximum
value becomes acceptable, rest values will be satisfied.
Therefore, the final reported designs are feasible. This
figure represents the maximum values of rotation and ax-
ial deformations for all beams, columns and BRBs, re-
gardless of their grouping. As shown in Fig. 10, the
BRB members as energy absorbent members (fuse mem-
bers), have a controlling role in the amount of deforma-
tions constraints. There is also another constraint such as

inter-story drift in the problem that controlled the dimen-
sion of non-fuse members (beams, columns).

For the process of decision making, five different scenarios
are considered. Table 5 presents the solutions obtained via the
MoCSS and two other methods corresponding to each consid-
ered scenario for the examples. As it can be seen, the all good
results are found by the MoCSS for all three examples. It
should be noted that these scenarios become important when
some different designs are necessary.

Table 5 Different possible scenarios for frame structures with corresponding solutions

Scenario Importance of criteria Possible priority weights Selected solution by MTDM

MoCSS NSGA-II MoPSO

fit1 fit2 Ri fit1 fit2 Ri fit1 fit2 Ri

6-story frame

A C1 > >C2 [0.9,0.1] 25.725 3.465 0.8472 32.317 3.709 0.8412 33.825 2.847 0.8489

B C1 >C2 [0.7,0.3] 33.144 2.885 0.7368 39.557 3.131 0.7362 40.378 2.465 0.7306

C C1 ≈C2 [0.5,0.5] 39.065 2.3525 0.7063 47.336 2.594 0.7070 43.108 2.308 0.7064

D C1 <C2 [0.3,0.7] 42.957 1.821 0.7351 51.995 2.112 0.7368 47.892 1.987 0.7368

E C1 < <C2 [0.1,0.9] 47.902 1.452 0.8491 54.98 1.690 0.8500 55.735 1.723 0.8500

12-story frame

A C1 > >C2 [0.9,0.1] 139.050 7.646 0.846 179.825 7.379 0.8498 160.269 7.673 0.8498

B C1 >C2 [0.7,0.3] 161.011 6.189 0.7366 193.799 6.768 0.7368 165.291 6.849 0.7349

C C1 ≈C2 [0.5,0.5] 194.774 4.920 0.7055 208.912 5.977 0.7070 180.976 5.833 0.7070

D C1 <C2 [0.3,0.7] 204.524 4.723 0.7368 228.359 5.550 0.7366 198.684 5.474 0.7368

E C1 < <C2 [0.1,0.9] 226.825 4.565 0.8473 238.172 5.350 0.8478 242.632 5.091 0.8500

18-story frame

A C1 > >C2 [0.9,0.1] 287.350 11.916 0.8463 321.153 9.5112 0.8489 318.625 15.491 0.8499

B C1 >C2 [0.7,0.3] 294.317 8.779 0.7363 334.466 6.9428 0.7368 330.985 12.451 0.7368

C C1 ≈C2 [0.5,0.5] 307.2276 7.771 0.7065 361.853 3.9076 0.7071 377.049 6.5860 0.7071

D C1 <C2 [0.3,0.7] 327.350 5.935 0.7367 388.385 2.6279 0.7368 394.530 5.7307 0.7343

E C1 < <C2 [0.1,0.9] 385.483 2.291 0.8497 418.412 2.3987 0.8439 422.449 3.2725 0.8462
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story frame obtained by the
MoCSS
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8 Conclusion

This study proposes a multi-objective optimal seismic
design method for the buckling restrained braced frames.
The proposed optimal seismic design method considers
two objective functions (i.e., minimization of structural
cost, minimum earthquake energy) to optimize the eco-
nomic feasibility and seismic performance of a structure,
simultaneously. Also, this paper uses discrete structural
optimization so called the multi-objective charged system
search algorithm which is based on some basic laws of
physics and mechanics.

In this paper several designs with improved weight or seis-
mic performance (Controlled energy absorption) were obtain-
ed. Because the suggested optimal design method optimizes
two objective functions simultaneously, it can suggest differ-
ent designs to engineers, who can choose the final design
based on such alternatives.

The results obtained amply demonstrate that the pre-
sented approach is efficient in converging to the true
Pareto fronts and in finding a diverse set of solutions
along the Pareto front. Considering results, it is obvious
that the Pareto front obtained by the MoCSS is more
diverse and better than other methods for BRB frames.
After computing the Pareto front, the engineers involved
in making design decisions, express their preferences
about different criteria (objectives or other independent
criteria). By aggregating different ideas, the final solution
is selected by an algorithm called MTDM.
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