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Abstract This paper presents a novel porous structure
modeling and shape optimization method. Specifically,
the porous structure is simplified into a truss network,
and the connecting node positions are optimized to
achieve the optimal stiffness. Simultaneously, the porosity
distribution is tailored by adding local geometry control
constraints. Then, as a following step, the truss elements
are restored back into the explicit form, described by the
parametric level set functions; and by conducting the
Blinn transformation, the optimized truss structure is
transformed into a continuum lattice model with smooth
transitions at the internal joints. Finally, the maximum
stress level at the joints is optimized through parametric
level set shape optimization. In summary, this method is
effective in building heterogeneous porous structures with
tailored porosity distribution, and more importantly, both
the stiffness and the stress level can be effectively opti-
mized, which is an outstanding characteristic compared to
the majority of the existing porous structure modeling and
optimization methods. Effectiveness of the proposed
method is proved through a few numerical case studies.

Keywords Porous structure . Lattice . Level set . Truss .

Structural optimization

1 Introduction

Porous structures widely exist in nature, such as in bones and
sandstones. Generally, the heterogeneous materials are ran-
domly distributed, which causes challenges in related model-
ing and simulation. Reconstruction of the random heteroge-
neous porous material model based on scanned images has
attracted substantial attention (Liu and Shapiro 2015), which
generates material samples sharing common characteristics
such as density, porosity, stiffness, etc.

Other than reconstruction, natural materials are also widely
studied for the design and optimization of engineered porous
structures, which can attain superior mechanical performance
by tailoring the local material distribution; see Fig. 1 for a few
examples. Approaches for intentional porous structure model-
ing and optimization are quite diversified and a brief review is
demonstrated below by distinguishing the homogeneous and
heterogeneous porous structures, where the former means the
uniform porosity distribution across the design domain and
the latter indicates the non-uniform porosity distribution, i.e.,
the material structure varies from one location to another.
Noted that, regardless of the homogeneity or heterogeneity,
the structure of interest is deterministic which is different from
the microstructures in stochastic representation.

To build a homogeneous porous structure, a trivial ap-
proach is to select a candidate porous unit cell and spatially
repeat it to form the ensemble. Hollister (Hollister et al. 2002)
used cylindrical voids to model the porous unit cell of tissue
scaffolds and its effective elasticity properties were empirical-
ly modeled and optimized through homogenization (Hollister
and Kikuchi 1992). Fang et al. (Fang et al. 2005) characterized
the effective elasticity properties of the porous unit cell with
centered square channels through asymptotic homogeniza-
tion, and impact of the fabrication process parameters was
tested. A library of the representative porous unit cells for
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tissue scaffolds can be found in (Sun et al. 2005). For these
aforementioned works, the porous unit cells all have the reg-
ulated geometry which can be parametrically modeled.
Recently, the inverse homogenization-based topology optimi-
zation has been widely adopted to design the freeform porous
unit cell, attaining superior physical properties, including elas-
ticity properties (Sigmund 1994; Lin et al. 2004; Guest and
Prévost 2006; Hollister and Lin 2007; Challis et al. 2012;
Wang et al. 2014, 2016b; Vogiatzis et al. 2017a), bulk modu-
lus (Sigmund 2000; Gibiansky and Sigmund 2000; Kang et al.
2010; Huang et al. 2011; Wang et al. 2016a), porosity (Lin
et al. 2004), permeability (Guest and Prévost 2006, 2007;
Hollister and Lin 2007; Challis et al. 2012; Wang et al.
2016a), and thermal expansion coefficient (Sigmund and
Torquato 1997). It is widely accepted that a bigger design
space is explored by enabling the local freeform material dis-
tribution. In addition, the two-scale inverse homogenization-
based topology optimization has also been actively investigat-
ed, which concurrently optimizes the macrostructure and the
repetitive porous unit cell (Liu et al. 2008; Niu et al. 2009;
Deng et al. 2013; Huang et al. 2013; Zuo et al. 2013; Guo et al.
2015; Wang et al. 2016c). A commonality of these works is
that, the porous unit cell is spatially identical and therefore, the
porosity and other physical properties are spatially invariant.
Hence, the overall structure is amenable for modeling, optimi-
zation, and fabrication.

The heterogeneous porosity distribution brings challenges
to the porous structure modeling and optimization. A simpli-
fied approach is to use the ground structure method (Dorn
et al. 1964), originally developed for truss-like structures, to
design the lattice structure. The strut diameters are utilized as
the optimization variables to modify the structural perfor-
mance and local porosity. The heterogeneity can be further
intensified by allowing the diameters approach zero (causing
topological changes) (Zegard and Paulino 2014) or enable the
connecting node movement (Liu and Ma 2017a). Another
approach is to use predefined lattice units to repetitively form
the macro structure (Liu andMa 2017b). Similar to the ground
structure method, the lattice unit densities are employed as the

optimization variables, and homogenization and surrogate
modeling are performed to build the empirical elastic proper-
ties. Therefore, both the lattice unit and the macrostructure can
be concurrently optimized (Arabnejad Khanoki and Pasini
2012; Zhang et al. 2015; Liu et al. 2015; Cheng et al. 2017)
in the case that the unit density is allowed to approach zero,
which is similar to the conventional homogenization-based
topology optimization method (Bendsøe and Kikuchi 1988;
Bendsøe and Sigmund 2004). Prominently, the optimal design
solution is physically realizable. Chen (Chen 2007) presented
an adaptive change method for the repetitive lattice structure,
where shape of the lattice units can be spatially varying ac-
cording to the specific need. Other than the lattice structures,
the spatially varying freeform porous unit cells have also been
realized by the two-scale inverse homogenization-based to-
pology optimization (Rodrigues et al. 2002; Coelho et al.
2008, 2011; Xia and Breitkopf 2014, 2015; Coelho and
Rodrigues 2015; Sivapuram et al. 2016), even though the
computational cost is drastically increased. Another limitation
of the two-scale freeform approach is that, explicit descrip-
tions of the local porous unit cells do not exist, and therefore,
the related post-editing is extremely tedious.

For the aforementioned porous structure modeling methods,
the porous units, distributed either homogeneously or heteroge-
neously, are placed inside the design domain based on a uni-
form space discretization. In other words, a fixed quadrilateral
or hexahedral mesh is created first before specifying the local
material distribution. This fact limits the generation of highly
heterogeneous porous structures. To fix this issue, a novel ap-
proach is proposed in (Kou and Tan 2010, 2012). The Voronoi
tessellation is performed to partition the design domain into a
collection of sub-areas, and a local void is generated inside each
sub-area by fitting in a closed B-spline curve. In this way, the
overall heterogeneity can be effectively controlled by manipu-
lating the Voronoi tessellation. Even the functionally graded
Voronoi tessellation has been achieved (Kou and Tan 2012).
A similar approach was adopted in (Fantini et al. 2016), where
the Voronoi tessellation is processed by the Catmull-Clark al-
gorithm to produce the smoothed internal voids. For these

(a) Lattice infilled bracket (b) Ceramic foam filter (Storm et

al. 2013) 

Fig. 1 Examples of engineered
porous structures
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Voronoi-based methods, the tessellation is subjected to no op-
timality criteria and it is non-trivial to perform the after-
tessellation optimization. Hence, this paper contributes the
new method, which has the heterogeneous porous structure
modeling capacity compatible to the Voronoi-based methods
and more importantly, can effectively conduct the structural
compliance and stress level optimization.

This proposedmethod employs four steps, as demonstrated
below (Fig. 2):

And this method shows outstanding characteristics in the
following aspects:

1) Both the structural stiffness and stress level can be effec-
tively optimized;

2) The local porosity can be explicitly controlled, e.g., both
heterogeneous and functionally graded porosity distribu-
tion are achievable;

3) The Blinn transformation-based level set method can ef-
fectively transform the truss structure into a porous
continuum.

More details will be presented in the rest of this paper.

2 Truss-like structure design with local geometry
control

Truss-like structure design belongs to a discretized structure
design category, where the entire structure is formed by a
network of interconnected truss elements. Truss-like structure
is widely employed in practice for being lightweight and stiff,
e.g., lattice structures have been widely explored to infill the
conventional solid mechanical parts, in order to reduce weight

without drastically changing the load-bearing capacity. So far,
a wide variety of methods have been developed to design
truss-like structures (Stolpe 2016), including the ground struc-
ture method (Dorn et al. 1964), the density projection method
(Alzahrani et al. 2015), and the non-gradient methods
(Mortazavi and Toğan 2016), etc. Among them, the ground
structure method attracts the most attention (Bendsøe et al.
1994; Zegard and Paulino 2014), where a ground structure
composed of numerous strut elements are constructed first
and later, either the strut cross-section densities or the nodal
positions are optimized to achieve the optimal design. In the
truss-like structure design in this work, we build a base struc-
ture as the input similar to the ground structure method, but
only the nodal positions will be employed as design variables,
but not the cross-section densities. Therefore, no topological
changes will happen. For the reason, the porosity constraints
will dynamically change if the patches merge or split, which
causes oscillations in the convergence. Also, if the cross-
sectional densities are considered, it may run into the well-
known stress singularity phenomenon that has been widely
reported in trusses (Kirsch 1990; CHENG and JIANG 1992;
Cheng and Guo 1997; Rozvany 2001).

2.1 Shape optimization

The typical compliance-minimization problem is formulated
in Eq. 1.

min: FT U
s:t: KU ¼ F

K ¼ ∑
N

e¼1
Ke

ð1Þ

where K is the assembled global stiffness tensor, U is the
global displacement vector, and F is the global force vector.

It is noted that:

Ke ¼ Te
TKeTe ð2Þ

where Te is the coordinate transformation tensor, �Ke is the
stiffness tensor of strut element e in the local coordinate sys-
tem, whileKe is the stiffness tensor of truss element e in global
coordinate system. Assembly of Ke forms the global stiffness
tensor K.

In case that there exist a few discrete cross-section options,
e.g. different cross-section sizes or shapes, the multi-material
interpolation is necessary, e.g., DMO (Discrete Material
Optimization) (Stegmann and Lund 2005) is a good multi-
material interpolation scheme as presented in Eq. 3:

Ke ¼ Te
T ρe1ð Þp 1− ρe2ð Þp½ �Ke1 þ ρe2ð Þp 1− ρe1ð Þp½ �Ke2

n o
Te ð3Þ

in which �Ke1 and �Ke2 are stiffness tensors of truss element e in
local coordinate system with the cross-section option 1 and 2,

Build the base structure by filling the design 

domain by a truss network 

Optimize the base structure by adjusting the 

nodal positions for compliance minimization 

Transform the truss network into a continuous 

porous structure (lattice model) through the 

Blinn transformation-based level set method 

Optimize the Blinn factors to satisfy the stress 

level constraints 

Fig. 2 Overview of the proposed method
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(a) (b)

Fig. 3 Example of truss element
intersection: (a) Structure before
truss element intersection, (b)
Structure after truss element
intersection

(a) Input base structure and the boundary condition (b) Optimization result subjected to the

(c) Optimization result subjected to the (d) Optimization result subjected to the 

(e) Functionally graded porosity distribution 

Fig. 4 Local geometry control

852 J. Liu



respectively; ρe1 and ρe2 are the densities related to cross-
section option 1 and 2, respectively. The advantage of this
multi-material interpolation scheme is that it will finally con-
verge to either (ρe1 = 1 , ρe2 = 0) or (ρe1 = 0 , ρe2 = 1), which
means a clearly identified cross-section option.

2.2 Sensitivity result

To solve this shape optimization problem, the Lagrangian is
constructed as:

L ¼ FTU− ~U KU−Fð Þ ð4Þ

in which ~U is the adjoint displacement field. Noted that, for
the compliance-minimization problem, solution of the adjoint

variable is ~U ¼ −U (Bendsøe and Sigmund 2004).
Correspondingly, the sensitivity analysis result on the nod-

al coordinate is:

∂L
∂xi

¼ − ∑
n

e¼1
Ue

T ∂Ke

∂xi
Ue

¼ − ∑
n

e¼1
Ue

T ∂T e
T

∂xi
KeT e þ T e

T ∂Ke

∂xi
T e þ T e

TKe
∂T e

∂xi

 !
Ue

ð5Þ

whereUe is the displacement vector of truss element e and xi is
the ith nodal coordinate.

Then, changes of the nodal positions can be determined
through Eq. 6, which ensures that the Lagrangian changes in
the steepest descent direction:

∂xi
∂t

¼ ∑
n

e¼1
Ue

T ∂Ke

∂xi
Ue ð6Þ

Finally, the nodal positions are updated through Eq. 7:

xikþ1 ¼ xik þ t
∂xi
∂t

ð7Þ

where, t is the step length and k represents the iteration
number.

2.3 Local geometry control

In (Xia et al. 2013), local geometry control was realized to
prevent truss elements from intersection. As shown in Fig. 3,
if the vertex v3 flips over the edge v1-v2, the truss elements
intersect which is unreasonable in practice.

(e) Combination based on union operation a

(f) Combination based on 

Blinn transformation 

( ) 

(g) Combination based 

on Blinn transformation 

( ) 

(h) Combination based 

on Blinn transformation 

( ) 

(i) Combination based on 

Blinn transformation 

(

) 

(a) Strut 1 (b) Strut 2 (c) Strut 3 (d) Strut 4 

Fig. 5 An example of comparing
the different operators
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Therefore, a non-intersection constraint was developed, as:

S j≥S j ¼ 1;…;m

S j ¼ 0:5*det
1 1 1
x1 x2 x3
y1 y2 y3

2
4

3
5

ð8Þ

where Sj is the jth triangle grid area and it is ensured pos-
itive by counting the vertices in the contour-clockwise or-
der. S is the lower bound of the triangle grid area which is a
small positive number to prevent the intersection. m is the
number of triangular elements involved.

Inspired by this non-intersection constraint, the triangle
grid areas can also be constrained with an upper bound in this
work, in order to realize the local geometry control. It is:

S j≤S j ¼ 1;…;m ð9Þ

in which �S is the upper bound of the triangle grid area. The
porosity upper limit is useful for several applications, e.g.,
ensure the 3D printed porous structure self-support and guar-
antee the proper functioning of wire-wrapped sand screen.

In summary, the local porosity can be well controlled by
customizing the S and �S values.

2.4 Functionally graded porosity distribution

Inspired by Eqs. 8 and 9, the local porosities can be further
controlled subjected to spatially varying bounds, by mak-
ing the bound a function of the coordinates, through which
functionally graded porosity distribution can be achieved.
For instance, the porosities can vary in a linear pattern
through Eq. 10, or in a non-linear pattern through Eq. 11,
in the x-axis direction.

S ¼ 0:2þ 0:1x; S ¼ 0:3þ 0:1x ð10Þ

S ¼ 0:2þ sin πxð Þ; S ¼ 0:3þ sin πxð Þ ð11Þ

An example of the functionally graded porosity control is
demonstrated in Fig. 4. Figure 4a presents the input base struc-
ture and the boundary condition. The truss elements have a
thickness of 2.4 and the Young’s modulus of 1.3. The two
bottom corners are fixed and a unit force is loaded at the top
center point. Because of symmetry, only the left half of the

(a) Original truss structure (b) Transformed lattice structure 

(c) Transformed lattice structure 

Fig. 6 Transformation from truss
into lattice (domain size:
300*312; strut thickness: 8)
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structure is demonstrated. Fig. 4b-d presents the optimization
results subjected to the S ¼ 1440; 2160; and 2880, respective-
ly. Then, by making the S varying in the x-axis direction
(S ¼ 1440þ 2:4x ), the functionally graded porosity distribu-
tion can be clearly identified in Fig. 4e.

Noted that, other than determining the porosity grading
through optimization, a given grading of the porosity distribu-
tion is adopted in this work. With regards to the motivation,
the structural optimization employs the mechanical properties,
i.e. stiffness and stress, as the objective, but at the same time,
the functionally graded porosity distribution may be related to
other functional aspects, e.g. graded thermo-fluid properties,
filtering properties, or bio-mechanical properties, which is
prescribed when formulating the optimization problem. In
fact, intentionally controlling the functionally graded porosity
distribution is widely studied (Kou and Tan 2007, 2012).

3 Level set-based porous structure modeling

The truss element, according to its dimension, can then be
transformed into a continuum strut represented by the implicit
level set function; see below:

Φ x0; y0ð Þ ¼ min
Ls
2
− x−x0ð Þcosθþ y−y0ð Þsinθ½ �;

�
Ls
2
þ x−x0ð Þcosθþ y−y0ð Þsinθ½ � ;

Hs

2
− − x−x0ð Þsinθþ y−y0ð Þcosθ½ � ;

Hs

2
þ − x−x0ð Þsinθþ y−y0ð Þcosθ½ �

�
ð12Þ

where, Ls and Hs are the length and thickness of the strut,
respectively; (x0 , y0) is the center position and θ is the
orientation.

The individual struts can be combined through Boolean op-
erations to form a complex geometry, as demonstrated below:

Φ1 ∪ Φ2 ¼ max Φ1;Φ2ð Þ
Φ1 ∩Φ2 ¼ min Φ1;Φ2ð Þ
Φ1 n Φ2 ¼ min Φ1;−Φ2ð Þ

ð13Þ

In fact, topology optimization can be performed based on
the input structure purely composed of Boolean operated
struts, which is named the moving component method (Bell
et al. 2012; Guo et al. 2014; Norato et al. 2015; Zhang et al.

(a) Input truss structure (b) Compliance optimization result 

(c) Restored continuum structure (d) Stress analysis on the input 

Fig. 7 Truss structure
optimization and the lattice
transformation
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(a) The optimized lattice subject to (b) The stress distribution 

(c) The optimized lattice subject to (d) The stress distribution 

Fig. 8 Optimization results
subjected to different stress-level
limits

(a) Subject to (b) Subject to

Fig. 9 Convergence histories
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2016; Guo et al. 2016), which potentially could solve the
problems studied in this work .

Alternatively, we treat the structure including a large
number of struts as a truss network, perform the nodal
position optimization and later, restore it back to its origi-
nal form. Moreover, the Boolean operators as demonstrat-
ed in Eq. 13 are not applied in this paper, because we
intend to replace the sharp corners of the strut connections
by smooth transitions. In this way, a subsequent shape op-
timization can be performed on the restored porous contin-
uum to modify the local stress level.

To construct the porous continuum, the individual struts are
combined based on the Blinn transformation (Storm et al.
2013); see below:

Φ ¼ ∑
n

i¼1
exp aiΦið Þ−1 ð14Þ

where, ai is the Blinn factor of the i
th level set function and n is

the total number of struts.
An example of comparing the different operators is shown

in Fig. 5.

In Eq. 14, the lattice is built based on a unified level set
representation. In case that a large number of struts are
involved, it will complicate the sensitivity analysis and
also cause difficulties to non-sensitivity based optimization
(Biyikli and To 2015), because of the non-unique matches
between the ai values and the strut transition areas. To
address this issue, Eq. 14 is modified into Eq. 15, where
the Blinn operations are performed between each pair of
struts within each triangular grid, which are later unified
through union operations.

Φ ¼ U
m

i¼1
exp ai1Φi1ð Þ þ exp ai1Φi2ð Þ−1½ �∪ exp ai2Φi2ð Þ þ exp ai2Φi3ð Þ−1½ �f

∪ exp ai3Φi3ð Þ þ exp ai3Φi1ð Þ−1½ �g
ð15Þ

In Eq. 15, m represents the number of triangular
grids; in each of the triangular grid, three Blinn opera-
tions are performed and thus, aij represents the jth Blinn
factor of the ith triangular grid. Based on Eq. 15, one
form of construction is performed as shown in Fig. 6b
and c subjected to different aij values, from the truss
structure as demonstrated in Fig. 6a. Noted that, the

(a) Input truss structure (b) Compliance optimization result 

(c) Restored continuum structure (d) Stress analysis on the input

Fig. 10 Truss structure
optimization and the lattice
transformation
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smooth joints are modeled in the implicit level set rep-
resentation and therefore, a printable STL file can be
constructed through level set based post-processing pro-
grams (Vogiatzis et al. 2017b). This type of fillets can
be well manufactured through powder bed based addi-
tive manufacturing process.

4 Local stress level optimization

Once the optimized truss structure has been transformed into a
lattice model, a new optimization problem is formulated as
demonstrated in Eq. 16. In this formulation, the Blinn factors
are treated as the shape variables; the objective function is

(a) The optimized lattice subject to (b) The stress distribution 

(c) The optimized lattice subject to (d) The stress distribution 

(e) The optimized lattice subject to (f) The stress distribution

Fig. 11 Optimization results
subjected to different stress-level
limits
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composed of two terms: the first one minimizes the material
fraction rate (MFR) and the second term penalizes the local
violations of the stress constraints.

Min:J Φ
� �

¼ ∫DH Φ
� �

dΩþW ∫Dþ
σ
σlim

−1
� �2

H Φ
� �

dΩ

s:t:a u; v;Φ
� �

¼ l v;Φ
� �

;∀v∈U

The notations : fð Þþ ¼ max f ; 0ð Þ;
a u; v;Φ
� �

¼ ∫DAe uð Þe vð ÞH Φ
� �

dΩ

l vð Þ ¼ ∫∂ΩτvdS
ð16Þ

In Eq. 16, a( ) is the energy bilinear form and l( ) is the load
linear form. The load linear expression does not include Φ,
because it is assumed that the area applied of boundary trac-
tion force τ is non-designable. u and v are the deformation
vector and the test vector, respectively, and e( ) is the strain.
Uad = {v ∈H1(Ω)d| v = 0 on ΓD} is the space of kinematically
admissible displacement field. The body force is ignored in
this work.

To solve this problem, the Lagrange multiplier method is
applied and the adjoint sensitivity result is presented in Eq. 17.

Interested readers can refer to (Wang and Li 2013) for the
detailed solution process.

L
0 ¼ ∫D 1þ Ae uð Þe wð Þ½ �δ Φ

� �
Φ

0

dΩ

þW ∫Dþ
σ
σlim

−1
� �2

δ Φ
� �

Φ
0

dΩ ð17Þ

where, D+ represents the stress-violated area of the design
domain; w is the adjoint variable which is the solution of
Eq. 18.

W∫Dþ
2

σlim

σ
σlim

−1
� �

σ
0
H Φ
� �

dΩþ ∫DAe u
0

� �
e wð ÞH Φ

� �
dΩ ¼ 0 ð18Þ

The derivatives of Φ on the Blinn factors are calculated
through:

if X ∈ triangular grid i and Φ Xð Þ ¼ exp ai1Φi1ð Þ þ exp ai1Φi2ð Þ−1;
∂Φ Xð Þ
∂ai1

¼ exp ai1Φi1ð Þ⋅ai1 0
Φi1 þ exp ai1Φi2ð Þ⋅ai1 0

Φi2;

Otherwise;
∂Φ Xð Þ
∂ai1

¼ 0

ð19Þ

(a) Subject to (b) Subject to

(c) Subject to 

Fig. 12 Convergence histories
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5 Case study

For all the numerical examples, the finite element analysis is
performed based on fixed quadrilateral meshes and the artifi-
cial weak material is employed for voids in order to avoid the
singularity of the stiffness matrix, which is:

Dv ¼ 10−3D ð20Þ
in which Dv is the elasticity tensor of the void.

It is noted that, in all the numerical examples, small areas
around the loading tips are neglected by the optimization

algorithm to avoid the unexpectedly high stress level caused
by singularity.

5.1 Case 1

The original truss structure is demonstrated in Fig. 7a, where
the truss elements have the thickness of 6 and the Young’s
modulus of 1.3. Two unit forces are loaded. The
compliance-optimized truss structure is shown in Fig. 7b,
and the transformed lattice structure is shown in Fig. 7c, where
it is assumed that the coefficients aij = 0.4 and the Poisson’s

(b) Compliance minimization result(a) Input truss network

(c) Restored continuum structure (d) Stress analysis on (c): maximum stress is 0.23 and 

the  is 0.409

(e) The optimized lattice subject to (f) The optimized lattice subject to 

Fig. 13 Trial solution on the L-
bracket problem
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ratio equals 0.4. The maximum stress level of the input struc-
ture is 0.126 as shown in Fig. 7d. MFR of the lattice structure
is to be minimized and the stress level control is subjected to
different upper limits of 0.06 and 0.07, respectively. Weight
factor W of the stress level penalization term is 50 and the
coefficients ai are restricted within the range of [0.05, 0.4].

Figure 8 demonstrates the optimization results subjected to
different stress level upper limits. As shown in the results, the
stress levels have been effectively constrained below the des-
ignated upper limits and a smaller upper limit leads to a larger
MFR, i.e. more materials consumed. Noted that, in general,
there is no guarantee that a stress constraint can be satisfied
and more discussions will be presented at subsection 5.3.

The convergence histories are presented in Fig. 9.

5.2 Case 2

The original truss structure is demonstrated in Fig. 10a, where
the truss elements have a thickness of 6 and the Young’s mod-
ulus of 1.3. Two unit forces are loaded. About the truss opti-
mization, the local porosity control is applied, where the vary-
ing lower bounds are imposed; see Eq. 21.

S ¼ 50þ 0:75 260−yð Þ ð21Þ

The compliance-optimized truss structure is shown in Fig.
10b, and the transformed lattice structure is shown in Fig. 10c,
where it is assumed that the coefficients aij = 0.15 and the
Poisson’s ratio is 0.4. The maximum stress level of the input
structure is 0.134 as shown in Fig. 10d. MFR of the lattice
structure is to be minimized and the stress level control is
subjected to different upper limits of 0.05, 0.06 and 0.08,
respectively. Weight factor W of the stress level penalization

term is 100 and the coefficients ai are restricted within the
range of [0.05, 0.4].

Figure 11 demonstrates the optimization results subject-
ed to different stress level upper limits. Similar conclusions
can be drawn as compared to the last case; more impor-
tantly, we can clearly identify the functionally graded po-
rosity distribution.

The convergence histories are presented in Fig. 12.

5.3 A discussion

Even though the stress level is constrained, the optimization
problem studied in this work is different from the convention-
al stress-related shape and topology optimization, which de-
signs the overall material distribution to control the stress lev-
el. The proposed method conducts a two-step optimization:
the stiffness is optimized first, and the stress concentrations at
the interior strut joints are relieved in the second step without
severely compromising the optimal stiffness achieved in step
one. Therefore, the stress level may not be effectively
constrained below the prescribed upper limit if the design
envelop contains sharp re-entrants. This is a limitation of the
proposed method.

A trial study on the L-bracket problem is demonstrated in
Fig. 13. The design domain size is 300*262. The truss ele-
ments have the thickness of 6 and the Young’s modulus of 1.3.
Figure 13a shows the input ground structure and Fig. 13b
demonstrates the compliance minimization result where the
re-entrant corner is enhanced for high stiffness. Then, the op-
timized truss structure is restored back into the continuum (see
Fig. 13c) with the Blinn factors aij = 0.4 and the maximum
stress level is 0.23 at the re-entrant corner (refer to Fig. 13d).
For the stress optimization, the Blinn factors have the upper
limit of 0.4. Figure 13e and f shows the stress optimization

(a) High-resolution voxel-based porous infill (Wu et al. 2017) 

(b) The self-support rhombic cell infill (Wu et al. 2016), from left to right: the initialization, result of 70% 

material fraction, and result of 78% material fraction 

Fig. 14 Examples of porous infill
design
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results with the upper limit of 0.20 and 0.19, respectively. We
can see from the results that the re-entrant corners still exist
since only the Blinn factors have been optimized; the stress
levels have been successfully constrained below the pre-
scribed upper limit where however, the material consumptions
are significantly increased and the porosities at some local
area are sacrificed. If further reducing the stress upper limit,
the algorithm may fail in convergence. Hence, a main future
work is to introduce more design freedom into the proposed
optimization framework, i.e., allowing the moving compo-
nents as conducted in MMC methodology (Guo et al. 2014)
to smear out the re-entrants.

Even though there are limitations, the current method is
meaningful for porous infill design, instead of competing the
conventional stress-related topology optimization methods.
For this type of problem, the overall shape of the part is pre-
scribed; refer to Figs. 1 and 14 (Wu et al. 2016, 2017) for a few
examples. The design objective is to create a porous infill of
good mechanical properties to replace the conventional solid
infill while keeping the design envelop consistent.

6 Conclusion

This paper presented a new method to intentionally designing
the heterogeneous porous structure, which includes two steps.
First, the porous structure is established as a truss network and
the connecting nodal positions are optimized to maximize the
stiffness. Functionally graded porosity distribution can be real-
ized in this step by adding spatially varying grid area con-
straints. Then, in the second step, the truss network is trans-
formed into a porous continuum through a novel Blinn
transformation-based level set method. And level set shape op-
timization is performed to minimize the material consumption
while at the same time, addressing the stress level constraints.

The effectiveness of the proposed method has been
proved by a few numerical examples, including a porous
structure design subjected to the functionally graded po-
rosity distribution.

This new porous structure modeling and shape optimiza-
tion method brings several further research opportunities, in-
cluding the applications to bone porous infill design, 3D print-
ing part infill design, and 3D printing support structure design,
where both lightweight and superior mechanical performance
are important design criteria. These topics will be the main
part of our future work and the manufacturability related nu-
merical techniques (Liu and Ma 2016) will be embedded into
the current algorithm.
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