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Abstract Large-scale structural optimization often re-
quires numerous finite element analyses to assess the fea-
sibility of the derived solutions during the optimization
process, which consume most of the computational cost.
To enhance the computational efficiency, this study intro-
duces a filter strategy aiming to eliminate the redundant
constraint violation evaluations in large-scale structural
optimization using metaheuristic algorithms. Based on
the solution selection rule, this study separates the
metaheuristic algorithms into two categories: replacement
and elitism. The filter mechanism founds on elitism of the
metaheuristic algorithms and reduces substantially the
number of structural analyses without compromising the
effectiveness of the optimization algorithms and the con-
straint handling techniques. This study also defines a pa-
rameter, R, to assess the enhancement performance of the
computational efficiency improved by the proposed meth-
od. Results from both mathematical simulations and two
large-scale structural optimization examples using various
metaheuristic algorithms demonstrate that the harmony
search (HS) leads always to the lowest R value. The R
value is less than 0.4 and is even as small as 0.09 for the
942-bar example, which means over 90% of time savings
compared with the penalty method and the Deb rule and
the quality of the final optimum also does not depend on
the value of R.

Keywords Constraint-handling . Structural optimization .

Elite selection . Particle swarm optimization .Metaheuristic
algorithm . Death penalty method

1 Introduction

Metaheuristic algorithms have extensive applications in struc-
tural optimization due to their superior global search capacity
and simple iterative mechanism (Astroza et al. 2016; Cao et al.
2017b; Chen et al. 2015; Gandomi et al. 2015). However, their
slow convergence rate and enormous computational expenses
required in the structural optimization process often desire
cost-effective optimization approaches for large-scale struc-
tures based on the conventional optimization formulation
(Arora and Wang 2005).

Structural optimization using metaheuristic algorithms
has undergone tremendous evolutions, which can be sum-
marized into four categories: 1) improving or hybridizing
the standard metaheuristic algorithms (Ahrari and Deb
2016; Chen et al. 2015; Farshchin et al. 2016; García-
Segura et al. 2015; Kaveh et al. 2014); 2) proposing new
metaheuristic algorithms (Abdel-Raouf and Abdel-Baset
2014; Gandomi et al. 2013; Kaveh and Bakhshpoori
2016; Kaveh and Mahdavi 2014; Rashedi et al. 2009); 3)
utilizing parallel computing techniques (Agarwal and
Raich 2006; Jansen and Perez 2011; Umesha et al. 2005);
and 4) incorporating the surrogate modeling approaches
(Jin 2011; Lute et al. 2009; Ong et al. 2003; Shan and
Wang 2010). The enhancement efficiency in the first two
categories is problem dependent in light of the No-Free
Lunch theorem (Wolpert and Macready 1997). The third
category integrates the metaheuristic algorithms with par-
allel computing, which, together with a demand for a high
performance-computing platform, restricts its applications.
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The fourth category normally applies a low-cost surrogate
model to substitute the original objective or constraint
functions within the optimization process. However, the
determination of an accurate surrogate model for high di-
mensional and strong nonlinear problems often encounters
challenges (Li et al. 2016).

Metaheuristic algorithms initially apply to unconstrained
problems. In order to accommodate the constraints, various
methods have emerged to efficiently handle the constraints
(Efren 2009; Jordehi 2015; Mezura-Montes and Coello
2011). The penalty-based methods (Jordehi 2015), including
the static penalty functions, dynamic penalty functions, adap-
tive penalty functions, death penalty, and etc., are widely ap-
plicable approaches for their simplicity and ease of implemen-
tation in transforming the constrained problem into an uncon-
strained one where the objective is augmented with penalties
proportional to the degree of constraint infeasibility. Unlike
the penalty method, another constraint handling techniques
like the death penalty approach (Efren 2009; Mezura-
Montes and Coello 2011), the Deb rule (Deb 2000) and the
bi-objective method (Venter and Haftka 2010) handle the ob-
jective function and the constraint violation separately without
parameter-tuning. The constraint handling approaches have
also undergone certain developments upon using the
metaheuristic algorithm search rules, for instance, the fly-
back mechanism in particle swarm optimization (PSO)
(Venter and Sobieszczanski-Sobieski 2003), the segregated
genetic algorithm (Le Riche et al. 1995), the constraint-
consistent genetic algorithm (Kowalczyk 1997), the filter-
genetic algorithm (Tang and Wang 2015), and the mapping
strategy for teaching-learning-based optimization (Baghlani
et al. 2017). In summary, these constraint-handling ap-
proaches guide the search to the feasible regions while
assessing both the objective function and the constraint func-
tions for each new trial in the optimization process.
Consequently, the indicator measuring the search capability
using these approaches is equivalent to that assessing the com-
putational efficiency for a given metaheuristic algorithm since
both rely on the amount of objective or constraint violation
evaluations in the implemented optimization.

For structural optimization, the objective function often
demands low computational cost that may be negligible in
comparison with that for constraint evaluations, which re-
quire time-consuming structural analyses. Therefore, the
computational efficiency of structural optimization mainly
depends on the amount of structural analyses and enhanc-
ing the computational efficiency of the metaheuristic algo-
rithms will then be feasible by reducing the amount of
constraint evaluations during the optimization process but
concurrently maintaining the accuracy of the optimal de-
sign. Unlike previous constraint handling approaches,

which focus on maintaining the feasibility of the solutions
and/or facilitating the convergence rate, Kazemzadeh Azad
et al. (Kazemzadeh et al. 2013; Kazemzadeh Azad and
Hasançebi 2013) developed an upper bound strategy
(UBS) to eliminate the structural analyses for the solutions
with heavier net weight than the penalized weight of the
current history best. Similar to the idea of the UBS, Cao
et al. (2017a) introduced a filter strategy into the PSO to
filter the redundant structural analyses in the optimization
procedure. Compared with the UBS, the filter strategy ini-
tializes the swarm with feasible solutions and the upper
bound in the filter strategy is the net weight of the best
found trials, which can avoid the troublesome selection
of the penalty coefficients and always guarantee the feasi-
bility of the designs. Recent researches (Cao et al. 2017b;
Kaveh and BolandGerami 2017; Kaveh and Ilchi Ghazaan
2017; Kazemzadeh Azad 2017a; Sheikholeslami et al.
2016) have demonstrated that these strategies can signifi-
cantly enhance the computational efficiency of the
metaheuristic algorithms and show huge potentials in
large-scale structure optimization. This study extends the
filter strategy proposed in (Cao et al. 2017a) to other
metaheuristic algorithms and subsequently develops a gen-
eral formula for this approach from the basal iterative for-
mulas of the metaheuristic algorithms.

The remainder of this paper is organized as follows.
Section 2 presents the general structural optimization formu-
lation, and Section 3 summaries the metaheuristic algorithms
from the new solution updating rules and addresses the filter
strategy for metaheuristic algorithms with elitism. Section 4
applies the proposed method in five different metaheuristic
algorithms and five particle swarm optimization based
methods to investigate the performance of the proposed meth-
od by mathematical simulations and examine the relationship
between the computational efficiency and the quality of the
optimal solutions. Section 5 validates the enhancement com-
putational efficiency of the proposed method with two large-
scale structural optimization problems compared with the con-
ventional penalty method and Deb rule by computational
time. Section 6 summarizes the main conclusions of this study.

2 Structural optimization formulation

Structural optimization aims to identify the lightest or cost-
optimal design under various structural functional require-
ments, e.g., deflection requirements at the serviceability limit
sate, stress and stability requirements according to the ultimate
limit state design. The optimization model therefore usually
contains two parts: the objective function and the constraint
functions. As various uncertain factors may affect the final
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cost estimation, investigators often define the objective func-
tion, Φ, based on the total usage of structural materials,

Φ ¼ min W xð Þð Þ ¼ min ∑
i¼1

Nm

ρiLiAi

 !
ð1Þ

where x denotes the design variables, W represents the total
weight of the structure composed of Nm members. For each
member i, the parameters ρi, Li, and Ai refer to the material
density, length of the member i, and the cross-sectional area,
respectively.

The constraints comprise several inequalities driven by the
mechanical requirements of the structure. Assuming that α
quantifies the structural performance in term of stresses, dis-
placements, natural frequencies, critical stability coefficients,
etc., the constraint functions become,

α j≤α*
j for j∈ 1;⋯;N j

� �
αk ≥α*

k for k∈ 1;⋯;Nk½ �
xlower≤x≤xupper

ð2Þ

where xlower, xupper define the lower and upper bounds of the
design variables, respectively. αj and αk refer to the functional
parameters with α*

j and α*
k defining the upper and lower

bound values, respectively. Nj and Nk indicate the total num-
bers of the two types of inequality constraints.

Metaheuristic algorithms typically utilize a function ψ to
evaluate the constraint violation in the optimization process.
ψ = 0 implies a feasible design, while ψ > 0 indicates that the
design variables locate in the infeasible space. The definition
of the function ψ follows,

ψ xð Þ ¼ max 0;ϕð Þ ð3Þ
where ϕ denotes the degree of constraint violation,

ϕ ¼ ∑
j¼1

N j

ϕ j þ ∑
k¼1

Nk

ϕk ð4Þ

The functionsϕj andϕk evaluate the violation against the upper
bound and lower bound constraint requirements, respectively,

ϕ j ¼
f j≤ f

*
j ϕ j ¼ 0

f j > f *j ϕ j ¼
f j− f

*
j

f *j

�����
�����

8><
>: ð5Þ

ϕk ¼
f k ≥ f

*
k ϕk ¼ 0

f k < f *k ϕk ¼
f k− f

*
k

f *k

����
����

8<
: ð6Þ

For the given design variables, x, the objective function is
directly computable due to its explicit expression in structural

optimization problems. However, the constraints are implicit
equations with their evaluations relying on the time-
consuming structural analyses especially for large-scale struc-
tures. In summary, structural optimization owns a low-cost
objective function and high-cost constraint violation evalua-
tion process.

3 Filter strategy for metaheuristic algorithms
with elitism

Many constraint-handling techniques appeared to solve
constrained problems by extending the application of the
metaheuristic algorithms, which are designed originally for
unconstrained optimization problems. In contrast to existing
constraint-handling approaches, which require evaluations of
both the objective value and constraint violations for each
possible solution in the optimization process, this section il-
lustrates a filter strategy that eliminates the unnecessary feasi-
bility checks of the solutions in the optimization procedure
using metaheuristic algorithms to enhance the computational
efficiency.

3.1 Metaheuristic algorithms with elitism

Metaheuristic algorithms solve optimization problems with
the following common steps: 1) initializing a series of random
solutions; 2) seeking the optimal solution iteratively through
some special search rules; 3) printing the best solution found
in the search. The second step performs as the kernel for the
metaheuristic algorithms simulating the mimicked physical or
biological process. It also contains three elements: evaluating
the fitness of each solution, producing new solutions and
selecting solutions for the next iterative step. Different
metaheuristic approaches employ distinct methods to deal
with the newly generated solutions and the old ones.
However, they can be summarized into two categories: 1)
replacement, and 2) elitism.

As demonstrated in Fig. 1, assuming n solutions in each
iteration step, the search rule generates n new solutions where
the second, third and (n − 1)th solutions have better fitness than
their corresponding old solutions. The replacement method
(as shown in Fig. 1a) substitutes all old solutions with the
newly generated ones without considering the fitness informa-
tion at this stage. The gravitational search algorithm (GSA)
(Rashedi et al. 2009) belong to this category. On the other
hand, the elitism (as shown in Fig. 1b) updates the old solution
by selecting only the new solution with improved fitness. The
elitism ensures that the algorithm retains the best solutions
found in previous iterations. The personal best and global best
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update rules in the PSO and the harmony memory update rule
in the harmony search (HS) belong to the elitism category.

Optimization algorithms require calculating each solution’s
fitness as the search (new solution producing) rule for
metaheuristic algorithms based on the fitness information of
the current solutions. The number of the objective function
evaluations at each iteration step for unconstrained problems
thus equals the size of the population in evolutionary algo-
rithms or swarm population in swarm intelligence algorithms.
For constrained problems, however, the elitism based selec-
tion exhibits apparent advantages over the replacement meth-
od while employing the filter strategy proposed in this study.

3.2 Filter strategy

In contrast to unconstrained problems, constrained single-
objective optimization problems, as illustrated in Section 2,
contain an objective function and a series of constraint func-
tions. The fitness calculation of a solution utilizes both the
objective value and the constraint violation information.
Thus, the metaheuristic algorithms based on the replacement
strategies require the number of constraint violation evalua-
tions equals that of the objective function evaluations in the
optimization process. The elitism based selection can obviate
this requirement by initializing the solutions in the feasible
space and dealing with the objective function and the con-
straints separately.

In the searching process, each newly generated solution has
four possible states compared with its old counterpart. The
new solution may locate in four states: 1) in the feasible space
with an improved objective value; 2) in the feasible space with
a deteriorating objective value; 3) in the infeasible space with
an improved objective value; and 4) in the infeasible space
with a deteriorating objective value. With all old solutions in
the feasible space, the elitism will filter all the new solutions
with deteriorating objective values (in state 2 and state 4)
without depending on their feasibilities. The constraint viola-
tion evaluations for these solutions thus become redundant.

Based on this idea, the filter strategy, which predicates on
the standard death penalty method (Jordehi 2015), aims to
eliminate these redundant constraint violation evaluations.
Similar to the death penalty method, this approach also re-
quires initializing all the solutions in the feasible space and
employs the following steps in the searching process:

1) Evaluating objective values of the newly generated
solutions;

2) Selecting new solutions with improved objective values;
3) Evaluating the constraint violations for these selected

new solutions;
4) Choosing the feasible ones and replacing the corre-

sponding old solutions.
These four steps show that the number of the constraint

violation evaluations required in the proposed method in each
iteration step is smaller than the population of the newly gen-
erated solutions. This method founds on the characteristic of
the elitism in metaheuristic algorithms and does not compro-
mise the algorithms’ search capacity. Compared to the death
penalty method, the above approach includes a filter operator
to eliminate the redundant constraint evaluations for solutions
with deteriorating objective values and does not reduce the
efficiency of the constraint handling technique.

Figure 2 depicts the flowchart for filter strategy incorporat-
ed in the metaheuristic algorithms with elitism. Unlike the
penalty methods that requires a careful fine-tuning of the pen-
alty factor in determining the penalty severity (Kazemzadeh
Azad 2017b; Kazemzadeh Azad and Hasançebi 2013), this
approach maintains all the performance of the death penalty
method and has a highly simplified procedure without addi-
tional parameters. The filter mechanism depends solely on the
elitism of the metaheuristic algorithms and can thus enhance
the computational efficiency of the optimization when
coupled with other constraint handling techniques. For in-
stance, it becomes identical to the UBS (Kazemzadeh Azad
and Hasançebi 2013) when the filter mechanism is incorpo-
rated in the penalty methods. The Deb rule (Deb 2000) can
also work with the filter mechanism to reduce the time-

ba

Fig. 1 Two typical solution selection rules in metaheuristic algorithms: (a) replacement; (b) Elitism
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consuming structural analyses in large-scale structural optimi-
zation. Compared to the original constraint handling methods,
these approaches coupled with the filter mechanism maintain
their original performances with enhanced computational
efficiency.

This study defines a factor,R, to measure the computational
efficiency of the optimization algorithm,

R ¼ Ncon

Nobj
ð7Þ

where Nobj denotes the total number of the objective evalua-
tions. Ncon refers to the total number of constraint violation
evaluations and dominates the computational efficiency in an
optimization process. A smaller value of R implies a larger
improvement in the computational efficiency using the pro-
posed method. R is equal to 1 for the penalty function method
and the Deb rule.

3.3 Initialization of feasible solutions

The success of the search in metaheuristic based optimization
also depends on the starting solutions (Maaranen et al. 2007).
Similar to the death penalty method, the proposed filter strat-
egy requires initializing solutions in the feasible space.
Kazemzadeh Azad et al. (2017b) have demonstrated that
seeding the initial population with feasible solutions can im-
prove the computational efficiency of metaheuristic based
structural optimization algorithms. This study employs the
improved opposition-based initialization strategy (Cao et al.
2017a; Cao et al. 2017b) as outlined below to generate feasible
solutions.

1) Randomly produce a solution P in the search space;
2) Calculate the opposition point of P, denoted byOP, in the

design space by,

xOP ¼ xupper þ xlower−xP ð8Þ

where xupper and xlower denote the upper and lower bound of
design variables, respectively. xP represents the randomly
generated solution in step 1 and xOP refers to the opposite
positon of P in the design space.

3) Evaluate the constraint violation of solutions P and OP
and calculate their objective values. If both particles re-
side in the feasible space, select the one with a better
objective value, and go back to step 1; if only one of them
is feasible, preserve the feasible one as an initial feasible
particle and go back to step 1; if both two particles violate
the constraints, go back to step 1. Repeat the loop until the
number of selected solutions equals the predefined popu-
lation of the solutions.

Amplifying the values of the size design variables in the
lower bound vector, xlower, facilitates the feasible solutions for
problems with small feasible ranges. Besides the above gener-
ic and stochastic approach, the mapping strategy (Baghlani
et al. 2017) can also generate random feasible solutions for
structural optimization problem with constraints varying line-
arly against the design variables.

4 Application on classical problems

This section utilizes five widely used numerical optimization
problems to test the performance of the proposed constraint
handling method by five standard metaheuristic algorithms
with elite selection, including PSO (Trelea 2003), HS
(Degertekin 2012), cuckoo search (CS) (Gandomi et al.
2013), flower pollination algorithm (FPA) (Yang 2012) and

Fig. 2 Flowchart of the metaheuristic algorithms with elitism
incorporated with the filter strategy
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teaching-learning-based optimization (TLBO) (Farshchin
et al. 2016). This study also employs four improved versions
of the PSO including APSO (Nickabadi et al. 2011), BBPSO
(Kennedy 2003), IPSO (Wu et al. 2011) and PSOPC (He et al.
2004) to demonstrate the relationship between the search ef-
ficiency and the computational efficiency. Each numerical test
contains 50 independent runs of the optimization process and
the algorithmic parameters utilize those recommended in the
corresponding literatures.

The Appendix provides the details on the objective and the
constraint functions for the five benchmark examples in (Yu
et al. 2016). The total number of objective evaluations for
Problem 1, Problems 3, Problem 4 and Problem 5, is 10,000
while that for Problem 2, the welded beam design problem, is
20,000. The population size equals 10 in CS and TLBO and
that for FPA and PSO is 20 in all numerical tests. The termi-
nation criterion for HS is the maximum number of objective
evaluations.

Table 1 lists the statistical results of the five problems using
five different algorithms. Most of the algorithms, except HS,
yield the optimal solution within 0.01% of the best objective
value found so far. Both CS and PSO have identified the best
solution for the other four problems in the 50 independent
runs. Considering the average and standard deviation values,
CS provides the best solutions in Problem 2 and Problem 5,
and TLBO performs the best in Problem 1. FPA leads to the
best solution in Problem 3 and PSO shows the strongest
search ability in Problem 4. Even though HS fails to identify
the best solutions for all five problems, the average and stan-
dard deviation values in problem 4 demonstrate that it per-
forms better than FPA and TLBO. The results demonstrate

that the search capabilities of the algorithms are problem de-
pendent while the total number of objective evaluations re-
mains the same.

Figure 3 compares the average value of R calculated from
the five different optimization algorithms. HS has the lowest R
value while TLBO gains the largest R value among the five
methods. This implies that HS has the highest computational
efficiency among the five algorithms. Figure 3 and Table 1
also demonstrate that a larger R value does not correspond to a
better solution. For Problem 4 as an example, PSO has the
second smallest R, while performing the best among all five
methods.

Table 2 compares the statistical results of the five prob-
lems using PSO and its variations. PSOPC provides the
best solution in Problem 1, Problem 2, Problem 3 and
Problem 5. APSO performs the best in Problem 4. The
advanced PSO approaches do not always perform better
than the standard PSO for all the problems. This implies
again that the algorithm search ability is problem depen-
dent. Figure 4 shows the average R values calculated by
different PSO methods. In contrast to Fig. 3, the variations
of the R values for the same problem among PSO-based
methods become much smaller. IPSO shows the highest
computational efficiency among the five algorithms.
PSOPC has the lowest R value in Problem 2 and the second
lowest R values in Problem 1 and Problem 3. For these
problems, PSOPC also provides the optimal solutions.
PSOPC not only exhibits strong search ability, but also
has a high computational efficiency in these three prob-
lems. This implies again that the accuracy of the optimal
solution is independent of the R value.

Table 1 Comparison of the
statistical results of the five
problems using different
metaheuristic algorithms

Algorithms Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

CS Best −6961.616 1.725 1.267E-02 2994.471 263.896

Average −6956.657 1.725 1.272E-02 2994.475 263.896

Standard deviation 6.78 4.27E-04 7.18E-05 4.95E-03 2.56E-10

FPA Best −6961.624 1.725 1.267E-02 2996.131 263.896

Average −6958.854 1.726 1.270E-02 3001.268 263.896

Standard deviation 3.27 4.42E-04 2.42E-05 3.02 1.00E-05

HS Best −6901.341 1.858 1.333E-02 2996.065 263.897

Average −6579.284 2.042 1.484E-02 2997.982 264.018

Standard deviation 1.62E + 02 1.22E-01 6.63E-04 1.23 1.35E-01

PSO Best −6961.698 1.725 1.267E-02 2994.471 263.896

Average −6959.402 1.778 1.336E-02 2994.471 263.899

Standard deviation 2.11 9.69E-02 7.56E-04 1.58E-03 8.21E-03

TLBO Best −6961.745 1.744 1.267E-02 2997.463 263.897

Average −6960.557 1.804 1.271E-02 3019.219 263.989

Standard deviation 1.90 3.13E-02 3.61E-05 2.48E + 01 1.77E-01

The best solution so far −6961.814 1.725 1.267E-02 2994.471 263.896

The data in bold denote the best average and standard deviation results for each problem among different methods.

The data in bold-italic indicates that the best solution obtain by the algorithm equals that of the best solution so far.
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5 Applications on large-scale structure optimization

This section employs two large-scale structureoptimizationprob-
lems, includinga26-storey,942-bar truss tower (Hasançebi 2008;
Hasançebi and Erbatur 2002) and a three-span suspension bridge
witha total lengthof1800m(Caoetal.2017b), todemonstrate the
computational efficiency of the proposed constraint handling ap-
proach. This study utilizes the former benchmark example to ex-
amine the computational efficiency of different optimization al-
gorithms. The suspension bridge example aims to investigate the
efficiencyof theproposedmethod in comparisonwith thepenalty
function approach and the Deb rule.

5.1 26-Storey 942-bar truss tower

Figure 5 shows a 26-story space truss tower consisting of 942
bars and 244 nodes. This problem aims to identify the lightest
design with the design variables defined as the member cross
sectional areas and divided into 59 groups as shown in Fig. 5.
The loading on the tower includes,

1) The vertical loads at each node in the first, second and
third sections are −13.344 kN (−3.0 kips), −26.688 kN (−6.0
kips) and −40.032 kN (−9 kips), respectively;

2) The horizontal loads equal 6.672 kN (1.5 kips) in the x-
direction at each node on the left half of the tower and 4.448
kN (1.0 kips) in the x-direction at each node on the right half;

3) The horizontal load in the y-direction has a magnitude of
4.448 kN (1 kips) applied on all nodes.

The density and elastic modulus of the material are
2767.99 kg/m3 (0.1 lb./in3) and 69 GPa (1.0 × 104 ksi), respec-
tively. The constraint conditions include allowable stresses and
displacements for the truss tower. The maximum allowable
stress in each member under tension and compression equals
172.37 MPa (25 ksi) while the maximum allowable displace-
ment in x, y, z direction for the all the nodes is 38.1 cm (15.0 in).
The cross-sectional area of each bar is an integer in in.2, which
ranges in 1.0 in.2 (6.45 cm2) and 200 in.2 (1290.32 cm2).

Figure 6 depicts the convergence curves of the 942-bar prob-
lem using CS, FPA, HS, IPSO and TLBO. The maximum
number of the objective function evaluations in each optimiza-
tion run is 80,000. Figure 6a illustrates the evolution of the
weight of the tower versus the number of the objective evalua-
tions, where TLBO fails to solve this high-dimensional
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Fig. 3 The average R calculated by different types of metaheuristic
algorithms

Table 2 Comparison of the
statistical results of the five
problems using different PSO
methods

Algorithms Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

APSO Best −6961.013 1.725 1.267E-02 2994.470 263.896

Average −6953.387 1.858 1.344E-02 2994.470 263.901

Standard deviation 5.73 2.03E-01 1.01E-03 5.88E-05 1.03E-02

BBPSO Best −6958.416 1.725 1.267E-02 2994.470 263.896

Average −6947.995 1.858 1.384E-02 2995.102 263.899

Standard deviation 1.00E + 01 1.66E-01 1.45E-03 2.56 3.89E-03

IPSO Best −6952.918 1.725 1.268E-02 2994.471 263.896

Average −6924.154 1.845 1.329E-02 2994.471 263.899

Standard deviation 2.89E + 01 1.45E-01 4.38E-04 2.01E-07 4.84E-03

PSOPC Best −6961.625 1.725 1.267E-02 2994.470 263.896

Average −6959.736 1.725 1.305E-02 2994.986 263.896

Standard deviation 3.76 2.23E-04 4.56E-04 1.49 1.39E-03

PSO Best −6961.698 1.725 1.267E-02 2994.471 263.896

Average −6959.402 1.778 1.336E-02 2994.471 263.899

Standard deviation 2.11 9.69E-02 7.56E-04 1.58E-03 8.21E-03

The best solution so far −6961.814 1.725 1.267E-02 2994.4706 263.896

The data in bold denote the best average and standard deviation results for each problem among different methods.

The data in bold-italic indicates that the best solution obtain by the algorithm equals that of the best solution so far.
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optimization problem, while the other four algorithms converge
to a narrow weight range, between 1.20 × 105 lb.
(5.44 × 104 kg) and 1.40 × 105 lb. (6.35 × 104 kg). Compared
with the randomly generated feasible solutions, these optimiza-
tions lead to about 90% of material savings. Figure 6b shows
the evolution of the objective value versus the number of

structural analyses (constraint violation evaluations). To accom-
plish the 80,000 objective evaluations, the numbers of structural
analyses required by different algorithms are apparently differ-
ent. HS owns the highest computational efficiency while TLBO
requires the most computational efforts even though it failed to
find the optimum solution. Table 3 lists the value of R and the
computational time for this 942-bar problem. As this problem
has a wide search domain, the R value for each algorithm de-
creases compared with those in Fig. 3. The R value for HS is
only 0.09, which implies the proposed constraint handling
method leads to more than 90% of time savings. The compu-
tational time by HS is only about 24.4 min while that by TLBO
(with an R value of 0.77) is 117.0 min.

Hasançebi and his co-workers have utilized the simulated
annealing (SA) (Hasançebi and Erbatur 2002) and an adaptive
evolution strategy (AES) (Hasançebi 2008) to seek the opti-
mal design for this 942-bar tower. Table 3 compares the best
results obtained in (Hasançebi 2008; Hasançebi and Erbatur
2002) and this study. The lightest weight gained by Hasançebi
(2008) is about 141,243.7 lb. using AES with 150,000 struc-
tural analyses. Besides TLBO, all the other four methods yield
much lighter optimal designs than the best result by AES. The
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optimal weight obtained by IPSO, based on 24,740 structural
analyses, is only about 90% of the weight by AES. HS re-
quires 7142 structural analyses while identifying a much bet-
ter optimum than AES.

5.2 A three-span suspension bridge

Figure 7 depicts the layout of a three-span suspension bridge
with a total length of 1800 m and a width of 40 m. Ls and Lm
denote the length of the side-span and the main-span, respec-
tively. f refers to the sag of the cable at the mid-span. The
shortest hanger at the main-span, Hs, remains 6 m and the dis-
tance between the two adjacent hangers is 15 m. Both the hor-
izontal distance between the end of the bridge and the cable
anchorage and the height of the pylon below the deck equal
30 m. Figure 7b sketches the cross section of the steel pylon
and the cross beam. The geometric and size parameters of the
stiffeners are constant to reduce the number of the design vari-
ables. The upper and lower cross beams have the same section
and their width equal toW1. Figure 7c shows the section for the
girder. This example also assumes all the hangers with the same
cross-sectional area. Therefore, this suspension bridge optimiza-
tion problem includes 16 design variables (as shown in Fig. 7):

Pylon: The width of the pylon (W1), the height to
width ratio (W2/W1), the thickness of the plates (T1
and T2);

Cross beam: The height of the cross beam (W3), the thick-
ness of the plates (T3 and T4);

Stiffening girder: The bottom width and the height of the
girder (W4 and W5), the plate thickness of the girder (T5, T5
and T7),

Cable system: The sag-to-span ratio (f/Lm), the area of the
main cable (A1) and hanger (A2).

Bridge layout: The side-to-central span ratio (Ls/Lm).
(9) to (10) describe the effective areas for the pylon, cross

beam and girder, respectively, to include the stiffeners and the
diaphragms in these members.

Apylon ¼ 2W1T2 þ 2T1W2−4T 1T2ð Þ þ 2 W1 þW2ð ÞTp
s

þW1W2T
p
d

.
Dp ð9Þ

Across ¼ 2W1T4 þ 2W3T 3−4T 3T4 þ 2 W1 þW3ð ÞTc
s

þW1W5Tc
d

.
Dc ð10Þ

Agirder ¼ BT 6 þW4T7 þ 2W5T5−2T5T 6−2T5T7ð Þ þ BþW4 þ 2W5

.
cosβ

� �
Tg
s � 84

.
64

þW5 W4 þ Bð Þ
.
2� Tg

d

.
Dg

ð11Þ

The area calculation of the diaphragms assumes the dia-
phragms without holes. Tp

s ¼ 15 mm, Tc
s ¼ 8 mm and Tg

s ¼
8mmdenote the thickness of the stiffeners inpylon, cross beam
and girder, respectively. Tp

d ¼ 20 mm, Tc
d ¼ 15 mm and Tg

d

¼ 15 mm represent the thickness of the diaphragms in pylon,
cross beam and girder whileDp,Dc andDg refer to the longitu-
dinaldistanceof thediaphragmsinpylon,crossbeamandgirder
and are equal to 3 m.
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Table 3 Comparison of the optimization results for the 942-bar problem

Variables SA AES CS FPA HS IPSO TLBO

A1 (in2) 1 1.02 3 8 2 1 22

A2 (in2) 1 1.04 1 5 3 1 46

A3 (in2) 3 2.94 6 9 2 4 141

A4 (in2) 1 1.92 3 3 3 1 42

A5 (in2) 1 1.03 1 3 3 1 31

A6 (in2) 17 14.96 13 16 11 15 32

A7 (in2) 3 3.07 3 4 9 3 1

A8 (in2) 7 6.78 11 15 2 7 40

A9 (in2) 20 18.58 18 20 23 18 119

A10 (in2) 1 2.42 2 4 5 3 59

A11 (in2) 8 6.58 9 5 4 6 1

A12 (in2) 7 6.29 6 6 6 5 1

A13 (in2) 19 15.38 18 19 10 13 7

A14 (in2) 2 2.10 2 2 2 2 73

A15 (in2) 5 6.02 8 9 11 6 42

A16 (in2) 1 1.02 1 2 1 1 39

A17 (in2) 22 23.10 21 13 18 19 145

A18 (in2) 3 2.89 3 2 3 3 1

A19 (in2) 9 7.96 10 14 11 12 47

A20 (in2) 1 1.01 1 1 2 1 7

A21 (in2) 34 28.55 28 18 24 27 8

A22 (in2) 3 3.35 3 3 4 3 96

A23 (in2) 19 16.14 17 19 17 15 40

A24 (in2) 27 24.82 19 23 20 22 28

A25 (in2) 42 38.40 39 55 28 35 1

A26 (in2) 1 3.79 9 1 9 1 89

A27 (in2) 12 12.32 9 14 7 11 28

A28 (in2) 16 17.04 11 16 10 14 83

A29 (in2) 19 14.73 13 17 19 12 11

A30 (in2) 14 15.03 13 14 10 13 120

A31 (in2) 42 38.60 29 29 29 35 27

A32 (in2) 4 3.51 3 4 3 3 37

A33 (in2) 4 3.00 3 5 2 2 1

A34 (in2) 4 3.06 3 5 5 2 46

A35 (in2) 1 1.09 1 1 2 1 20

A36 (in2) 1 1.46 2 3 3 1 144

A37 (in2) 62 59.43 57 44 41 54 41

A38 (in2) 3 3.63 3 3 3 3 2

A39 (in2) 2 1.89 3 5 4 4 21

A40 (in2) 4 4.07 3 3 5 3 80

A41 (in2) 1 1.60 2 2 2 1 1

A42 (in2) 2 3.67 4 2 3 1 107

A43 (in2) 77 79.51 60 63 63 65 138

A44 (in2) 3 3.39 3 3 4 3 38

A45 (in2) 2 1.58 3 3 3 4 74

A46 (in2) 3 4.20 3 4 7 3 12

A47 (in2) 2 1.33 1 4 3 1 84

A48 (in2) 3 2.24 1 2 2 1 99

A49 (in2) 100 96.89 70 72 74 91 40
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The total material usage of the bridge follows:

Φ ¼ 4Apylon f þ 36ð Þ þ 4� 40� Across

þ Agirder 2Ls þ Lmð Þ þ A1Lc þ A2Lh ð12Þ

where Lc and Lh represent the total length of the main cable and
hangers, respectively. The value ofLc andLh derive from the ana-
lytical form-findingmethod proposed in (Chen et al. 2015, 2013).

The elastic modulus and density of steel Q345 for the stiff-
ening girder, pylons and cross beams are 205 GPa and

7.85 × 103 kg/m3, respectively and those for the cable system,
which are made of parallel steel wires, are 205 GPa and
8.005 × 103 kg/m3. The side-to-central span ratio is a discrete
variable to maintain the length of the main span is in multiples
of 30 m. This example considers three types of loads: the dead
load, the live load and the static wind load. The dead load
(DL) imposing on the girder equals ρgAgirder (ρ denotes the
density of the girder and g refers to the gravity acceleration)
with an additional uniform load of 60 kN/m. Figure 8 shows
the three typical unfavourable live load (LL) cases for a three-
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Table 3 (continued)

Variables SA AES CS FPA HS IPSO TLBO

A50 (in2) 4 3.71 4 4 4 3 16

A51 (in2) 1 1.06 7 6 5 2 154

A52 (in2) 4 4.57 5 5 6 4 4

A53 (in2) 6 9.61 21 26 21 13 16

A54 (in2) 3 2.98 14 38 15 8 106

A55 (in2) 49 45.92 48 53 47 42 80

A56 (in2) 1 1.00 1 1 3 1 1

A57 (in2) 62 62.43 36 35 39 55 47

A58 (in2) 1 2.98 8 13 4 4 44

A59 (in2) 3 1.00 9 4 12 1 52

Weight (lb) 143,439.5 141,243.7 131,249.1 139,589.3 139,866.1 127,231.0 781,697.1

R 1.00 1.00 0.60 0.38 0.09 0.31 0.77

Number of structural analyses 39,834 150,000 47,973 30,263 7142 24,740 61,566

Computational time (min) - - 104.8 72.5 24.4 59.3 117.0

The bold entires denote the best results among the different optimization algorithms.
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span suspension bridge. The lateral wind load (WL) acting on
the pylon equals 1.5W1 kN/m and the force acting on the
girder follows:

qwind ¼ 1:5W5⋅min 0:3;
β
200

� �
kN=m ð13Þ

where β denotes the angle illustrated in Fig. 7c. This problem
considers four load combinations: 1) DL, 2) DL + LL1 +WL,
3) DL + LL2 + WL and 4) DL + LL3 + WL. Table 4 lists the
constraints derived from the strength, serviceability and the
geometric requirement of the bridge. This study implements
the optimization procedure and the form-finding analysis of
the suspension bridge in Matlab coupled with FE analyses in
ANSYS.

To demonstrate the efficiency of the proposed constraint
handling method, this study utilizes the HS for its high com-
putational efficiency and IPSO due to its strong search ability.
The two widely used constraint handling approaches, the pen-
alty function method and the Deb rule, coupled with IPSO are
also employed for comparison. The maximum number of the
objective function evaluations is 40,000 for all the tests and
the population of the particle in all IPSO tests equals 40. In the
penalty method based optimization, the penalty factor is fixed
at 100 during the optimization process.

Figure 9 compares the evolution of the objective value
versus the number of structural analyses for the four optimi-
zation procedures. Since the proposed constraint handling
method initializes the solutions in the feasible space, the initial
objective values in the two proposed methods are much

smaller than those in the penalty method and the Deb rule.
The objective values for the two commonly used methods do
not always decrease as the iteration increases due to the infea-
sible solutions found at the initial search stage. The proposed
constraint handling approach dramatically reduces the number
of the structural analyses. Table 5 lists the optimization results
for the three-span suspension bridge. IPSO coupled with the
proposed constraint handling technique performs the best
among the four methods. All the identified optimal results
are feasible, except for the penalty method with a constraint
violation of 1.59 × 10−4, which defines an infeasible solution
based on 4. The number of structural analyses required by HS
equals 9812, which implies more than 75% enhancement in
the computational efficiency than the other two methods. As
shown above, HS suffers from premature convergence, and
leads to the heaviest design, with just 3% heavier than the
lightest solution among the other four methods. Thus, HS is
still a competitive method due to its high computational effi-
ciency. Among the three IPSO-based methods, the proposed
approach has obvious advantages, with the lightest design and
the least number of structural analyses, about 65% time sav-
ings compared to the penalty method and Deb rule. Table 5
also lists the computational time for each method. The time
required by Deb rule in each run is about 57.41 h, slightly
longer than the penalty method due to its complex algorithmic
structure. The computational time for IPSO and HS using the
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Table 4 Constraints and their allowable values

Items Limited values

Stress of the main cable ≤ 500 MPa

Stress of the hangers ≤ 500 MPa

Stress of the stiffening girder ≤ 120 MPa

Stress of the pylons and cross beams ≤ 150 MPa

The vertical deflection of the girder ≤ Lm/500

The displacement of the pylon ≤ (36 + f)/800

The length of the shortest hanger in side-span ≥ 2 m
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proposed constraint handling approach decreases to 20.23 h
and 14.38 h, respectively. This demonstrates that the proposed
approach can greatly enhance the computational efficiency for
metaheuristic algorithms with the elite selection in large-scale
structure optimization problems.

6 Conclusions

This study proposes a filter strategy, which predicates on the
solution updating rule of the metaheuristic algorithms, to re-
duce the redundant structural analyses in large-scale structural
optimization. The feasible condition and the merits of the filter
strategy have been discussed theoretically. Both numerical
simulations and two large-scale structural optimization exam-
ples have demonstrated the efficiency of the metaheuristic
algorithms coupled with the filter strategy. The present study
supports the following conclusions:

(1) According to the new solution updating rule, the
metaheuristic algorithms can be divided into the two
categories: replacement and elitism. The elitism charac-
terizes by only preserving the solutions with better fit-
ness in the iteration process, performs as the foundation
of the proposed filter strategy.

(2) The filter strategy not only eliminates the unnecessary con-
straint violation evaluations in the optimization procedure,
but also upholds the search ability of the metaheuristic al-
gorithms and retains the merits of the death penalty ap-
proach, for instance, without parameter-tuning and always
ensuring the feasibility of the optimal solutions. Besides the
death penalty approach, the filter mechanism of the filter
strategy is also applicable to other constraint handling tech-
niques, such as the penalty method and the Deb rule, to
enhance their computational efficiency while maintaining
the original performances.

(3) The mathematical simulations show that the HS occupies
the lowest R value, which is always smaller than 0.4 and
means about 60% of time savings while the TLBO obtains
the largest R value among the five methods, including the
CS, FAP,HS, PSO andTLBO. TheR value also varies with
different variations for the same metaheuristic algorithm.
Besides the computational efficiency varies with different
algorithms, an algorithm with a lower computational effi-
ciency does not guarantee a higher quality optimal solution.

(4) The 942-bar problem shows that the R value for HS is
merely 0.09, which implies the proposed filter strategy
leads to over 90% of time savings than the standard death
penalty approach. To solve the suspension bridge optimi-
zation with the same number of iterations, the penalty

Table 5 Comparison of the
optimization results for the three-
span suspension bridge

Variables Range Penalty method Deb rule Present work

IPSO IPSO IPSO HS

W1 (m) [4.0, 10.0] 6.077 5.391 5.55 6.637

W2/W1 (m) [0.6, 0.8] 0.713 0.792 0.797 0.713

W3 (m) [3.0, 6.0] 5.945 5.884 6.000 5.950

W4 (m) [20, 38] 20.000 20.000 20.000 20.020

W5 (m) [2.5, 6.0] 2.500 2.500 2.500 2.501

T1 (mm) [20, 200] 34 70 20 49

T2 (mm) [20, 200] 148 140 171 127

T3 (mm) [8, 80] 79 74 77 71

T4 (mm) [8, 80] 79 80 80 73

T5 (mm) [8, 80] 8 8 8 8

T6 (mm) [8, 80] 8 8 8 8

T7 (mm) [8, 80] 8 8 8 9

A1 (m2) [0.400, 2.000] 0.7568 0.7631 0.6817 0.7411

A2 (m2) [0.003, 0.020] 0.0046 0.0046 0.0046 0.0049

f/Lm [1/15, 1/6] 1/13.55 1/13.63 1/11.98 1/13.26

Ls/Lm [0.1, 0.5] 0.250 0.250 0.232 0.250

The volume of steel (m3) 7414.56 7396.47 7274.86 7467.91

Constraint violation 1.59E-04 0 0 0

Number of structural analyses 40,000 40,000 13,956 9812

R 1 1 0.3489 0.2453

computational time (hours) 55.62 57.41 20.23 14.38

The bold entires denote the best results among the different optimization algorithms.
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method and the Deb rule coupled with the IPSO cost
55.62 h and 57.41 h, respectively. However, the computa-
tional time has reduced to 20.23 h for IPSO and 14.38 h for
HS using the proposed method. It demonstrates that the
filter strategy can significantly enhance the computational
efficiency of the metaheuristic algorithms in structural op-
timization. The illustrated method can also improve the
computational efficiency in the problems with high-cost
objective function and low-cost constraint functions by re-
versing the sequence of the objective function evaluation
and the constraint violation check.
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Appendix: Constrained Engineering Design
Problems

Problem 1: An idealized optimization problem

Objective:

min f xð Þ ¼ x1−10ð Þ3 þ x2−20ð Þ3

Constraints:

g1 xð Þ ¼ x1−5ð Þ2 þ x2−5ð Þ2 þ 100≤0

g2 xð Þ ¼ x1−5ð Þ2 þ x2−5ð Þ2−82:81≤0
where

13 ≤ x1 ≤ 100 , 0 ≤ x2 ≤ 100

Problem 2: the welded beam design problem

Objective:

min f xð Þ ¼ 1:10471x21x2 þ 0:04811x3x4 14:0þ x2ð Þ

Constraints:

g1 xð Þ ¼ τ xð Þ−τmax≤0

g2 xð Þ ¼ σ xð Þ−σmax≤0

g3 xð Þ ¼ x1−x4≤0

g4 xð Þ ¼ 0:1047x21 þ 0:04811x3x4 14:0þ x2ð Þ−5:0≤0
g5 xð Þ ¼ 0:125−x1≤0

g6 xð Þ ¼ δ xð Þ−δmax≤0

g7 xð Þ ¼ P−PC xð Þ≤0

Where

τ xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ 0ð Þ2 þ 2τ 0τ ″

x2
2R

þ τ ″

 �2r

; τ
0 ¼ Pffiffiffi

2
p

x1x2
;

τ ″ ¼ MR
J

;M ¼ P Lþ x2
2

� �
;R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22
4
þ x1 þ x3

2

� �2r
;

J ¼ 2
ffiffiffi
2

p
x1x2

x22
12

þ x1 þ x2
2

� �2� 
� �
;σ xð Þ ¼ 6PL

x4x23
;

δ xð Þ ¼ 4PL3

Ex33x4
;PC xð Þ ¼

4:013E

ffiffiffiffiffiffiffiffiffi
x23x

4
6

36

r
L2

1−
x3
2L

ffiffiffiffiffiffiffi
E
4G

r !
;

P ¼ 6000; L ¼ 14;E ¼ 3� 107; G ¼ 1:2� 107;

τmax ¼ 13600;σmax ¼ 30000; δmax ¼ 0:25;

0:1≤x1≤2:0; 0:1≤x2≤10:0; 0:1≤x3≤10:0; 0:1≤x4≤2:0;

Problem 3: the tension/compression spring design
problem

Objective:

min f xð Þ ¼ x3 þ 2ð Þx2x21

Constraints:

g1 xð Þ ¼ 1−
x32x3

71785x41
≤0

g2 xð Þ ¼ 4x22−x1x2
12566 x31x2−x41


 � þ 1

5108x21
−1≤0

g3 xð Þ ¼ 1−
140:45x1
x22x3

≤0

g4 xð Þ ¼ x1 þ x2
1:5

−1≤0

where

0:05≤x1≤2:0; 0:25≤x2≤1:3; 2:0≤x3≤15:0;

Problem 4: the speed reducer design problem

Objective:

min f xð Þ ¼ 0:7854x1x22 3:3333x23 þ 14:9334x3−43:0934

 �

−1:508x1 x26 þ x27

 �þ 7:4777 x36 þ x37


 �
þ 0:7854 x4x26 þ x5x27


 �
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Constraints:

g1 xð Þ ¼ 27

x1x22x3
−1≤0

g2 xð Þ ¼ 397:5

x1x22x
2
3

−1≤0

g3 xð Þ ¼ 1:93x34
x2x3x46

−1≤0

g4 xð Þ ¼ 1:93x35
x2x3x47

−1≤0

g5 xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745x4
x2x3

� �2
þ 1:69� 107

r
110x36

−1≤0

g6 xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745x5
x2x3

� �2
þ 1:575� 108

r
85x37

−1≤0

g7 xð Þ ¼ x2x3
40

−1≤0

g8 xð Þ ¼ 5x2
x1

−1≤0

g9 xð Þ ¼ x1
12x2

−1≤0

g10 xð Þ ¼ 1:56x6 þ 1:9

x4
−1≤0

g11 xð Þ ¼ 1:1x7 þ 1:9

x5
−1≤0

where

2:6≤x1≤3:6; 0:7≤x2≤0:8; 17≤x3≤28; 7:3≤x4≤8:3;
7:3≤x5≤8:3; 2:9≤x6≤3:9; 5:0≤x7≤5:5;

Problem 5: the three-bar truss design problem

Objective:

min f xð Þ ¼ 2
ffiffiffi
2

p
x1 þ x2

� �
l

Constraints:

g1 xð Þ ¼
ffiffiffi
2

p
x1 þ x2ffiffiffi

2
p

x21 þ 2x1x2
p−σ≤0

g2 xð Þ ¼ x2ffiffiffi
2

p
x21 þ 2x1x2

p−σ≤0

g3 xð Þ ¼ 1ffiffiffi
2

p
x2 þ x1

p−σ≤0

where

0 < x1≤1:0; 0 < x2≤1; l ¼ 100; p ¼ 2:0;σ ¼ 2:0;
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