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Abstract To date the design of structures using topol-
ogy optimization methods has mainly focused on single-
objective problems. Since real-world design problems typ-
ically involve several different objectives, most of which
counteract each other, it is desirable to present the designer
with a set of Pareto optimal solutions that capture the
trade-off between these objectives, known as a smart Pareto
set. Thus far only the weighted sums and global criterion
methods have been incorporated into topology optimiza-
tion problems. Such methods are unable to produce evenly
distributed smart Pareto sets. However, recently the smart
normal constraint method has been shown to be capa-
ble of directly generating smart Pareto sets. Therefore,
in the present work, an updated smart Normal Constraint
Method is combined with a Bi-directional Evolutionary
Structural Optimization (SNC-BESO) algorithm to produce
smart Pareto sets for multiobjective topology optimization
problems. Two examples are presented, showing that the
Pareto solutions found by the SNC-BESO method make
up a smart Pareto set. The first example, taken from the
literature, shows the benefits of the SNC-BESO method.
The second example is an industrial design problem for a
micro fluidic mixer. Thus, the problem is multi-physics as
well as multiobjective, highlighting the applicability of such
methods to real-world problems. The results indicate that
the method is capable of producing smart Pareto sets to
industrial problems in an effective and efficient manner.
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1 Introduction

Engineering design often involves several considerations,
usually with conflicting requirements, that cannot be simpli-
fied to a single objective function. In such cases, more than
one solution may exist that meets the design goals. For these
multiobjective problems, the Pareto frontier of the entire
design space is the most valuable tool a designer can have
to select the most appropriate designs. The Pareto frontier is
defined as the set of all solutions for which no other solu-
tion is better in all objectives (Pareto 1964). Such solutions
are known as Pareto-optimal. Therefore, Pareto sets give the
trade-off relationships between the particular objectives in a
multiobjective problem.

1.1 Pareto set generation methods

A variety of different algorithms for generating Pareto sets
are to be found in the literature. This section summarises
the most popular algorithms, comparing their efficiency and
effectiveness in representing the design space. The inter-
ested reader is advised to seek out the latest review articles
(Marler and Arora 2004; Ruzika and Wiecek 2005) on
the topic, which provide in-depth surveys of multiobjective
optimization methods.

The most common approach in the multiobjective opti-
mization literature is the weighted sums method in which all
objectives are combined to form a single function, known
as the aggregate objective function. Following the introduc-
tion of the weighted sums method by Zadeh (1963), many
authors have addressed its pitfalls with respect to identifying
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the Pareto-optimal set, for example see Koski (1985),
Stadler (1995), Athan and Papalambros (1996), Das and
Dennis (1997) and Messac et al. (2000a). There are three
main difficulties associated with the weighted sums method.
First, although many methods for determining weights exist,
a satisfactory, a priori selection of weights does not guaran-
tee an acceptable final solution will be obtained (Marler and
Arora 2010). In this case new weights need to be defined
to resolve the problem. Messac and Hattis (1996) showed
that weights must be a function of the original objectives,
not constants, in order for a weighted sum to mimic a
preference function accurately. Second, the weighted sums
method is not able to capture solutions on the non-convex
regions of the Pareto frontier. Theoretical derivations for this
deficiency are given in Das and Dennis (1997) and Mes-
sac et al. (2000b). Finally, varying the weights consistently
and continuously does not guarantee an even distribution
of Pareto solutions and an accurate, complete representa-
tion of the Pareto set. However, the weighted sums method
is easy to implement and does generate solutions of Pareto
attribute.

The compromise programming method (Chen et al.
1999) has been proven to overcome some of the drawbacks
of the weighted sums method; namely, it is able to find
solutions on the non-convex regions of the Pareto frontier.
Messac and Ismail-Yahaya (2001) showed that a relation-
ship exists between the order of the aggregate objective
function and that of the Pareto frontier for the compro-
mise programming method to successfully generate Pareto
solutions. Therefore, the success of the method is highly
dependent on the order of the aggregated objective func-
tion. Nevertheless, although the compromise programming
method is able to produce a Pareto frontier for convex and
non-convex regions, it still shares some of the deficiencies
associated with the weighted sums method. Most notably,
when using an even distribution of weights it is unable to
generate a set of evenly distributed solutions. Hence, the
weighted sums and compromise programming methods are
suitable for obtaining Pareto solutions, but ill-suited for the
creation of Pareto sets (Messac et al. 2003).

The physical programming method was initially intro-
duced by Messac and Hattis (1996) to provide a means
of incorporating preferences without the need to define
relative weights (Chen et al. 2000). Objective functions,
constraints and goals are treated equally and combined
into design metrics. Each design metric is associated with
a type of utility function, which is distinguished by its
general form, such as: monotonically decreasing, monoton-
ically increasing or unimodal. The decision-maker specifies
the numerical ranges, corresponding to different degrees of
preference (i.e. desirable, tolerable, etc.), for each metric.
As the design process evolves, these ranges may change.
Messac et al. (2004) show that because of the way these

utility functions are defined, physical programming is able
to effectively optimize objective functions with varying
orders of magnitude. However, the requirement that the
decision-maker needs to quantitatively classify different
ranges of values for each metric suggests that physical
programming requires significant knowledge about each
objective and constraint before the optimization process.
Nevertheless, the physical programming method is supe-
rior to the weighted sums and compromise programming
methods, since it is able to represent the complete Pareto
set with an even distribution of points (Chen et al. 2000;
Messac 2000; Messac et al. 2001). Furthermore, Martinez
et al. (2001) demonstrate the ability of the method to handle
non-convex Pareto-optimal surfaces. Messac et al. (2001)
prove that the physical programming method provides a
sufficient condition for Pareto-optimality, while (Messac
and Mattson 2002) demonstrate how physical programming
can be used as a necessary condition for Pareto-optimality,
obtaining all Pareto-optimal points. However, if an algo-
rithmic implementation of the method is not available, then
the application of physical programming becomes diffi-
cult. Physical programming also requires significant knowl-
edge of the problem functions, since the decision-maker
is required to specify large amounts of information. Thus,
physical programming can incorporate more information
about a problem; however, this comes at the cost of being
inherently more involved compared with the weighted sums
and compromise programming methods.

In an effort to overcome the deficiencies of the weighted
sums approach, Das and Dennis (1998) proposed the Nor-
mal Boundary Intersection (NBI) method. This method
introduced a new parameter that provided a means for
obtaining an even distribution of Pareto-optimal points, even
for a non-convex Pareto set, provided a consistent varia-
tion in this parameter is defined. Although the NBI method
has been shown to generate an even distribution of Pareto
solutions representing the complete Pareto set, the method
does not provide a sufficient condition for Pareto-optimality
and therefore may produce non-Pareto-optimal points. Fur-
ther, for multiobjective problems of dimension n > 2
the NBI method overlooks some Pareto-optimal points,
i.e. it does not explore the full design space. Das (1999)
proposed a modified NBI method whereby more Pareto
points in the nonlinear portions of the Pareto surface are
generated.

Messac et al. (2003) developed the Normal Constraint
(NC) method as an alternative to the NBI method with
further improvements. The authors showed that when the
normal constraint method is used with normalized objec-
tive functions, often referred to as the Normalized Normal
Constraint (NNC) method, and with a Pareto filter, which
eliminates non-Pareto or locally Pareto-optimal points, this
approach provides a set of evenly spaced Pareto-optimal
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points in the criterion space. Its performance is independent
of design objective scales, and it has been shown to be more
computationally stable than the NBI method, and less likely
to produce non-Pareto or locally Pareto-optimal solutions.
Messac et al. (2003) show that the NC method overcomes
the deficiencies of the NBI method because of the different
structure of their formulations. The former uses inequality
constraints whereas the latter uses equality constraints. The
method used in this paper to generate the Pareto sets is based
upon the NCmethod. Hence, the specific literature concerning
improvements in this method is discussed in Section 1.2.

1.2 Normal constraint method

Since the inception of the NC method (Ismail-Yahaya and
Messac 2002) many variants and improvements have been
proposed. Shortly after introducing the method the orig-
inal authors proposed the NNC variant, which alleviates
objective scaling issues by operating on the normalized
design objective space (Messac et al. 2003). A number of
authors have suggested means for improving the distribution
of Pareto solutions by modifying the utopia plane (Mar-
tinez et al. 2007; Martinez et al. 2009a; Motta et al. 2012).
Furthermore, methods for avoiding local optima have been
proposed by Martinez et al. (2009b). The authors propose
a hybrid algorithm, which combines the NNC method with
genetic algorithms.

The NNC method has been shown to capture the entire
Pareto frontier for problems of dimension n = 2 (Messac
et al. 2003). However, similarly to the NBI method, parts of
the design space could be left unexplored for problems of
higher dimension (Section 1.1). Messac and Mattson (2004)
proposed that, for problems where n > 2, the utopia plane
should be extended to include not just the region bounded by
anchor points, but rather the entire region of the utopia plane
that could produce a Pareto point. This extended region is
bounded by the anchor points as well as the perpendicular
projections of the anti-anchor points. Without the use of this
extended region for the utopia plane, one cannot guaran-
tee that the generated set will represent the complete Pareto
frontier for problems with n > 2.

A design space containing a disjointed Pareto set may
yield the same Pareto point, even when performing multiple
single-objective optimizations. Boyce and Mattson (2008)
proposed a method for identifying which utopia plane points
will produce redundant Pareto points, to avoid these single-
objective optimization runs. This is achieved by recognizing
when at least one of the normal constraints used in generat-
ing a point is not active. All the utopia plane points that lie
in the region between the normal constraint that first gener-
ated the replicated point and the parallel normal constraint
that would be generated directly through the given point can
then be removed.

Martinez et al. (2007) proposed the uniform NNC
method. This method uses the distribution of known Pareto
points to help guide the NNC method in finding a new set of
Pareto solutions. The authors showed that this improved on
the NNC method’s ability to generate a more uniformly dis-
tributed Pareto frontier. This idea was recently taken further
by Hancock and Mattson (2013), developing the smart nor-
mal constraint (SNC) method. Additional linear constraints,
known as smart constraints (Haddock et al. 2008), are used
to determine which approximate point is most likely to pro-
duce a smart Pareto solution. The authors show that the
SNC method alleviates the need for a Pareto filter to gen-
erate smart Pareto sets. This improves the computational
expense of the algorithm, since the Pareto filter first gen-
erates many solutions, then reduces the set by removing
solutions that are considered insignificantly different from
other Pareto points (Hancock and Mattson 2013). Such an
approach is computationally inefficient as a large number
of designs, which are later removed from consideration,
are generated. Hancock and Mattson (2013) apply the SNC
method to three numerical examples from the literature:
the TNK problem (Tanaka et al. 1995), a gear box design
(Huang et al. 2006) and the WATER problem (Ray et al.
2001). While these examples do demonstrate the effective-
ness and efficiency of the SNC method in generating smart
Pareto sets, they all have objective functions that depend
only on a small number of design variables (2, 7 and 3,
respectively). In all three cases, no sensitivity analysis of
the system is required since the objectives are given as con-
tinuous functions of the design variables. These problems
therefore represent a niche set, with a restricted problem
size.

In contrast, topology optimization has become a highly
developed tool, which is extensively used in the mechani-
cal, automotive and aerospace industries (Sigmund 2011).
Gradient-based topology optimization has been shown to
efficiently solve fine-resolution problems with thousands or
even millions of design variables with only a few hundred
function evaluations. However, the topology optimization
literature shows a lack of multiobjective algorithms, limiting
their application to single-objective problems.

In this paper, we propose a multiobjective gradient-based
topology optimization algorithm which uses an updated
SNC method and couples it with a Bi-directional Evo-
lutionary Structural Optimization (BESO) algorithm. The
BESO algorithm uses the method of Lagrange multipli-
ers to convert the constraints into continuous variables
such that multiple objectives can be considered. The SNC
method is modified to take advantage of BESO’s ability to
minimize an objective while satisfying all the constraints.
The second illustrative application presents a multi-physics
problem, where the objectives are from different disciplines.
This highlights the method’s ability to tackle real-world
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problems, which are characterized by multiple conflicting
objectives and often multiple disciplines, especially in the
aerospace and automotive industries. It must be noted
that, in real-world design, multiple constraint problems are
unavoidable, with a common example being the maximum
stress of a structure not exceeding its limit value. However,
there are different types of constraints, namely geometri-
cal and physical, which are each handled in a different
way. Usually, one treats physical constraints as penalty
terms in the calculation of the objective function. However,
this study focuses on multiple objectives instead of con-
straints. Nevertheless, the method proposed in this article
could treat physical constraints by adding penalty terms in
the objective functions accordingly. Furthermore, geometri-
cal constraints can be handled even before the calculation
of the sensitivities. This is already demonstrated in this
study for volume and non-design constraints - parts of the
design domain which are constrained to be either solid or
void. Furthermore, this approach facilitates the use of high-
fidelity analysis methods in the conceptual design stage for
real-world problems.

1.3 A quick history of topology optimization

The field of topology optimization was born over a cen-
tury ago with the publication of a paper that derived the
optimality criteria for the least weight layout of trusses
(Michell 1904). This did not spark immediate interest, since
the first general theory of topology optimization, known
as optimal layout theory, was not formulated until some
70 years later by Prager and Rozvany (1977), and it was
the seminal paper by Bendsoe and Kikuchi (1988), which
developed the first material distribution method, that rev-
olutionized the field of structural optimization, making it
applicable to real-world engineering problems. Two meth-
ods, namely, Solid Isotropic Material with Penalization
(SIMP) (Bendsoe 1989; Rozvany et al. 1992) and BESO
(Xie and Steven 1993; Yang et al. 1999) have now reached
the stage of application in single-objective industrial prob-
lems (Rozvany 2009). This work is concerned with the
latter, proposing a method for effectively and efficiently
producing smart Pareto sets for multiobjective topology
optimization (MOTO) problems.

Compared to other types of structural optimization,
topology optimization of continuum structures, through
material distribution methods, is the most challenging; how-
ever, it is the most rewarding economically as there are
no restrictions on the design. The main idea is to find the
optimal distribution of the material in a predefined design
domain considering an objective function and constraints.
Since its introduction in 1988 (Bendsoe and Kikuchi 1988),
topology optimization through material distribution meth-
ods have seen an exponential increase in publications (Munk

et al. 2015). A wide variety of objective functions have
been used with topology optimization algorithms, diversi-
fying their application to almost all fields of engineering
and design (Sigmund 2001; Steven et al. 2000). However,
compared with the extensive research on single-objective
optimization, there has been significantly less work con-
cerned with topology optimization for multiobjective prob-
lems. The most recent topology optimization review articles
have highlighted this gap in the literature (Rozvany 2009;
Sigmund andMaute 2013; Deaton and Grandhi 2014; Munk
et al. 2015), with only one or two references concern-
ing multiobjective problems and no section dedicated to
the topic. This lack of literature is also seen in the lat-
est books on topology optimization (Bendsoe and Sigmund
2004; Huang and Xie 2010; Rozvany and Lewinski T 2013)
with no reference to multiobjective optimization problems.
Recently, Sigmund and Maute (2013) identified the han-
dling of multiple constraints as one of the main future
challenges of topology optimization.

Meta-heuristic algorithms have, thus far, dominated mul-
tiobjective methods, as shown by the latest review articles
(Zhou et al. 2011; Kunakote and Bureerat 2011) and books
(Coello et al. 2007; Deb 2009) in this field. For problems
with many variables, such as those in topology optimization,
these techniques require orders of magnitude more func-
tion evaluations for low resolution, coarse mesh, problems
(Sigmund and Maute 2013; Sigmund 2011). These methods
solely rely on objective function values, based on ran-
dom processes, to search the design space and progress the
solution. Thus, the handling of multiple objectives can be
achieved in an easy, non-intrusive, manner. Comparatively,
topology optimisation algorithms compute the gradients of
the objective functions to determine the sensitivities of the
objectives to each design variable. Therefore, the added dif-
ficulty is how one should combine the different gradients
for the different objectives such that the desired trade-off in
each objective can be found. Moreover, once the method of
determining the sensitivities of multiple objectives is found,
a rigorous convergence criterion must be established. In the
literature, especially for discrete methods, convergence of
topology optimisation algorithms has been shown to be dif-
ficult (Munk et al. 2017). Therefore, the addition of multiple
objectives only makes convergence harder. The develop-
ment of gradient-based topology optimization algorithms
that can solve multiobjective problems would therefore be
of considerable benefit.

Early efforts were made to extend the Evolutionary
Structural Optimization (ESO) method to encompass mul-
tiobjective problems (Proos et al. 2001a). The authors used
a weighted sums method and a global criterion method to
incorporate multiple criteria into the ESO process, show-
ing that this approach is able to produce a range of options,
of Pareto attribute, for a multiobjective problem. However,
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the weighted sums method has been criticized for its
deficiencies in depicting the Pareto-optimal set (Section
1.1). The global criterion method is only able to produce a
single result, usually similar to that produced with equally
weighted objectives (Proos et al. 2001a), thus the Pareto
set is not defined. The same authors have also applied this
method to two different objectives (Proos et al. 2001b),
namely, minimum compliance and maximum specific iner-
tia. Kim et al. (2006) developed a multiobjective structural
optimization method for a three-dimensional (3D) thermal
protection system design using an ESO algorithm. They
again used a weighted sums method with the objective of
minimizing maximum thermal stress and maximizing the
fundamental frequency.

This review shows the small amount of literature avail-
able on applying ESO methods to multiobjective problems.
Only the weighted sums method has been successfully
added to the ESO method. Only the conventional ESO
algorithm, i.e. a monotonic algorithm, has been applied
to multicriteria problems, thereby avoiding convergence
issues, since the solution is found once a certain number of
elements have been removed.

This paper aims to extend this work on multiobjective
ESO algorithms in two main ways. First, by using a more
rigorous BESO, rather than ESO, algorithm. Modern BESO
algorithms are convergent and mesh-independent (Huang
and Xie 2007), simultaneously removing and including
material in the design domain until the constraints and a
convergence criterion are satisfied. Second, by adopting a
multiobjective algorithm which can more efficiently and
effectively represent the Pareto frontier. Thus far, only the
weighted sums method has been adopted.While this method
does produce Pareto-optimal solutions, it is not able to iden-
tify solutions on non-convex regions of the Pareto frontier.
It is also unable to generate an evenly distributed Pareto
front or guarantee a smart Pareto set will be obtained. There-
fore, the multiobjective algorithm adopted for this work is
a modified SNC method, which has been shown to cap-
ture the entire design domain (Messac and Mattson 2004),
produce evenly distributed Pareto solutions (Martinez et al.
2007) and efficiently obtain a smart Pareto set (Hancock and
Mattson 2013).

The remainder of this paper is organized as follows:
Section 2 outlines the multiobjective optimization problem
formulation and the SNC method for generating a smart
Pareto set. Here the update to the original algorithm (Han-
cock and Mattson 2013) is presented. This is followed in
Section 3 by a review of the BESO method and how it
is applied to the multiobjective formulation. In Section 4
the performance of the SNC-BESO method is illustrated
through two numerical examples, the latter being a real-
world multi-physics engineering design problem. Finally,
Section 5 concludes the paper.

2 The smart normal constraint method

In this section the mathematical definition of a multiob-
jective optimization problem (MOP) is introduced. The
original SNC method is then outlined. Finally, the update
to the SNC method used in this analysis is given. For an
in-depth analysis of the original SNC and NC methods the
reader should seek out (Hancock and Mattson 2013) and
Ismail-Yahaya and Messac (2002), respectively.

2.1 Multiobjective optimization

A generic MOP is usually stated mathematically as:

min(x) {μ1(x), μ2(x), . . . , μn(x)}
subject to: n ≥ 2

g(x) ≤ 0
h(x) = 0
xl ≤ x ≤ xu

(1)

where x is the design variable vector, such that the vectors xl

and xu are the corresponding lower and upper bounds of the
design variables.μ is the design objective vector, g and h are
inequality and equality constraint vectors, respectively, and
n is the dimension of the problem or number of objectives.
Solution of the problem (1) produces a Pareto set of optimal
solutions. Section 2.2 reviews the SNC method, which is
used in this work to generate the Pareto set.

There exist two important types of points in the design
space of the MOP which are pivotal to the understanding of
the SNCmethod. Therefore, they are first defined for clarity.

Anchor points are the points in the feasible design space,
the subset of designs satisfying the constraints of the MOP
(1), that correspond to the minimum value of one of the
objectives. The anchor point for the ith objective is given
by:

μi∗ =
[
μ1(xi∗), μ2(xi∗), . . . , μn(xi∗)

]T

(2)

where xi∗ is defined as the design variable vector that gives
the minimum value for the ith objective.

Anti-anchor points are the opposite of anchor points in
that they correspond to the points in the feasible design
domain with a maximum value of one of the objectives. The
anti-anchor point for the ith objective is thus defined as:

μi◦ =
[
μ1(xi◦), μ2(xi◦), . . . , μn(xi◦)

]T

(3)

where xi◦ is the design variable vector that gives the maxi-
mum value for the ith objective.

2.2 Review of the smart normal constraint method

The SNC method converts the MOP into a series of single-
objective optimization (SOO) problems, with additional,
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different, linear constraints calculated to produce a Pareto
solution in a particular region of the design space. The SNC
method can be divided into 7 steps, which will be outlined in
this section, using a bi-objective optimization problem (Fig.
1). For problems with n > 2, the lines described in these
steps are replaced by their higher dimensional counterparts,
i.e. planes for n = 3 or hyperplanes for higher dimensions.
Steps 2–7 are repeated until there are no more approximate
regions of the Pareto surface that are capable of yielding
a smart Pareto point. Further details on the method can be
found in Hancock and Mattson (2013).

Step 1: Generating the reference points

First, the anchor and anti-anchor points must be located
inside the design domain. These are used as the vertices on
the edges of the Pareto frontier approximation to guarantee
convergence of the entire Pareto set (Messac and Mattson
2004). Using (2) and (3) the anchor and anti-anchor points
are found, respectively.

Step 2: Connecting the approximation vertices

The vertices created by the anchor and anti-anchor points
are divided into approximation segments or planes to
approximate the Pareto frontier. For the bi-objective case,
each vertex is connected to the neighbouring vertices on
either side of it, as shown in Fig. 1. For problems with
n > 2, the connectivity of approximation vertices is found
by linearly projecting them onto the utopia plane and find-
ing the Delaunay triangulation (Barber et al. 1996) of the
projected set.

The lines that connect the anchor points are known as the
utopia lines. Therefore, a utopia line vector, Nj , is found
using the equation:

Nj = μj∗ − μn∗ ∀j ∈ (1, 2, . . . , n − 1) (4)

Hence, n − 1 utopia line vectors are defined, all of
which point to the anchor point corresponding to the nth

dimension, μn∗.

Step 3: Approximating the Pareto frontier

Evenly spaced approximation points (Fig. 1) are gener-
ated along each approximation plane, through the following
relation:

Si =
n∑

j=1

α
j
i Pj (5)

where Si is the ith approximation point and Pj is the j th

approximation vertex. The non-dimensional parameter α
j
i

satisfies the constraints given by:

0 ≤ α
j
i ≤ 1 (6)

Fig. 1 Initial set-up of the SNC method before constrained SOO for a
bi-objective problem

and

n∑
j=1

α
j
i = 1 (7)

αj is varied from 0 to 1 with a fixed increment of δj such
that an even distribution of approximation points over the
entire Pareto frontier is obtained. Traditionally the value of
δj was arbitrary and only depended on how close to each
other the designer wanted the approximation points to be.
However, close approximation points may result in several
converging to the same region of the Pareto frontier, and
hence being discarded. Hancock and Mattson (2013) found
that, in practice, it is simple and effective to set δj equal
to the shortest Euclidean distance between a centre point
and the Practically Insignificant Trade-off (PIT) region that
defines one smart distance around it. Further discussion
of the PIT region and smart distances is given in Step 5
(Section 2.2). Thus, the increment δj can be found by:

δj =
∥∥∥∥min

d
||d||

∥∥∥∥ (8)

where d is a vector of distances between the centre point
of the PIT region and any second point on the boundary of
the PIT region. Here d is constrained by setting the smart
distance to unity, s = 1.

A smaller increment, δj , will result in more approxima-
tion points. Computations performed on the approximation
points are relatively inexpensive, as more approximation
points will not result in more functional calls, because only
one point is used per iteration. Therefore, in contrast to the
NC method, the efficiency of this algorithm depends little
on the value of δj .
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Step 4: Removing restricted approximation points

Unavoidably, some SOOs will result in the generation of
solutions that will not produce new smart Pareto points.
There may also be regions where the Pareto frontier is dis-
continuous and, therefore, solutions cannot exist. In Step
7 (Section 2.2), these restricted regions are recorded, and
avoided in further iterations. In Step 4 approximation points
that lie within one smart distance of already existing smart
Pareto points are removed from further consideration.

Step 5: Calculating the smart distances

In this step the smart distance between each approxima-
tion point and all the existing approximation vertices is
found. Mattson et al. (2004) first introduced the idea of a
smart Pareto set, based on the assumption that: “when the
trade-off is significant a designer is willing to give up an
insignificant amount in one objective to gain significantly in
another”. To achieve such a set, Mattson et al. (2004) intro-
duced the smart Pareto filter, use of which has been shown
to be computationally prohibitive (Section 1.2). The funda-
mental concept of the smart Pareto filter is to remove any
duplicate Pareto solutions which fall inside a user-defined
shape, the PIT region, surrounding each Pareto solution. The
PIT region is defined by two control parameters, �r and
�t, which determine the significant amount of change in an
individual objective and the trade-off amount that is consid-
ered insignificant, as shown in Fig. 2a. One advantage of
this method is that it can be used alongside any algorithm
capable of producing a well-distributed Pareto set.

In the SNC method, the direct generation of a smart
Pareto set is facilitated by the smart distance between points
in the design space. The shape of the PIT region around a
point is called a Lamé curve in 2D or a hyper-Lamé curve
in nD (Fig. 2b).

Therefore, the PIT region is defined as the area that lies
on or within the Lamé curve (Fig. 2b). All points inside the
PIT region have a smart distance s ≤ 1 from the centre
point. Since, by definition all members of a smart Pareto set
do not lie within the PIT regions of any other member of the
set, each will have a smart distance s > 1 with respect to all
other members of the set. The smart distance between two
points is found by the following formula:

s = ‖Ad‖p for (0 ≤ p ≤ 2) (9)

where:

A =

⎡
⎢⎢⎣

1
a1

· · · 0
...

. . .
...

0 · · · 1
an

⎤
⎥⎥⎦ for (a > 0) (10)

(a) Using the smart Pareto filter (Mattson et al (2004))

(b) Using the smart distance formulation

Fig. 2 The user-defined PIT region

d is a vector between the two points and ‖Ad‖p is the p-
norm of the vector Ad, which follows that given by Rynne
(2007), where for this case it is given by:

‖Ad‖p =
(

n∑
i=1

|Ai,idi |p
) 1

p

(11)

The variables a and p determine the distribution of the
smart Pareto points that will be generated for a particular
problem. The values ai , which make up the diagonal of
matrix A, correspond to the ith objective and can be consid-
ered as the amount of change in the ith objective that would
constitute a significant difference between two points if all
other objectives remain practically unchanged. Therefore,
any Pareto point that lies within a distance ai of another
Pareto point and does not have a significant trade-off in one
or more other objectives will fall within the PIT region and
be discarded. Larger values of the matrix A will thus cor-
respond to fewer points in the smart Pareto set. The value
of p determines the amount of curvature of the PIT region,
and hence controls the amount of trade-off between objec-
tives that is required in order for two points near each other
to both remain in the smart Pareto set. The SNC method
will work for values of p between 0 and 2; however, it is
assumed that for most cases: 0 ≤ p ≤ 1, since this will
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result in a trade-off that is equal to or less than the signifi-
cant change in a single objective. Since the values for a and
p are user-defined, it is therefore the user’s preferences that
determine the distribution of that set.

This method of smart distances is unique in that it only
requires a single scalar value, the smart distance, to define a
PIT region. This allows the algorithm to identify whether or
not a new point is a smart Pareto point. It can also determine
to what extent the point is smart. Thus, the SNC method is
able to search the design space more efficiently and deter-
mine which point is most likely to generate a new smart
Pareto solution. It is this ability that makes the SNC method
more efficient than the NC method, which iteratively cycles
through all the utopia line points.

Step 6: Generating the new Pareto point

The approximation point with the largest smart distance
to its nearest known Pareto point is selected to construct the
SOO problem given by:

min(x) μ1(x)
subject to: n ≥ 2

g(x) ≤ 0
h(x) = 0
xl ≤ x ≤ xu

Nj (μ(x) − Sj )
T ≤ 0 ∀j (1, 2, . . . , n − 1)

(12)

This SOO problem has an additional linear constraint
(12), which excludes all points found above the line that
intersects the approximation point and is orthogonal to the
approximation line. Thus, for every approximation point
that is deemed likely to produce a smart Pareto solution, a
corresponding point on the Pareto frontier is found. Figure
1 shows the Pareto point P that is produced by solving (12)
using the approximation point S. In this case, the approxi-
mation points are closer to the Pareto front than the utopia
line points that are obtained with the NC method. This usu-
ally results in fewer function calls per SOO for the SNC
method compared to the NC method.

Step 7: Confirming the new Pareto point belongs to the
smart Pareto set

The new Pareto point, found by solving the SOO problem
of (12), may not lie in the smart Pareto set. Therefore, if
this is the case, a restriction enabling the removal of future
approximation points in these regions, which are known to
be unable to produce smart Pareto points, must be added.
Hancock and Mattson (2013) identify three criteria to test
whether the new point lies inside the smart Pareto set. If the
point meets one of these criteria, then it is not a smart Pareto
point.

First, a dominated point may be produced by solving
the topology optimisation problem of (12) when there are
local minima or maxima in the design space. When using
gradient-based algorithms, local optima can be perceived
as global optima by the optimizer. A dominated solution
is one which is locally optimal, but not globally optimal,
since there exists at least one other solution where one of
the objective functions can be improved in value, compared
to the dominated point, without degrading the other objec-
tive values. If any of the other objective values deteriorate,
then the points are Pareto-equivalent - neither dominates the
other. For one point to dominate another, it needs to be bet-
ter with respect to at least one objective and not worse with
respect to any other objective. Therefore, a solution is called
Pareto-optimal if there does not exist another solution that
dominates it. These solutions can be identified and omitted
with a Pareto filter, as suggested by Messac et al. (2003).
By passing the new points through a Pareto filter, the algo-
rithm can avoid using dominated points as approximation
vertices. Including such points would decrease the accuracy
of its approximation of the true Pareto frontier.

Second, a redundant point can be produced when the
new solution falls within the PIT region of another, already
present, Pareto point. This may occur because the true shape
of the Pareto frontier is unknown, rather it is just approx-
imated by the already existing Pareto solutions that have
been obtained. Therefore, simply by selecting an approx-
imate point which does not lie inside the PIT of another
Pareto point does not guarantee, once the optimisation prob-
lem has been solved (12), that the obtained Pareto point
also won’t lie inside the PIT of another Pareto point. If this
occurs, the new Pareto point can still be used as an extra
approximation vertex to better approximate the Pareto fron-
tier for future points; however, it cannot be kept in the smart
Pareto set. No approximation point that lies along the nor-
mal constraint line that resulted in a redundant solution can
be used for future SOOs. The reader is directed to Fig. 6
for an example of a redundant point being produced by the
original SNC method.

Finally, a point that is separated from the normal con-
straint lines or planes, which were used in the SOO (12)
that created it, is referred to as a separated point. This sep-
aration indicates that there is a region in the design space
in which all SOOs will converge to the same solution. This
occurs when the Pareto frontier is discontinuous in this
region. Using the normal constraint line that produced the
separated point and a parallel normal constraint line that
intersects the final solution, a restricted region can be cre-
ated. This restricted region is kept for the remainder of the
optimization process, to avoid the generation of redundant
points.

Thus, each new solution is a smart Pareto point if it
is not dominated, redundant, separated or any combination
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there of. For more detail on the restrictions of smart Pareto
sets, the reader is advised to consult (Hancock and Mattson
2013).

2.3 Updated smart normal constraint method

Here the modifications to the SNC method (Hancock and
Mattson 2013) that improve its coupling with the BESO
algorithm (Section 3) are described. The aim is to generate
smart Pareto points in a computationally efficient way. The
method is graphically represented in Fig. 3.

Figure 3a shows that the anchor points have been found
and a line connecting them created. The line is divided
equally into a series of approximation points. This is the
main difference between the SNC and NC methods. For the
SNC method, the line represents an approximation of the
Pareto frontier, which, in the first iteration, is clearly not
a good approximation. However, as the solution progresses
the approximation becomes more accurate, improving the
method’s ability to locate smart Pareto points.

The main difference between the original SNC method
(Hancock and Mattson 2013) and the one used in this work
is also illustrated in Fig. 3a. Hancock and Mattson (2013)
keep the normal constraint of the SOO problem (12) the
same as that used in the NC method. However, in this
work, the normal constraint is modified to take advantage of
the BESO algorithm’s ability to satisfy multiple constraints
while minimizing the objective. Instead of defining a large
region, approximately half the design space for the first iter-
ation (Fig. 1), a small band (the shaded area in Fig. 3a) is
defined, using the following two normal constraints:

Nj(μ(x) − Sr)
T ≤ 0 ∀j (1, 2, . . . , n − 1) (13)

and

−Nj(μ(x) − Sl)
T ≤ 0 ∀j (1, 2, . . . , n − 1) (14)

where Sr and Sl are the approximation points on either side
of the approximation point that is determined to be most
likely to produce a smart Pareto solution (Section 2.2 Step
6). In this way, the solution is guaranteed to fall at the
intersection of the Pareto curve and the normal line, which
intersects the approximation point that is most likely to pro-
duce a smart Pareto solution. Therefore, this method is less
likely to produce dominated or redundant points, since the
solution must fall inside the constrained region. However,
there is one restriction that is not automatically handled
by the updated SNC method. Separated points may still
occur if the Pareto frontier is discontinuous over the entire
constrained region. Furthermore, it is possible for a local
optimum to exist inside the narrow region defined by the
two constraints (13) and (14). Therefore, a dominated point
in this region could still be produced. This is unavoidable

when using gradient-based methods, since local optima can
be obtained. However, the BESOmethod ranks all new solu-
tions against the previously determined ones. Therefore, if
a local optimum is found, it is removed from the Pareto set
and the constrained region that produced it is omitted for the
entire duration of the optimization process.

Separated points are handled using the conventional SNC
method, i.e. by identifying solutions that converge to the
same point even when different approximation points are
used (Section 2.2). In the updated method, there are two
ways of identifying a separated point. First, if the Pareto
frontier is discontinuous, but the design space is not, then a
solution will be found that is locally Pareto-optimal. If this
occurs, then the point is not added to the smart Pareto set,
and the constrained region that was used to find that solution
is omitted for the entire duration of the optimization process.
Second, if the design space happens to be discontinuous
over the entire constrained region, then no solution will exist
to the SOO problem with the constraints given by (13) and
(14). Alternatively, with the addition of an extra constraint it
is possible that the feasible design space can become limited
such that the algorithm struggles to converge. In both these
cases, the objective will oscillate back and forth over either
side of the discontinuity, and hence the constrained region
as well. This is found by tracking the objective and stopping
the solution if this oscillatory behaviour is observed. Again,
the constrained region is omitted for the entire duration of
the optimization process.

Figure 3b shows how the approximation of the Pareto
frontier is improved after the first Pareto point is found.
Now the approximation curve is made up of two segments
of piecewise linearly varying points, instead of one as used
in the NCmethod. This updated approximation of the Pareto
frontier provides the algorithm with more information about
where the remainder of the smart Pareto set is most likely
to be found. Before each SOO (12) the nearest Pareto
point, in terms of its smart distance, to each approxima-
tion point is found. The approximation point that has the
largest smart distance to its nearest known Pareto point is
identified as the most likely point to produce the next smart
Pareto solution. The constrained region is then constructed
by using the points on either side of this approximation
point (Sl and Sr ). An SOO is then performed with the nor-
mal constraints defined by (13) and (14). This process is
then repeated multiple times iteratively to construct a more
accurate approximation of the Pareto frontier.

Figure 3c shows the smart Pareto set obtained once no
approximation point has a minimum smart distance of s > 1
from any discovered Pareto points. Once this occurs, the
algorithm terminates and the smart Pareto set has been
found.

The strategy of approximating the Pareto frontier through
an approximation curve is identical to that used in the original
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(a) Upon completion of first SOO

(b) Upon completion of second SOO

(c) Final smart Pareto set

Fig. 3 The updated SNC method for a bi-objective case

SNC method (Hancock and Mattson 2013). Likewise, the
general method for creating individual Pareto solutions, i.e.
solving a constrained SOO problem, is the same for the
NC and SNC method used here. However, in this work, the
constraint is tightened by defining a narrow band, through
two parallel normal constraints, in which the solution must
lie. Therefore, the solution of the SOO does not have to

be passed through a Pareto filter, nor does the smart dis-
tance from the current solution to the already determined
Pareto points need to be calculated, to determine if the
solution is dominated or redundant. These restrictions are
actively handled in the optimization process. Thus, the
SNC method used here retains all the improvements of the
original (Hancock and Mattson 2013), since the algorithm
dynamically adjusts the spacing between the constructed
constraint regions according to the final distribution, as
described by the user through the definition of the PIT
regions.

Finally, as with all optimisation algorithms, a poor initial
parameter selection may unavoidably result in the gener-
ation of unfavourable solutions. However, this is not new
to topology optimisation, nor specific to it, and will be
automatically handled by Step 7 (Section 2.2) where the
solution’s Pareto optimality is assessed.

3 The bi-directional evolutionary structural
optimization method

This work uses the BESO algorithm to solve the SOO (12)
of the SNC method. In this section the developments of the
algorithm are outlined, followed by the method of Lagrange
multipliers, which is used to implement the multiple con-
straints of the SOO problem.

3.1 Developments of the BESO algorithm

BESO is a variant of ESO with a bi-directional formulation,
i.e. elements can be included in, as well as removed from,
the design space. The idea behind the original ESO algo-
rithm (Xie and Steven 1993) was that by gradually removing
inefficient material from an initial, over-sized, structure;
the design would then evolve towards the optimum. How-
ever, this monotonic algorithm is limited in two main ways:
first, only material can be removed from the structure,
and consequently the initial model must be significantly
over-designed. Second, if structure is prematurely removed,
it cannot be recovered. Thus far, only the ESO algo-
rithm has been applied to MOTO problems (Section 1.3);
therefore, these deficiencies are present in the algorithms
used.

Modern BESO algorithms are mesh-independent and
convergent (Huang and Xie 2007), removing and includ-
ing material in the design domain until the constraints and
a convergence criterion are satisfied. Recently, a further
improvement of the BESO algorithm introduced the use
of soft material, to model void elements (Huang and Xie
2009). This method, known as soft-kill BESO, is used in the
work presented in this paper. The SOO (12) can be trans-
formed into the general topology optimization problem for
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soft-kill BESO, implementing the updated constraints ((13)
and (14)) with two objectives, by:

min(x) μ1(x)
subject to: [K]u = f∑Ne

i=1 ≤ V

N1(μ(x) − Sl)
T ≤ 0

−N1(μ(x) − Sr)
T ≤ 0

x = [xmin, 1]

(15)

where f and u are the nodal force and displacement vec-
tors, respectively, and [K] is the global stiffness matrix of
the structure. V is a predefined volume fraction and Ne is
the total number of elements in the model design space.
Therefore, this part of the problem formulates the volume
constraint. The design variables x are discrete, where xi =
xmin = 10−4 represents void material and xi = 1 defines
solid material.

3.2 Sensitivity analysis

In this study, three different objectives are considered in the
test cases presented in Section 4. The first objective is min-
imum compliance or maximum stiffness, used for stiffness
optimization. In finite element analysis the change in the
stiffness of the structure due to the removal of an element
is equal to the element strain energy (Chu et al. 1996). This
change is defined as the element sensitivity for compliance
minimization:

α
cmp
e = ∂c

∂xi

= 1

2
px

p−1
i uT

e [K]0eue (16)

where c is the compliance, p = 3 is the penalization factor,
a superscript of 0 indicates solid values and a subscript of
e represents elemental values. The element sensitivity (16)
takes advantage of the SIMP material model (Bendsoe and
Sigmund 1999), where the Young’s modulus, E, is defined
by the following power law penalization:

E(xi) = E0x
p
i (17)

The second objective is the maximization of the fun-
damental frequency, used for dynamic optimization of
structures. The element sensitivity for natural frequency
maximization is calculated by the following:

α
f rq
e = ∂ωn

∂xi

= 1

2ωn

�en

(
1−xmin

1−x
p
min

px
p−1
i [K]0e −ω2

n[M]0e
)

�en (18)

where �en is the element eigenvector that corresponds to
the nth mode, ωn is the nth natural frequency, where ω2

n

is the eigenvalue that corresponds to the nth mode, and
[M] is the global mass matrix of the structure. In order
to avoid localized fictitious modes in the soft material,

Huang et al. (2010) proposed a modified SIMP material
model, described by:

ρ(xi) = xiρ
0

E(xi) =
[

xmin−x
p
min

1−x
p
min

(1 − x
p
i ) + x

p
i

]
E0 (19)

where ρ is the density of the material. When maximiz-
ing a given frequency, adjacent eigenmodes often converge
towards each other, becoming multiple by having the same
or very similar frequencies. The BESO method handles this
numerical difficulty by taking the average of the sensitivi-
ties of the relative modes (Zuo et al. 2010). For a complete
derivation of the frequency sensitivity number (18) and the
material model (19) the reader is advised to seek out (Huang
et al. 2010). Further discussion on the numerical difficulties
and alternative material models for dynamic optimization
can be found in Pedersen (2000) and Du and Olhoff (2007).

The final objective considered in this work is vorticity
maximization. The last analysis in Section 4 is a multi-
physics and multiobjective topology optimization problem.
One of the objectives is to increase the mixing of two
fluid species for a given Reynolds number. This objective
is imperative to the operation of micro fluidic mixers since
their function is to efficiently mix two fluid species. Thus, as
the flows have low Reynolds numbers, typically lower than
1000, vorticity is an efficient measure of the degree of mix-
ing. Recently, the authors of this work developed a soft-kill
BESO method for the vorticity maximization of fluids using
the Lattice Boltzmann Method (LBM) (Munk et al. 2016b).
The sensitivity number was derived using the circulation
method for vorticity (Abrahamson and Lonnes 1995) and
the shape derivative given in Kasumba and Kunisch (2012).
Therefore, the sensitivity number for vorticity maximization
is given by:

αvrt
e = max(−→ω ) − �γ T

e x
p−1
i �γe (20)

where −→ω is the vorticity of the flow and �γe is the change
of the element velocity vector defined as:

γe = {
�γx, �γy, �γz, �Wx, �Wy, �Wz

}T (21)

where γx , γy and γz are the spatial components and W is
the circulation. For the element sensitivity number given in
(20), the presence of fluid and solid are defined by a design
variable of xi = 1 and xi = xmin, respectively.

3.3 Handling of multiple constraints by the method
of Lagrange multipliers

To solve a multi-constrained optimization problem, Zuo
et al. (2012) proposed transforming the problem formulation
(15) into an equivalent formulation using a Lagrange relax-
ation. This is achieved by first defining slack variables S2

k to
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transform inequality constraints into equality constraints, as
follows:

g(x)k + S2
k = 0 (22)

where g(x)k represents the kth inequality constraint. Then,
by using Lagrange multipliers λk , the relaxed objective
function can be found as the following Lagrangian:

L(x, λ, S2) = μ1(x) +
m∑

k=1

λk

[
g(x)k + S2

k

]
(23)

where m is the number of inequality constraints.
Hence, the sensitivity of the Lagrangian due to a change

in design variable xi is found by:

αe = ∂L

∂xi

= ∂μ1

∂xi

+
m∑

k=1

λk

∂gk

∂xi

(24)

Thus, comparing the sensitivity function (24) with the
single-objective sensitivity functions (Section 3.2), it is seen
that the Lagrange multipliers are utilized to compromise the
original objective function and constraints (Zuo et al. 2012).

The equivalent formulation requires not only the design
variables x to be found, but also the Lagrange multipliers λ

and slack variables S2, in order for a solution to the opti-
mization problem to be determined. The sensitivity of the
Lagrangian to the additional variables is expressed as:

∂L

∂λk

= g(x)k + S2
k (25)

and
∂L

∂Sk

= 2λkSk (26)

The Kuhn-Tucker necessary conditions for optimality
state that the additional sensitivities ((25) and (26)) need
to equal zero. Therefore, in this way, an update trend for
the Lagrange multipliers can be determined based on the
Kuhn-Tucker conditions.

For the inequality constraints g(x), if the constraint value,
g(x)k is positive, then the additional sensitivity (25) must
also be positive. Therefore, λk needs to be decreased for
minimization of the Lagrangian. However, for (26) to equal
zero, λk = 0 if Sk 
= 0, and, according to (22), if Sk 
=
0 then g(x)k ≤ 0. Therefore, if an inequality constraint is
satisfied, the corresponding Lagrange multiplier is zero, and
the constraint is not considered in the minimization of the
Lagrangian.

The additional variables are continuous in an infinite
domain. Thus, it is computationally infeasible to search
such a domain for a solution with a direct method. Zuo
et al. (2012) therefore suggest defining λk through a scaling
function of replacement factors ϕk that range in a reduced
domain [0, 1), given by:

λk = ϕk

1 − |ϕk| ϕ ∈ [0, 1) (27)

However, in this case, the reduced domain must be
extended to (−1, 1), since the problem is multiobjective and
thus it must be possible to increase, as well as decrease,
the objectives from their initial values. Hence, the Lagrange
multipliers λk are represented in the whole range by the
replacement factors ϕk , since ϕk = 0 =⇒ λk = 0 and
limϕk→1 λk = ∞. Thus, the Lagrange multipliers can be
increased or decreased by increasing or decreasing the cor-
responding replacement factors. In this way, the Lagrange
multipliers which satisfy the Kuhn-Tucker conditions are
determined by searching for replacement factors within
(−1, 1) using an increment programming algorithm.

Using this formulation the optimization problem (15) for
the stiffness and dynamic objectives becomes:

min(x) 1
2u

T [K]u
subject to: [K]u = f∑Ne

i=1 ≤ V

C(x) − Cl ≤ 0
ωln − ωn(x) ≤ 0
Cr − C(x) ≤ 0
ωn(x) − ωrn ≤ 0
x = [xmin, 1]

(28)

where C(x) is the compliance of the structure, ωn is the nth

natural frequency of the structure, Cl and ωln are the con-
straints imposed by Sl , and Cr and ωrn are the constraints
imposed by Sr . The constraints given by (13) and (14) are
expanded in (28). Thus, using the method of Lagrange mul-
tipliers from this section to construct the Lagrangian for
the inequality constraints of the compliance and natural
frequency, the sensitivity number is given by:

αe = α
cmp
e − λ1α

cmp
e + λ2α

f rq
e (29)

The overall element sensitivity number is therefore a
combination of the element sensitivities of the mean com-
pliance, αcmp

e , and nth natural frequency, αf rq
e . The amount

each objective is considered is determined by the two nor-
mal constraints in the updated SNC method (Section 2),
since the Lagrange multipliers are updated depending on
whether or not the constraints are satisfied.

The Lagrange multipliers start from zero and are gradu-
ally updated according to the corresponding objectives. For
example, the replacement factor ϕk for Lagrange multiplier
λk is increased if the corresponding constraint is not satis-
fied. The increment defined for the replacement factor is set
to a small value (1% in this study), if the constraint is not
close to being satisfied. As the constraint approaches zero,
i.e. becoming satisfied, the increment value gets smaller
according to the difference between the constraint value and
the imposed value. This is expressed mathematically, for the
problem given in (28), by Algorithm 1.
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In Algorithm 1, ε1 and ε2 are small numbers, which are
set to ε1 = ε2 = 0.01 for this study to restrict the amount
by which the Lagrange multipliers can change between
optimisation iterations.

3.4 Mesh independence and convergence

In order to guarantee that a solution to the topology opti-
mization problem (28) exists, some restriction on the result-
ing design must be introduced (Sigmund and Petersson
1998). A filter scheme is used to smooth the element sen-
sitivities (29) across the entire domain. This alleviates the
problems of mesh-dependency and checkerboarding, which
are a result of the sensitivity numbers becoming discon-
tinuous across the element boundaries. The filter scheme
requires the nodal sensitivity numbers, which are defined as

Fig. 4 Initial rectangular plate design domain (Proos et al. 2001a)

the average of the sensitivities of the elements connected to
the node. It follows that:

αn =
M∑
i=1

wiαei
(30)

where M is the number of elements connected to the node.
The weighting factor of the ith element, wi , is defined with
respect to its distance from the j th node, rij , as:

wi = 1

M − 1

(
1 − rij∑M

i=1 rij

)
(31)

where rij is the distance from the center of the ith element
to the j th node.

The nodal sensitivity numbers (30) are then converted to
smooth element sensitivities using a mesh-independency fil-
ter. A sub-domain, , is defined by the filter radius, rmin,
which identifies the nodes that the element sensitivities are
spread over. The value of rmin must be large enough that 

covers at least one element; for the purpose of this study,
rmin = 3. Therefore, nodes located inside  contribute to
the smoothing of the element sensitivity, by:

αe =
∑N

j=1 w(rij )αnj∑N
j=1 w(rij )

(32)

where N is the total number of nodes in the sub-domain, ,
and w(rij ) is a linear weighting factor defined as:

w(rij ) = rmin − rij j = 1, 2, . . . , N (33)

The filter scheme smooths the elemental sensitivity num-
bers over the entire design domain, including void regions.
Therefore, it effectively addresses the mesh-dependency and
checkerboard problems. However, the objective function
and corresponding topology may not be convergent. In order
to overcome this problem, Huang and Xie (2007) showed
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Fig. 5 Pareto frontier of the first mode natural frequency and mean compliance for the roller-supported rectangular plate found using the SNC-
BESO method

that the sensitivity numbers (29) should be averaged over
their history, thus:

αe = αitr
e + αitr−1

e

2
(34)

where itr is the current iteration number. Therefore, the
updated sensitivity number includes the history of the sen-
sitivity information from the previous iterations.

The BESO method defines a target volume for each
iteration, given by:

Vitr+1 = Vitr (1 ± ER) (35)

where ER, known as the evolutionary ratio, is a percentage
of the current structural volume and increases or decreases
Vitr+1 towards the desired volume constraint V . Hence, this
in turn sets the threshold, αth, of the sensitivity numbers.
Solid elements are switched to void when:

αe ≤ αth (36)

and void elements are switched to solid when:

αe > αth (37)

The amount by which the volume of the structure can
increase between iterations,AR, is restricted by a maximum

Fig. 6 Redundant point obtained by solving the rectangular plate with roller-supports problem using the original SNC formulation. Redundant
points are shown as ∗
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addition ratio, ARmax . Once AR > ARmax , only some of
the elements (those with the highest sensitivity numbers)
are added, such that AR = ARmax . Then the elements
with the lowest sensitivity numbers are removed, in order
to satisfy the target volume Vitr+1. Void elements can
have higher sensitivities than solid elements due to the soft
material model, which adds a small fictitious stiffness to
these elements. Due to the mesh-dependency filter, void
elements near solid regions with high sensitivity numbers
have their sensitivities increased by the elements inside their
sub-domain .

Once the volume constraint is satisfied, the iteration tar-
get volume remains constant at V . The topology evolves
until a convergence criterion and the normal constraints are
satisfied. The convergence criterion is defined as:

�C =
∑4

h=0 Citr−h − ∑4
h=0 Citr−5−h∑4

h=0 Citr−h

≤ δ (38)

where δ is a predefined error tolerance. (38) evaluates the
change in the objective for the last 10 solutions. The solu-
tion is deemed to be converged if the change in the objective
is minimal and all constraints are satisfied. More details on
evolutionary topology and shape optimization algorithms
can be found in the latest textbooks (Huang and Xie 2010)
and review articles (Munk et al. 2015) on the subject.

4 Results and discussion

This section presents the results for applications of the new
SNC-BESO algorithm developed in this study. First, a 2D
plane stress problem taken from the work of Proos et al.
(2001a) is analysed. This allows the performance of the
algorithm to be compared with a previous method used
for multiobjective topology optimization. This validates the
new method and shows its benefits compared to the current
literature. Then, an industrial problem, which is both mul-
tiobjective and multi-physics, the design of a micro fluidic
mixer, is considered. This second example shows the ability
of such methods to be applied to real-world problems.

4.1 Rectangular plate with roller supports (Proos et al.
2001a)

Proos et al. (2001a) present a problem where a structure
must be designed to support nine point loads, each having
a magnitude of 200 N, distributed at 0.01 m intervals. The
structure has roller supports at the bottom two corners (Fig. 4).
The design domain has a width of 0.8 m, a height of 0.5 m
and a thickness of 0.01 m. A discretization of 80 × 50 four-
node square elements is used to model the design domain
(Fig. 4). The material properties used for the elements are:
a Young’s modulus of E = 200 GPa, a Poisson’s ratio of

Fig. 7 Normalised Pareto frontier, ◦ samples taken from Proos et al.
(2001a) and � samples from this study

ν = 0.3, and a density of ρ = 7000 kgm−3. Throughout
the analysis 2D plane-stress conditions are assumed.

The objectives of this optimization problem are to mini-
mize the mean compliance and to maximize the first mode
natural frequency. A volume constraint of V = 0.7 is also
applied to the problem. The MOTO problem is then solved
using the SNC-BESO method presented in this paper. The
amount of change in either objective that would consti-
tute a significant difference between two points, if all other
objectives remain practically unchanged, is set to 5%. The
amount of curvature of the PIT region is defined as p = 0.6.
The corresponding Pareto curve of the first mode natural
frequencies and the minimum mean compliance terms is
presented in Fig. 5. Points marked (a)–(j) correspond to
the topologies shown in Fig. 8. The dashed lines corre-
spond to the limits of both objectives, found by solving
a single-objective topology optimization problem for each
objective.

The first observation is that the points given in the Pareto
frontier of Fig. 5 make up a smart Pareto set: the points are
evenly spaced along the Pareto front, such that no point lies
within the PIT of any other. Furthermore, all PIT regions
intersect their neighbouring point’s PIT region in some loca-
tion, demonstrating that the entire design space has been
searched. Therefore, no new design can be found that would
be of interest to the designer. This is a particularly important
improvement over the previous methods used in multiobjec-
tive topology optimisation, as the designer has the minimum
amount of information needed to give all the possibilities
for the problem under consideration. Thus, the SNC-BESO
method used is able to access the entire design domain,
produce evenly distributed Pareto solutions and efficiently
obtain a smart Pareto set, showcasing its ability to solve
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Fig. 8 Optimal designs of the
roller-supported rectangular
plate found using the
SNC-BESO method

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

multiobjective optimization problems in an efficient and
effective manner.

It is worth noting that all approximation points cho-
sen produced a smart Pareto solution. Hence, only 10
optimization runs, the minimum for the given problem, were

required to obtain the full smart Pareto set (Fig. 5). The
same does not occur when using the original SNC algorithm
(Hancock and Mattson 2013), as redundant points are pro-
duced (Fig. 6). Figure 6 shows the design domain for the
sixth Pareto solution using the original SNC method with
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(a) Fluid domain (Tsotskas et al. (2015))

(b) Layout of micro-reactor model (Tsotskas et al. (2015))

(c) Multi-holed baffle plate

Fig. 9 Initial design domain of micro fluidic mixer (Munk et al.
2016b)

the BESO algorithm. The grey zone shows the restricted
region enforced by the normal constraint, with the black
line being orthogonal to the approximated Pareto curve.
The ◦ symbols are the current approximation points, which
the algorithm can choose from to find a new Pareto solu-
tion, whereas the × symbols are the previous approximation
points from earlier iterations. The • symbols are current
approximation points that lie inside the PIT of a previ-
ously found Pareto solution and hence are not considered
by the algorithm. Pareto solutions that belong to the smart
Pareto set are depicted by � symbols in Fig. 6, whereas the
Pareto solutions that break one or more of the criteria in
Step 7 (Section 2.2) are depicted by ∗ symbols. The solution
found using the original SNC method falls inside the PIT
of another Pareto solution. Therefore, it is a redundant point

and has not added to the smart Pareto set. Hence, this point
would be removed. Thus, the updated SNC-BESO method
is more efficient compared with the original SNC method
on this problem. This demonstrates the benefit of the update
made to the SNC algorithm: namely, that the penalties on
the sensitivity function (29) are no longer monotonic, i.e.
they can be increased and decreased, whereas without (14)
they can only be increased. This can lead to the constraints
dominating the solution and result in redundant points, as
shown by Fig. 6.

Comparatively, the work of Proos et al. (2001a) shows
the deficiencies of the weighted sums method: evenly dis-
tributed weights are prescribed, but an even distribution of
points is not obtained (Fig. 7). Furthermore, the points are
concentrated around the knee region of the Pareto curve,
where larger areas of trade-off are observed. Proos et al.
(2001a) found that their analysis, for this particular prob-
lem, did not lead to designs that showed any improvement
in one criterion leading to a clear trade-off with the others,
i.e. increasing the weights of one objective did not nec-
essarily lead to an improvement in that objective with a
corresponding reduction in the others. The authors found
that the solution produced with a stiffness criterion weight-
ing of 90% (depicted by a • symbol in Fig. 7) had a
lower natural frequency than the solution produced with a
stiffness criterion weighting of 100%. However, the mean
compliance was lower for the solution with a stiffness cri-
terion weighting of 100%. Thus, it is optimal in terms of
being the stiffest design; the authors had found a locally
Pareto-optimal solution (Fig. 7), i.e. a dominated point was
produced. This is an example of how a satisfactory, a priori
selection of weights does not guarantee an acceptable final
solution will be obtained (Marler and Arora 2010). These
problems are not evident for the SNC-BESO method of this
work.

The final topologies (Fig. 8) produced using the SNC-
BESO method are not affected by numerical instabilities,
such as mesh-dependency and checkerboarding. Clear holes
have been created in each solution, with a uniform transition
between the two anchor points. Conversely, the topologies
produced by Proos et al. (2001a) contain some checker-
boarding, with several small holes formed and elements
connected at only two corners. This shows the benefits of
implementing an updated BESO method compared to the
ESO method. The mesh-independency filter employed in
this work spreads the sensitivities across the entire design
domain such that these instabilities do not occur. Fur-
thermore, the topologies produced in this work (Fig. 8)
are convergent, whereas the ESO method does not have
a rigorous convergence criterion. The SNC-BESO method
is thus better able to find smart Pareto sets of MOTO
problems.
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Fig. 10 Pareto frontier of
negative vorticity and mean
compliance for the micro fluidic
mixer baffle plate found using
the SNC-BESO method

4.2 Micro fluidic mixer

The authors of the present study analysed a baffled micro
reactor to develop a BESO algorithm for multi-physics opti-
mization with design-dependent pressure loads (Munk et al.
2016b). The model consists of a tubular vessel fitted with a
fuel inlet tube, located co-axially in the main vessel, and a
multi-holed baffle plate through which the oxidizer is intro-
duced. The fluid domain and layout of the micro-reactor
model are shown in Fig. 9.

The dimensions of the fluid domain (Fig. 9b) are given
in LBM nodes, where the dimensions of the lattice are
680 × 73 × 73 lattice units, with additional nodes used for
the wall, in the x, y and z directions, respectively. The baf-
fle is located 60 lattice units downstream of the flow inlet
(Fig. 9b). The imposed inlet conditions are the velocities of
the flow in the fuel inlet tube and the annulus area. At the
outlet, a convective boundary condition is applied, based on
the velocity. The no-slip boundary condition is implemented
at the walls, by modelling them as full-way bounce back in
the LBM. The mass flow rate between the inner tube and
annulus is set to 5% to mimic the experiments performed by
Moghtaderi et al. (2006).

In this section, the SNC-BESO algorithm is applied to
the multi-holed baffle plate simultaneously to maximize its
stiffness and the vorticity of the two flows for a given vol-
ume fraction, V = 0.58, and Reynolds number, Re = 100,
chosen to match the previous single-objective optimisation
runs (Munk et al. 2016a; Munk et al. 2016b). The baffle
is modelled by four-node quadrilateral plate elements with
all six degrees-of-freedom active. Hence, membrane, bend-
ing and transverse shear stresses are present. A clamped

boundary condition, i.e. all six degrees of freedom are
restrained, is applied along the boundary of the baffle. The
boundary of the central hole is designated as non-designable
material for the topology optimization, since this is deter-
mined by the fuel line and inlet conditions, which have been
constrained in the fluid domain (Fig. 9a) to be identical
to previous numerical (Munk et al. 2016b) and experimen-
tal (Moghtaderi et al. 2006) studies. The amount of change
in either objective that would constitute a significant dif-
ference between two points if all other objectives remain
practically unchanged is set to 5%. The amount of curvature
of the PIT region is defined as p = 0.4. The correspond-
ing Pareto curve of the negative vorticity of the flow and the
mean compliance of the structure is presented in Fig. 10.
Points marked (a)–(g) correspond to the topologies shown
in Fig. 11. The dashed lines correspond to the limits of both
objectives, found by solving a single-objective topology
optimization problem for each objective.

For this multiobjective and multi-physics problem, it is
clear that there are two Pareto fronts, separated by a small
gap, between solutions (d) and (e) (Fig. 10). This suggests
that, for this problem, the Pareto front is discontinuous. This
conclusion is further supported by the resulting topologies,
which portray a rapid change between solutions (d) and (e)
where they become progressively similar to their respective
single-objective solutions. This is not surprising since the
two objectives produce very different final topologies and
are based on different physical models, structures and fluids.

The authors of this paper found in a previous study that
certain topological features resulted from the physics of the
two single-objective problems (Munk et al. 2016b). For the
compliance minimization problem, the structural symmetry
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Fig. 11 Optimal micro fluidic mixer baffle plate designs found using the SNC-BESO method

about the x- and y-axes becomes identical (Fig. 11a). It
was shown that this is physically reasonable, since there
is no physical difference about the horizontal and vertical
axes. Therefore, there is nothing physically present to intro-
duce asymmetry into the topology, and it makes physical
sense for the compliance SOO problem to exhibit 4-fold
rotational symmetry, SO(4), about the center point of the
baffle. Conversely, it was shown that vorticity is not a sym-
metrical phenomenon (Munk et al. 2016b). Therefore, for
the vorticity SOO solution the topology is not SO(4), but

displays some symmetry about the ±45◦ diagonals. Hence,
the topologies produced by the two SOO problems are con-
siderably different. The change in the topology from being
SO(4) to symmetric about the ±45◦ diagonals is clearly
noticeable in the different geometries shown in Fig. 11.

The strain energy distributions for the different Pareto
solutions are given in Fig. 12. Moving progressively from
solution (a) to solution (g), clear strain energy concentra-
tions begin to appear around solution (d). Solutions (a)–(c)
show comparatively low strain energy distributions, with an
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(a) (b) (c)

(d)

(g)

(f)

Fig. 12 Strain energy density for optimal micro fluidic mixer baffle plate designs

almost uniform distribution, especially considering that the
centre hole is non-designable. Solution (g) has large regions
of relatively high strain energy due to the large pressure
difference present across the baffle.

The efficiency for each baffle design in mixing can be
seen by the velocity and streamline plots (Fig. 13). Clearly,
the latter solutions ((e)–(g)) promote mixing by increasing

the velocity of the flow. The flow characteristics of the
earlier designs ((a)–(c)) are difficult to distinguish for the
chosen scale. This is because the low compliance designs
try to minimise the pressure difference across the baffle, and
hence the velocity increase is low compared with the high
vorticity designs. Furthermore, by comparing the stream-
lines, it is apparent that the low compliance designs do
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not produce significant mixing. The streamlines show small
circulation zones immediately after the baffle. However,
by looking at solutions (e)–(g), it is seen that mixing is
significantly promoted by large areas of circulation down-
stream of the baffle.

For the high vorticity designs ((e)–(g)), mixing occurs
mainly along the 45◦ diagonal that does not contain the
holes, whereas, in the low compliance designs ((a)–(d)),
mixing occurs around the holes. The area of mixing is larger
in the high vorticity designs, as the spacing between the
two/four holes is larger than that between the six holes of
the low compliance designs. By comparing the flow paths
(Fig. 13) of the Pareto solutions, it is seen that solutions
(e)–(g) have considerably higher recirculation zones, indi-
cating a bigger mixing zone. Conversely, the six smaller
holes reduce the compliance of the structure, spreading the
strain energy more evenly over the baffle. However, the
larger holes result in increased strain energy concentrations,
resulting in a structure with a high compliance.

To further verify the Pareto solutions found for the
multiobjective and multi-physics micro fluidic baffle plate
optimization problem, a Tabu Search (TS) algorithm (Jaeggi
et al. 2008) was applied to the problem. The TS algorithm
used a level-set parametrisation to maximize the vorticity
and minimize the pressure difference of the flow. While
minimizing the pressure of the flow is not identical to the
minimum compliance objective, it is similar to maximizing
the stiffness of the baffle, albeit, as a fluid objective. This
is because it reduces the fluid loads on the baffle and hence
also the compliance of the baffle. Again, the center hole is
designated as non-designable material. The resulting Pareto
front is displayed in Fig. 14.

The Pareto front found (Fig. 14) is again found to be dis-
continuous. There is, however, a small difference between
the optimization algorithms used: the volume fraction of the
baffle can change in the TS algorithm, but not in the SNC-
BESO algorithm. Therefore, the results are not comparable
below a vorticity of 5400s−1, as this region does not fall
into the design space of the topology optimization prob-
lem of this paper. As was shown by Munk et al. (2016b),
the topology optimization algorithm is able to find a more
optimal solution to the vorticity maximization problem,
thereby increasing the design space slightly at the maximum
vorticity end.

The Pareto front found using the SNC-BESO algo-
rithm of this work is able to identify the different options
available to the designer for the multiobjective and multi-
physics optimization problem. These results indicate that
the SNC-BESO method is capable of producing smart
Pareto sets to industrial problems, which, to the best of the
authors’ knowledge, has not been shown before in the BESO
literature.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 13 Streamlines for the optimal micro fluidic mixer baffle plate
designs
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Fig. 14 Pareto frontier of
pressure difference and negative
vorticity for the micro fluidic
mixer baffle plate found using
the TS algorithm (data produced
by Dr Tiziano Ghisu)

5 Conclusions

A novel multiobjective topology optimization algorithm,
termed SNC-BESO, which uses an updated smart con-
straints method combined with a bi-directional evolutionary
optimization algorithm, has been presented. The literature
survey showed that, thus far, topology optimization meth-
ods have mainly focused on single-objective problems. For
BESO/ESO type algorithms adapted for multiobjective opti-
mization, only the weighted sums and global criterion meth-
ods have been incorporated. It is known that such methods
are unable to produce smart Pareto sets. Two MOTO prob-
lems were solved using the SNC-BESO method, the first
taken from the limited MOTO literature and the second an
industrial problem concerning the design of a micro fluidic
mixer.

The first test-case was purely a structural design problem,
with stiffness and dynamic design criteria. The problem had
previously been solved in the literature using a weighted
sums ESO method (Proos et al. 2001a). The Pareto front
determined by the SNC-BESO method was found to con-
stitute a smart Pareto set, while the same cannot be said
for the Pareto front found using the weighted sums method
(Proos et al. 2001a). It was found that the updates made
to the SNC method avoided redundant points being pro-
duced, a problem that occurs when using the original SNC
method. Thus, the updated SNC method is more efficient
than the original SNC method when used in topology opti-
mization, and the SNC-BESOmethod proposed in this work
is able to solve MOTO problems in an efficient and effective
manner.

The second problem tackled is multi-physics as well
as multiobjective, having stiffness (structural) and vorticity
(fluids) objectives. To the best of the authors’ knowledge,
such a problem has not been solved before in the BESO lit-
erature. Therefore, a comparison to a similar problem solved
using a TS algorithmwas given. It was shown that the Pareto
front for this problem had a discontinuity present, where the
physics of the problem drove the solutions closer towards
the anchor points of the Pareto front. This is expected when
the objectives counteract each other completely. The SNC-
BESO method was able to identify this discontinuity and
find a range of solutions, which displayed the different
design options for the problem.

The work presented here adds to the literature on using
high-fidelity methods, such as Lattice Boltzmann flow sim-
ulations, in topology optimization algorithms at the con-
ceptual/preliminary design stages. Furthermore, a topology
optimization algorithm that can handle multiple objectives,
as well as disciplines, to better optimize real-world appli-
cations was demonstrated. This type of analysis is instru-
mental for the further application of topology optimization
to industrial design problems, where the consideration of
multiple objectives, as well as disciplines, is a very frequent
requirement. Finally, it was mentioned that multiple con-
straint problems are unavoidable in real-world engineering
design. Therefore, extending the SNC-BESOmethod to also
handle multiple constraints is left for planned future work.
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