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Abstract This paper focuses on discrete sizing optimiza-
tion of frame structures using commercial profile catalogs.
The optimization problem is formulated as a mixed-integer
linear programming (MILP) problem by including the equa-
tions of structural analysis as constraints. The internal forces
of the members are taken as continuous state variables.
Binary variables are used for choosing the member profiles
from a catalog. Both the displacement and stress constraints
are formulated such that for each member limit values can
be imposed at predefined locations along the member. A
valuable feature of the formulation, lacking in most contem-
porary approaches, is that global optimality of the solution
is guaranteed by solving the MILP using branch-and-bound
techniques. The method is applied to three design problems:
a portal frame, a two-story frame with three load cases and
a multiple-bay multiple-story frame. Performance profiles
are determined to compare the MILP reformulation method
with a genetic algorithm.
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a assuming that profile j is selected.
b assuming that non-nodal loads are replaced with equiv-

alent nodal loads.
c these matrices and vectors refer to displacements or

stresses at a limited number of prescribed output loca-
tions along member i.

1 Introduction

In structural optimization, the problem formulation plays a
fundamental role. The mathematical structure of the opti-
mization problem determines which solution methods can
be applied, and how difficult it is to find the optimal solu-
tion. From the designer’s perspective, the problem should
include the necessary requirements of design, manufacture
and economy (Farkas 2005) such that the results of opti-
mization are applicable in practice. In general, the problem
formulation is a compromise between meeting the needs of
the designer and the capabilities of contemporary solution
procedures.

In practical optimization of frame structures, the mem-
ber profiles must be chosen from a catalog of commercially
available sections. When this feature is coupled with con-
ventional formulations based on elastic structural analysis,
the problem is not only nonlinear (Wang and Arora 2006),
but it also contains discrete design variables. The resulting
mixed-integer nonlinear programming (MINLP) problem
can be treated by several optimization methods that have
been proposed in the literature on discrete structural design
of frames (for reviews, see Thanedar and Vanderplaats
(1995), Arora and Huang (1996), Huang and Arora (1997),
and Arora (2002)). However, these methods have in com-
mon that they cannot guarantee that the global optimum is
found.
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In a detailed review, Arora (2002) discusses various
methods for structural optimization with discrete variables.
These include branch-and-bound for nonlinear problems,
sequential linearization, dynamic rounding-off, penalty
approach and various stochastic methods, among others.
Some of the more recent approaches include the dis-
crete Lagrangian-based algorithm (Juang and Chang 2006),
and a scheme based on the optimality criteria method
(Schevenels et al. 2014).

Currently, stochastic algorithms are widely used for
solving discrete frame optimization problems. These meth-
ods include genetic algorithms (Camp et al. 1998; Rajeev
and Krishnamoorthy 1992; Gero et al. 2006; Kripakaran
et al. 2010), ant colony optimization (Camp et al. 2005;
Kaveh and Talatahari 2010), firefly algorithm (Gandomi
et al. 2011; Carbas 2016), harmony search algorithm
(Saka 2009), particle swarm optimization (Venter and
Sobieszczanski-Sobieski 2003), guided stochastic search
heuristic (Kazemzadeh Azad and Hasancebi 2015), eagle
strategy with differential evolution (Talatahari et al. 2015),
and teaching-learning based optimization (Togan 2012).
The general idea is to explore the design space in a ran-
dom fashion, thereby using information collected from
previous analyses to gradually improve the design. These
algorithms owe their popularity to the fact that they are
easy to understand and to implement. They can cope with
discrete parameters and are able to take into account com-
plex constraints. However, stochastic algorithms converge
slowly, involve algorithmic parameters that require careful
tuning, and global optimality cannot be guaranteed since no
conclusive convergence checks can be made.

In this paper, global discrete sizing optimization of frame
structures is considered. The weight of the structure is
minimized, taking into account stress and displacement con-
straints. The optimization problem is reformulated into a
mixed-integer linear programming (MILP) problem. In the
classical approach for structural optimization the nested
analysis and design (NAND) approach is employed (Arora
and Wang 2005): in every iteration a finite element analy-
sis is performed in order to obtain the state variables (the
structural nodal displacements and the member end forces).
In order to facilitate the reformulation of the optimization
problem as an MILP, the simultaneous analysis and design
(SAND) approach (Arora and Wang 2005) is adopted in this
study: the state variables are considered as additional design
variables and the state equations (the equilibrium equations
and member stiffness relations) are enforced by means of
additional constraints. In addition, a set of binary decision
variables is introduced for each member of the structure
to select a profile from the catalog given by the designer.
The obtained MILP can be solved for global optimality
with well-established algorithms such as branch-and-bound
methods (Wolsey 1998; Nemhauser and Wolsey 1999).

The MILP formulation approach has originally been pro-
posed by Ghattas and Grossmann (1991) and Grossmann
et al. (1992) for discrete topology optimization of trusses,
later studied by Rasmussen and Stolpe (2008), Faustino
et al. (2006), and Kanno and Guo (2010). Mela (2014)
included member strength and buckling constraints speci-
fied by the Eurocode in the truss topology design problem.
Van Mellaert and Schevenels (2015) included both the
member and the joint constraints for sizing optimization
of statically determinate trusses. Stolpe (2007) proposed a
mixed-integer linear programming reformulation approach
to solve continuum topology optimization problems. Kureta
and Kanno (2014) developed a mixed integer programming
approach for topology optimization of periodic frame struc-
tures with negative Poisson’s ratio, and Hirota and Kanno
(2015) developed a mixed integer programming approach
for the optimal design of periodic frame structures with
negative thermal expansion.

The main differences in the mixed-integer linear pro-
gramming problem between frames and trusses are related
to structural analysis and member resistance constraints. In
truss analysis, the only stress resultant is the normal force,
which is constant in the member. Thus, for each mem-
ber, a single state variable is required. For frames modeled
with beam elements, shear forces and bending moments
in addition to normal forces must be included in the anal-
ysis. Moreover, nodal rotations need to be considered in
addition to displacements. Consequently, the number of
state variables and constraints related to structural analysis
increases when the mixed-integer formulation is extended
from trusses to frames.

The member resistance and deflection constraints for
trusses are imposed by simply limiting the normal force
and nodal displacement variables, respectively. For mem-
bers of frames, the stress resultants typically vary along
the member, which implies that resistance constraints must
be considered at several locations and not only at member
ends. This applies also for deflection constraints. Further-
more, the interaction of stress resultants should be taken
into account, which means that the resistance constraints
become more complicated than simple bounds on the state
variables.

This study focuses on the computational efficiency of
the mixed-integer linear programming approach for the
discrete sizing optimization of frames. The MILP formula-
tion for topology optimization presented in Stolpe (2007),
Kureta and Kanno (2014), and Hirota and Kanno (2015) is
adopted for sizing optimization. However, the formulation
is extended to take into account non-nodal loads. In addi-
tion, catalogs consisting of 9 to 24 available profiles are
adopted, instead of the smaller catalogs consisting of 3 pro-
files adopted for the MILP frame problems presented in the
literature.
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The paper is organized as follows. In Section 2, the
mixed-integer linear programming problem for frame opti-
mization is presented: the design variables as well as the
constraints are described in detail. In Section 3, the for-
mulation is applied to three example problems: a simple
portal frame with an inclined roof, a two-story frame with
three load cases, and a three-bay three-story frame. In addi-
tion, the performance of the MILP reformulation method is
compared with the performance of a genetic algorithm by
solving several multiple-bay multiple-story frame problems.
Section 4 summarizes the main findings of this study.

2 Mixed-integer linear programming formulation

This section describes the mixed-integer linear program-
ming formulation for the discrete sizing optimization of frame
structures. The formulation is written for plane frames with
prismatic members analyzed by the theory of linear elastic-
ity. For simplicity, it is assumed that all members are made
of the same material. Moreover, only a single load case
is considered, but the formulation can easily be extended
to multiple load cases. Non-nodal loads are replaced with
equivalent nodal loads in the formulation of the prob-
lem. The joints are assumed to be rigid, although hinged
connections can be incorporated into the formulation.

Consider a frame structure defined by nm members and
nn nodes with ndof degrees of freedom. The number of pro-
file alternatives is ns. Denote by M = {1, 2, . . . , nm} and
C = {1, 2, . . . , ns} the index sets for members and profiles.
Each member may have its own set of profile alternatives.
The index set of profiles of member i is denoted by Ci ⊆ C.

2.1 Design variables

The design variables include a vector of binary decision
variables y, a vector of continuous nodal displacement

Fig. 1 Member end forces

variables u (including translations and rotations), and a vec-
tor of continuous member end forces q (caused by the equiv-
alent nodal loads). The binary variables are employed to
select member profiles from the set of available alternatives.
For member i, profile j is selected when the corresponding
variable yij = 1. Profile j is not selected for member i when
the corresponding variable yij = 0. For each member i and
for each section j a set of three independent member end
forces is defined, including the normal end force N1,ij , and
the bending moment end forces M1,ij and M2,ij as shown
in Fig. 1. The member end forces for each member i and for
each section j are collected in the vector qij :

qij = [
N1,ij M1,ij M2,ij

]T
(1)

The vector with the design variables x is given by:

x = [
yT uT qT

]T
, y ∈ B

nb , u ∈ R
ndof , q ∈ R

3nb (2)

The total number of binary decision variables is denoted by
nb = ∑nm

i=1 nsi , where nm is the total number of members
in the structure, and nsi is the total number of available sec-
tions for member i. The total number of degrees of freedom
is denoted by ndof. The total number of force variables is
3nb. The total number of design variables is calculated as
ndv = ndof + 4nb.

2.2 Problem statement

The mixed-integer linear programming problem for a frame
structure is given by (4) through (9):

min
x

∑

i∈M

∑

j∈Ci

cij yij (3)

such that
∑

j∈Ci

yij = 1 ∀ i ∈ M (4)

∑

i∈M

∑

j∈Ci

BT
i T

T
i Riqij = f (5)

(1 − yij )q′
ij
� KijTiBiu − qij � (1 − yij )q̄′

ij ∀ i ∈ M, ∀ j ∈ Ci (6)

yijq′
ij
� qij � yij q̄′

ij ∀ i ∈ M, ∀ j ∈ Ci (7)

d′
ij + yij (dij − d′

ij ) � DiTiBiu + d̃ij � d̄′
ij + yij (d̄ij − d̄′

ij ) ∀ i ∈ M, ∀ j ∈ Ci (8)

s′ij + yij (sij − s′ij ) � SijTiBiu + s̃ij � s̄′ij + yij (s̄ij − s̄′ij ) ∀ i ∈ M, ∀ j ∈ Ci (9)
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The objective function is given by (4), where cij is the
cost of profile j for member i. When the structural weight
is taken as the objective function, cij is the weight of mem-
ber i with profile j , and it can be written as cij = ρLiAij ,
where ρ is the density of the material, Li is the length of
member i, and Aij is the section area of profile j for mem-
ber i. Alternatively, cij can be written as cij = Liwij , where
wij = ρijAij is the weight per unit length of profile j for
member i. This expression can be used, if multiple materials
are included in the problem.

The subsequent equations are the constraints of the opti-
mization problem. Equation (4) ensures that a single profile
j is chosen from the catalog Ci for member i. The equilib-
rium equations and the member stiffness relations are given
by (5) and (6), respectively. Equation (7) ensures that if pro-
file j is not selected for member i, the corresponding force
variables become zero, i.e. qij = 0. The derivation of (3–
7) is given in Appendix A. The displacements and stresses
at predefined locations of member i are limited by the con-
straints of (8) and (9), respectively. The derivation of these
constraints is given in the subsequent sections. A list of
symbols is provided at the beginning of the paper.

It is possible to take into account multiple load cases
by introducing additional nodal displacement and force
variables and constraints of (5) to (9) for each load case
(Mela 2014).

2.3 Displacements along elements

Constraints on deflections along the members are expressed
in terms of nodal values using interpolation with shape
functions. The idea is that the designer defines a priori
the locations where chosen displacement components are
restricted.

The displacement along the local x-axis as defined in
Fig. 2 at location x ∈ [0, Li] of member i for profile j is
calculated as:

uij (x) = Du
i (x)TiBiu + ũij (x) (10)

where ũij (x) is the displacement at location x of mem-
ber i due to the element loads, assuming that profile j is
selected and that the member ends are clamped. This term
compensates for the fact that non-nodal loads are replaced
by equivalent nodal loads in the formulation of the prob-
lem. The displacements along the local y-axis vij (x), and

Fig. 2 Local displacements

the rotation ϕij (x) are calculated in the same way. The shape
function vectors Du

i (x), Dv
i (x) and Dϕ

i (x) are given by (44)
to (46) in Section A.3.

The constrained displacement components of element i

with profile j at the locations xk of interest are collected in
the vector dij . For example, if the transverse displacement
vi of element i is to be constrained at the locations x1, x2,
and x3, the vector dij is given by:

dij =
⎡

⎣
vij (x1)

vij (x2)

vij (x3)

⎤

⎦ (11)

This vector is obtained as follows:

dij = DiTiBiu + d̃ij (12)

where the matrix Di and the vector d̃ij are (in this case):

Di =
⎡

⎣
Dv

i (x1)

Dv
i (x2)

Dv
i (x3)

⎤

⎦ d̃ij =
⎡

⎣
ṽij (x1)

ṽij (x2)

ṽij (x3)

⎤

⎦ (13)

In order to limit the relevant displacement components at
all predefined locations of member i, the constraints given
by (8) are introduced, where dij and d̄ij are the prescribed
minimum and maximum allowed value of displacements,
respectively. The artificial bounds d′

ij and d̄′
ij ensure that

when profile j is not selected for member i, the constraints
(8) do not impose any limits on the nodal displacements
u. When profile j is selected for member i (yij = 1), (8)
becomes dij � DiTiBiu + d̃ij � d̄ij and the appropri-
ate displacement components are constrained. When profile
j is not selected for member i (yij = 0), (8) reduces to
d′

ij � DiTiBiu + d̃ij � d̄′
ij . The bounds d′

ij and d̄′
ij are

calculated similarly to q′
ij
and q̄′

ij (42 and 43) for each row

k of matrix Di and vector d̃ij as:

d ′
k,ij = min

u
Dk,iTiBiu + d̃k,ij

s.t.u � u � u (14)

d̄ ′
k,ij = max

u
Dk,iTiBiu + d̃k,ij

s.t.u � u � u (15)

where u and u are the minimum and maximum allowed
nodal displacements, respectively.

When only nodal displacements are limited, the con-
straints given by (8) can be substituted by the following
constraints:

u � u � u (16)

2.4 Stresses

The resistance of cross-sections subjected to shear forces,
normal forces, and bending moments is checked at
predefined locations along the members. For elastic design,
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the resistance constraints can be written in terms of stresses
as:

σmin � σt,ij (x) � σmax (17)

where σt,ij (x) is the normal stress at the top fiber of
the cross-section of member i for profile j at location x.
The normal stress at the bottom fiber of the cross-section
σb,ij (x), and the maximum shear stress τij (x) of member i

for profile j at location x are limited in the same way. These
stresses are calculated as

σt,ij (x) = Nij (x)

Aij

+ Mij (x)

Wt,ij
(18)

σb,ij (x) = Nij (x)

Aij

− Mij (x)

Wb,ij
(19)

τij (x) = Vij (x)Sij

Iij bij

(20)

where Wt,ij and Wb,ij are the section moduli with respect to
the top and bottom fibers of the cross-section, respectively,
Iij is the second moment of area, Sij is the first moment of
area, and bij is the width of the profile at the point where the
maximum shear stress occurs. Nij (x), Vij (x), and Mij (x)

are, respectively, the normal force, shear force, and bend-
ing moment at location x as given by Fig. 3. For plastic
design, similar constraints related to the stress resultants can
be formulated.

The stress σt,ij (x) at location x of member i for profile j

is calculated as:

σt,ij (x) = Sσt
ij (x)TiBiu + σ̃t,ij (x) (21)

where σ̃t,ij (x) is the stress of the beam at location x due to
the element loads, assuming that profile j is selected and
that the member ends are clamped, calculated in a similar
way as given by (18). The stresses σb,ij (x) and τij (x) are
calculated in the same was as in (21).

The stresses can be calculated from the nodal displace-
ments u using the vectors Sσt

i (x), Sσb
i (x) and Sτ

i (x), which
are given by (47) to (49) in Section A.4. Stress constraints
have been treated similarly in the literature (Kureta and
Kanno 2014; Hirota and Kanno 2015), but only for point
loads located at the element nodes. The proposed formula-
tion of (21) takes into account distributed loads and point
loads not located at the nodes.

The constrained stress components σt,ij , σb,ij and/or τij

of element i with profile j at locations xk are collected in
the vector sij . For example, if the normal stress at the top of

Fig. 3 Internal forces of member i for profile j at location x

element i is to be constrained at locations x1, x2, and x3, the
vector sij is given by:

sij =
⎡

⎣
σt,ij (x1)

σt,ij (x2)

σt,ij (x3)

⎤

⎦ (22)

This vector is obtained as follows:

sij = SijTiBiu + s̃ij (23)

where Sij and s̃ij are in this case

Sij =
⎡

⎢
⎣
Sσt

ij (x1)

Sσt
ij (x2)

Sσt
ij (x3)

⎤

⎥
⎦ s̃ij =

⎡

⎣
σ̃t,ij (x1)

σ̃t,ij (x2)

σ̃t,ij (x3)

⎤

⎦ (24)

In general, the stress constraints at predefined locations
along the members are written in the form of (9), where
s̃ij is a vector containing the selected stress components
at the predefined locations of the beam with clamped-
clamped boundary conditions subjected to the element loads
of member i for profile j , and sij and s̄ij are the prescribed
minimum and maximum allowed stresses. The artificial
bounds s′ij and s̄′ij serve the same purpose as the bounds d′

ij
and d′

ij, i.e. they ensure that if profile j is not selected for
member i, the nodal displacements are not constrained by
(9). They are computed analogously to (14) and (15), using
s̃ij instead of d̃ij .

3 Test problems and optimization results

In this Section, the mixed-integer linear programming for-
mulation presented above is applied to three test problems.
Firstly, a simple portal frame with an inclined roof sub-
jected to a distributed load is considered. This problem is
employed to verify the method because it can also be solved
by complete enumeration. Secondly, a two-story frame
benchmark problem reported in the literature is treated.
Finally, a three-bay three-story frame is considered. This
problem represents a case where the optimum design is not
easy to find by enumeration.

All test problems are solved by the commercial soft-
ware Gurobi (Gurobi Optimization Inc 2015). The software
employs the branch-and-cut method (Wolsey 1998), where
cutting planes and other enhancements are incorporated in
the general branch-and-bound framework in order to reduce
the computational time. Several parameters for controlling
the details of the algorithm are available. In this study,
the default values of these parameters are used, except for
feasibility and integer tolerances, respectively, which are
set to values given below. Thus, the crucial decisions of
the branch-and-cut algorithm, e.g. branching strategy and
cutting plane selection, are governed by the software.
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According to the principle of branch-and-bound, in each
iteration, a lower bound of the objective function, fLB , is
computed by solving a linear programming relaxation of the
problem, where integer variables are treated as continuous.
This lower bound increases over the iterations, whereas the
upper bound of the optimum, fUB , decreases as better fea-
sible solutions are found. At any time, the optimality gap,
defined by

Gap = fUB − fLB

fUB

(25)

can be calculated to measure the quality of the solution.
When the optimality gap becomes 0, the global optimality
of the solution is verified. For numerical purposes, a small
positive value is employed.

3.1 Portal frame

Figure 4 shows a portal frame structure with four members.
The height of the frame is h1 = 4m and h2 = 2m, the span
of the frame is w = 10 m, the value of the distributed load
is p = 25 kN /m.

The objective of the optimization problem is to mini-
mize the weight of the structure. The members are made
of steel, and the profiles are chosen from a catalog with
24 HEA alternatives (Table 1). The Young’s modulus is
210GPa, the density is 7850kg/m3, and the yield strength is
fy = 235MPa. The allowable normal stress is fy, while the
allowable shear stress is fy/

√
3 = 136 MPa. For members

1 and 4 all stress components are limited at three equidis-
tant locations including the end points of the members. For
members 2 and 3 all stress components are limited at five
equidistant locations including the end points of the mem-
bers (see Fig. 4). The stress constraints are given by (9).
For determining the components of the vector s̃ij included
in this equation, the normal force Ñi(x), shear force Ṽi(x)

Fig. 4 Schematic of the portal frame. The displacements are con-
strained at the locations indicated by a triangle (�), the stresses are
constrained at the locations indicated by a cross (×)

Table 1 HEA profile catalog

Index Section Index Section

1 HEA 100 13 HEA 340

2 HEA 120 14 HEA 360

3 HEA 140 15 HEA 400

4 HEA 160 16 HEA 450

5 HEA 180 17 HEA 500

6 HEA 200 18 HEA 550

7 HEA 220 19 HEA 600

8 HEA 240 20 HEA 650

9 HEA 260 21 HEA 700

10 HEA 280 22 HEA 800

11 HEA 300 23 HEA 900

12 HEA 320 24 HEA 1000

and bending moment M̃i(x) of a beam representing mem-
ber i with clamped-clamped boundary conditions subjected
to the element loads are required.

For member 2 they are calculated as:

Ñ2(x) = sin(α2) cos(α2)px − sin(α2)
pw

4
(26)

Ṽ2(x) = cos2(α2)px − cos(α2)
pw

4
(27)

M̃2(x) = cos2(α2)
px2

2
− cos(α2)

pw

4
x + p

12

(w

2

)2
(28)

where α2 = tan−1 (h2/(w/2)) is the angle of inclination
of member 2. The normal stresses σ̃t,2j (x) and σ̃b,2j (x) at
the top and bottom of member 2 for profile j at location x,
respectively, and the shear stresses τ̃2j (x) at the neutral axis
of member 2 for profile j at location x are then obtained by
substituting Ñ2(x), Ṽ2(x), and M̃2(x) in (18) to (20).

For member 3, the normal force Ñ3(x), shear force Ṽ3(x)

and bending moment M̃3(x) are calculated as:

Ñ3(x) = − sin(α3) cos(α3)px + sin(α3)
pw

4
(29)

Ṽ3(x) = cos2(α3)px − cos(α3)
pw

4
(30)

M̃3(x) = − cos2(α3)
px2

2
+ cos(α3)

pw

4
x + p

12

(w

2

)2
(31)

The stresses of the beam with clamped-clamped bound-
ary conditions subjected to the element loads at location x

of member 3 for profile j are calculated similarly as for
member 2.

The maximum allowed displacement is umax = 0.05 m.
For member 2, the vertical displacement component is lim-
ited at x1 = L2/2 and x2 = L2, and for member 3 the
vertical displacement component is limited at x1 = L3/2.
The displacement constraints are given by (8). The vector
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containing the vertical displacements of member 2 at the
predefined locations x1 and x2 is in this case given by:

d2j =
[

u2j (x1) sinα2 + v2j (x1) cosα2

u2j (x2) sinα2 + v2j (x2) cosα2

]
(32)

where u2j (xk) and v2j (xk) are the displacements along the
local x- and y-axes, respectively, of member 2 at location xk

for profile j . The matrix D2 is:

D2 =
[
Du
2(x1) sinα2 + Dv

2(x1) cosα2

Du
2(x2) sinα2 + Dv

2(x2) cosα2

]
(33)

and the vector d̃2j is:

d̃2j =
[

ũ2j (x1) sinα2 + ṽ2j (x1) cosα2

ũ2j (x2) sinα2 + ṽ2j (x2) cosα2

]
(34)

where ũ2j (x) and ṽ2j (x) are derived from the constitutive
relations between stress and strain according to the Euler-
Bernoulli beam theory:

ũ2j (x) = sin (α2) cos (α2) p

2EA2j
x2 − sin (α2) pw

4EA2j
x (35)

ṽ2j (x) = − cos2 (α2) p

24EI2j
x4 + cos (α2) pw

24EI2j
x3 − pw2

96EI2j
x2 (36)

The vector containing the vertical displacements of member
3 at the predefined location x1 is:

d3j = [
u3j (x1) sinα3 + v3j (x1) cosα3

]
(37)

where u3j (x1) and v3j (x1) are the displacements along the
local x- and y-axes, respectively, of member 3 at x1 for
profile j , and α3 = − tan−1 (h2/(w/2)) is the angle of incli-
nation of member 3. The matrix D3, the vector d̃3j , and the
displacement components ũ3j (x) and ṽ3j (x) are composed
in the same way as for member 2.

The sizing optimization problem is defined by (4) to (9).
The total number of members is nm = 4, and for each
member the number of available profiles is ns = 24. Thus
there are altogether nb = 96 binary decision variables,
and 3nb = 288 force variables, whereas the number of
degrees of freedom is ndof = 9. Consequently, the problem
consists of 393 design variables and 4765 constraints, and
the constraint coefficient matrix contains 24000 nonzero
elements. There are 4 equality constraints to ensure that
only one profile is selected for each member (4), 9 nodal
equilibrium equality constraints (5), 1152 member stiffness
relation inequality constraints (6), 1152 force inequality
constraints (7), 144 displacement inequality constraints (8),
and 2304 stress inequality constraints (9). The number of
profile combinations is 244 = 331776. The problem is
solved by Gurobi (version 6.0.2) on a computer with an Intel
Core i7-5600U processor (2.6 GHz clock frequency) and 8
GB RAM. The feasibility tolerance is set to 10−9, the inte-
ger feasibility tolerance is set to 10−9, and the optimality
gap (defined as the relative difference between the lower

and upper objective bound) is set to 5×10−3. The optimiza-
tion problem is solved in 26 seconds, and 10510 nodes of
the branch-and-bound tree are explored.

The optimum design is obtained by assigning the profile
HEA 240 for all members. This can be explained by inspect-
ing the force diagrams (Fig. 11). The critical cross-sections
of all members have approximately equal normal forces and
bending moments. This suggests that the same profile for
all members produces approximately equal normal stresses
at all critical cross-sections, which implies that a single pro-
file for the entire frame should yield the minimum weight
design as long as the normal stress constraints are decisive.
In this case, the shear stress constraints and the displacement
constraints are not critical. The total weight of the struc-
ture is 1131.63 kg. It is verified by full enumeration of all
possible designs that this is indeed the global optimum.

Detailed results for this test problem are given in
Appendix B, where the deformed shape of the frame, inter-
nal force diagrams and constraint margins evaluated at the
optimum design are presented.

3.2 Two-story frame

Figure 5 shows a two-story frame under three load cases.
Sizing optimization of this structure has been considered in
the literature by Chai and Sun (1996), Jivotovski (2000),
and Juang and Chang (2006). The horizontal displacements
of nodes 2 and 3 are limited to 2.54 cm, whereas the allow-
able normal stress in all members is 163860 kN/cm2. The
Young’s modulus of the material is 206.88 GPa, and the
density is 76999.34 N/cm3. The members are divided in 4
groups: the columns of the same story must have the same
profile, the beams are designed independently. The catalog
of available sections is given in Table 2.

Fig. 5 Schematic of the two-story frame. The three load cases are
indicated by (1), (2), and (3)
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Table 2 Profile catalog for the two-story frame

Index Section area
[cm2]

Section modulus [cm3] First moment
of area [cm4]

1 118.39 1690.2 41623

2 144.92 2290.9 62435

3 167.34 2842.5 83246

4 187.10 3360.3 104058

5 204.96 3852.7 124869

6 221.37 4324.9 145681

7 236.66 4780.5 166492

8 251.02 5222.0 187304

9 264.59 5651.4 208115

The mixed-integer linear programming formulation is
adopted for multiple load cases by including nodal dis-
placement and member force variables for each load case.
Moreover, the constraints of (5) through (9) are written for
each load case. Altogether, the sizing optimization problem
of (4) through (9) contains 576 variables (54 binary, 522
continuous) and 5268 constraints.

The MILP problem is solved by Gurobi (version 6.5) on
a computer with an Intel Core i5-3470 processor (3.2 GHz
clock frequency) and 16 GB RAM. The optimality gap is
set to 5 × 10−3, and default values are used for the other
parameters. The runtime of the algorithm is 7 seconds, and
1461 nodes of the branch-and-bound tree are explored. At
termination, the global optimality of the solution is verified.
The weight of the solution is 42.53 kN. Profile number 5 is
assigned to members 1 and 5, profile number 2 is assigned
to members 2, 3, and 4, and profile number 7 is assigned
to member 6 (see Table 1). This solution is the same as the
solution reported by Juang and Chang (2006), who have car-
ried out a complete enumeration to verify that 42.53 kN is
indeed the global optimum.

3.3 Three-bay three-story frame

Figure 6 shows a three-bay three-story frame with 21 mem-
bers. The height of each story is h = 3.5 m, the width
of each bay is w = 6 m, the value of the horizontal load
is F = 22.05 kN, and the value of the distributed verti-
cal load is p = 50.1 kN/m. The members are divided in
seven groups, and in each group, all members must have
the same profile. The beams (members 13 to 21) form one
group, whereas, the columns are organized in six groups
such that for each story, two groups are generated: the outer
columns (members 1 and 4, 5 and 8, and 9 and 12) and
inner columns (members 2 and 3, 6 and 7, and 10 and 11).
Among group members, identical profiles are enforced by
introducing additional linear constraints in terms of the pro-
file selection variables, yij . For example, the profiles of
columns 1 and 4 are set to be identical by the following
constraints:

y1j = y4j ∀ j ∈ C (38)

The objective of the optimization problem is to minimize
the structural weight. In order to reduce the computation
time, a limited set of available profiles is used: 15 profile
alternatives ranging from HEA 100 to HEA 400 (Table 1)
are included in the catalog. The material properties and
allowed stresses are as in the previous example. For each
member, all stress components are limited at three equidis-
tant locations x1 = 0, x2 = Li/2, and x3 = Li . For each
column, the interstory drift, �u, is limited by h/300 =
0.0117 m. For example, the interstory drift constraint of
column 5 is

−�u � u9 − u5 � �u (39)

where u9, and u5 are the horizontal displacements of nodes
9 and 5, respectively. The other interstory drift constraints
are composed similarly. For each beam, the vertical deflec-
tion is limited at location x1 = Li/2 by w/200 = 0.03 m.

Fig. 6 Schematic of the
three-bay three-story frame
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The minimum weight problem is given by (4) through
(9). The total number of members is nm = 21, and for each
member the number of available profiles is ns = 15, result-
ing in nb = 315 binary decision variables. The number of
force variables is 3nb = 945, and the number of degrees of
freedom is ndof = 36. The MILP consists of 1296 design
variables, 13791 constraints, and the constraint coefficient
matrix has 64195 nonzero elements. The number of design
combinations is 157 = 171 × 106. There are 21 equality
constraints to ensure that only one profile is selected for
each member (4), 36 nodal equilibrium equality constraints
(5), 3780 member stiffness relation inequality constraints
(6), 3780 force inequality constraints (7), 270 deflection
constraints (8), 5670 stress inequality constraints (9), and
210 grouping constraints. The interstory drift constraints
are imposed by limiting the difference of the horizontal
nodal displacements at the top and bottom of each column.
Consequently, there are 24 interstory drift constraints.

The MILP is solved by Gurobi (version 6.5) on the same
computer as the first example problem. The optimality gap
is set to 5 × 10−3, the feasibility tolerance is set to 10−6,
and default values are used for the other parameters. The
runtime of the algorithm is 19249 seconds (5.3 hours), and
140066 nodes of the branch-and-bound tree are explored. At
termination, the global optimality of the solution (Fig. 7) is
verified.

The convergence of the algorithm is illustrated in Fig. 8.
The progress of the upper and lower bound, respectively,
are shown by the two curves. It can be seen that feasible
solutions close to the global optimum are found quickly.

The optimum design is shown in Fig. 7. The weight of
the frame is 6131.87 kg. Detailed results for this test prob-
lem are given in Appendix C, where the deformed shape of
the frame, internal force diagrams and constraint margins
evaluated at the optimum design are presented.

The deflections of the beams (Table 5) are small and not
decisive for the optimal design. As can be seen from Table 6,
the utilization ratio of the interstory drift constraints ranges
from 0.90 to 1.00 for the bottom two rows of columns. This

Fig. 7 Optimal design of the three-bay three-story frame

Fig. 8 Convergence curves of the optimization. After exploring
140066 nodes of the branch-and-bound tree, an optimality gap of 0.5%
is reached in point A and the optimization is terminated

means that the interstory drift is decisive for the optimal
design.

Stresses in the members vary significantly throughout
the frame (Table 7). The utilization ratios of the stress con-
straints range from 0.65 to 0.96 for the beams, and from 0.38
to 0.96 for the columns. Highest utilization ratios appear in
the members of the first story. As interstory drift and profile
grouping constraints are enforced, a fully stressed design is
not obtained.

3.4 Comparison with a genetic algorithm

It is interesting to compare the performance of the mixed-
integer linear programming approach with metaheuristic
methods in order to assess the computational cost that
comes with the ability of the MILP formulation to find and
verify the global optimum.

In this paper, the genetic algorithm (GA) function from
the Matlab 2015 Global Optimization Toolbox is chosen
as the metaheuristic solution method. Now the problem
formulation follows the conventional nested analysis and
design approach, where only member cross-sections are
taken as design variables, and the values of the internal
forces and displacements used in constraint evaluation are
computed by the finite element method for given cross-
sections. Default stopping criteria and parameter values are
used, except for the constraint tolerance, which is set to
10−6 instead of the using the default value of 10−3 to make
a fair comparison.

The three-bay three-story frame problem is solved by
performing 100 different runs of the genetic algorithm with
a population size of 70 for each generation. The results are
shown in Fig. 9. The mean objective function value of all
runs in each generation is represented by the solid black
curve. The mean value of all solutions is 6210.5 kg, which
is 1.3% greater than the global optimum. The gray region
delimits the highest and lowest obtained objective function
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Fig. 9 Performance of the genetic algorithm. The mean objective
function value of 100 runs in each generation is represented by the
black curve. The gray region delimits the highest and lowest obtained
objective function value in each generation. The global optimum is
indicated by the dotted line

value in each generation. The global optimum is indicated
by the dotted line. For 32% of the runs, the global optimum
is reached. 54% of all runs reach a solution which is heavier
than the mean objective function value. The weight of the
heaviest solution is 6335.7 kg (3.3% greater than the global
optimum). The computation time to perform 100 runs is 9.7
hours, giving an average of 350 seconds for 1 run.

This analysis depicts the typical stochastic nature of the
genetic algorithm. For the majority of the runs, the global
optimum is not obtained, although the solution deviates by
only few percents, and the results of the genetic algorithm
are satisfactory. On the other hand, during the computa-
tions, the quality of the solution cannot be assessed with
the genetic algorithm, and eventually, the algorithm is sim-
ply stopped when no better solution is found, or when the
maximum number of iterations has been reached. On the
contrary, the solution process of the MILP ends precisely
when the global optimality of the solution is verified. If
global optimality of the solution is not required, the branch-
and-cut method can be terminated when the optimality gap
has become sufficiently small.

Therefore, in addition, a comparison of the performance
obtained by setting a limit on the computation time is
made. The performance measured for the objective function
value is illustrated by optimizing a two-bay two-story, three-
bay three-story, and four-bay four-story frame imposing the
same dimensions, loads, and constraints of the three-bay
three-story frame example problem discussed in the previ-
ous section. For each case, multiple optimization problems
are solved using a different subset of 5 available profiles.
The different subsets are composed by dividing the cata-
log consisting of 15 profile alternatives ranging from HEA
100 to HEA 400 (Table 1) in five equidistant intervals, and
randomly selecting a section from each interval.

For the two-bay two-story, three-bay three-story, and
four-bay four-story frame a time limit of respectively 5, 50,
and 500 seconds is set for each optimization. For each exam-
ple case, 100 different optimization problems are solved.
The performance profiles (Rojas-Labanda and Stolpe 2015;
Dolan and Moré 2002) of the MILP reformulation method
and the genetic algorithm are shown in Fig. 10. In this
figure, the x-axis represents the parameter τ which is the
relative ratio of the objective function value and the best
obtained objective function value using the same subset
of sections. The y-axis represents the percentage of opti-
mization problems reaching an objective function value that
is at most τ -times higher than the best obtained objec-
tive function value. The intersection of the plotted curves
with the y-axis indicates the percentage of winning solu-
tions. It can be seen that the MILP reformulation method
performs better for the two-bay two-story (Fig. 10a) and
three-bay three-story frame (Fig. 10b). In these cases, the
winning solution is obtained with the MILP approach for
respectively 96 and 80% of the optimization problems. For
80% of the problems, the genetic algorithm yields solutions
with an objective function value that is at most respec-
tively 10 and 5% higher than the solution obtained with the
MILP approach. In the case of the four-bay four-story frame
(Fig. 10c), the winning solution is obtained with the genetic
algorithm for 75% of the optimization problems, and for
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Fig. 10 Performance measured for the objective function value of the MILP reformulation approach (solid line) and genetic algorithm (dotted
line) solving the two-bay two-story, three-bay three-story, and four-bay four-story frame problems
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80% of the problems the MILP method yields solutions
with an objective function value that is at most 6% higher
than the solution obtained with the genetic algorithm. In this
case, the genetic algorithm performs better. Due to the sim-
plicity of implementing the genetic algorithm, adopting this
approach might be preferable for practitioners. However, the
quality of the solution can only be assessed by means of the
optimality gap provided by the MILP approach. Therefore,
the computation time can be reduced when adopting the
MILP approach by terminating the optimization when the
optimality gap is sufficiently small, say 5 to 10%. In addi-
tion, the method can be used to benchmark the efficiency of
other methods.

4 Conclusion

This paper addresses a mixed-integer linear programming
approach for discrete sizing optimization of frame structures
using commercial profile catalogs. The performance of the
method is compared with the performance of a genetic algo-
rithm. The main benefit of the MILP formulation is that it
allows for finding the global optimum of frames using well-
established deterministic solution methods such as branch-
and-bound. The formulation can be adopted for various
materials and applications. In order to make the approach
more relevant for practical applications, constraints derived
from design codes can be included. In extending the formu-
lation presented in this paper, the linearity of the problem
should be preserved, because otherwise a large-scale non-
linear mixed-integer problem needs to be solved, which
implies a substantial increase of computational burden.

The critical point of the mixed-integer formulation is
the problem size. The problem includes hundreds of vari-
ables and thousands of constraints even for modest design
tasks. The problem size increases rapidly as more members
and profiles as well as additional load cases are intro-
duced, which, due to the nature of MILP problems, implies
that the computational time will grow significantly. The
multiple-bay multiple-story frame gives some indication of
this. In some cases the genetic algorithm appears to be
more efficient than the MILP approach. However, even if
the computational time for finding and verifying the global
optimum becomes prohibitively large, the MILP formula-
tion can still be used for finding good designs. Moreover,
the branch-and-bound method provides the optimality gap
throughout the iterations. This information can be used to
reduce the computational time by terminating the algorithm
when the optimality gap becomes sufficiently small.

In order to draw definitive conclusions on the applica-
bility of the MILP approach to practical design problems,
the capabilities of the branch-and-cut method should be
thoroughly studied in order to reduce the computational

times. The convergence behavior depicted in Fig. 8 shows
that while contemporary branch-and-cut algorithms are able
to find feasible solutions (including the global optimum)
relatively quickly, the improvement of the lower bound is
rather slow. Consequently, further research efforts should
be targeted at producing tighter relaxations of the MILP
problem in order to obtain greater lower bounds more
quickly. For this task, special-purpose cutting planes that
efficiently exploit the specific mathematical structure of the
MILP problem should be considered. Additionally, various
case studies of actual design tasks should be treated. For a
given design problem, engineering judgment and problem-
specific additional constraints can often be employed to
improve the solution process.

Appendix A: Mixed-integer linear programming
problem

A.1 Equilibrium equations

The nodal equilibrium is imposed by the equality constraints
of (5). In this equation, Bi is a 6 × ndof binary location
matrix that maps the system degrees of freedom to the ele-
ment degrees of freedom, Ti is a 6 × 6 transformation
matrix that accounts for the orientation of the element (Kas-
simali 1999), and f is the ndof×1 nodal load vector. Element
loads are taken into account as equivalent nodal loads in the
nodal load vector f. Ri is a 6 × 3 matrix giving the rela-
tion between the six member end forces as shown in Fig.
1, and the three independent force variables qij (see (1)) as
follows:
⎡

⎢⎢⎢⎢⎢⎢
⎣

N1,ij

V1,ij

M1,ij

N2,ij

V2,ij

M2,ij

⎤

⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 0
0 1

Li

1
Li

0 1 0
−1 0 0
0 − 1

Li
− 1

Li

0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎣
N1,ij

M1,ij

M2,ij

⎤

⎦ (40)

A.2 Member stiffness relations

In addition to nodal equilibrium, the material law and com-
patibility conditions are needed in structural analysis. For
trusses, Hooke’s law and compatibility conditions can be
written as a single equation, because the normal force is the
only stress resultant appearing in the members (Rasmussen
and Stolpe 2008). As frame members have three (6 in 3D)
stress resultants in each node, altogether six (12 in 3D)
force-displacement relations are needed. Thus, the relation
between the member end forces and the nodal displacements
can be written as:

qij = yijKijTiBiu ∀ i ∈ M, ∀ j ∈ Ci (41)
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where the matrixKij assembles the first, third and sixth row
of the element stiffness matrix:

Kij =

⎡

⎢⎢
⎣

EAij

Li
0 0 −EAij

Li
0 0

0
6EIij

L2
i

4EIij

Li
0 − 6EIij

L2
i

2EIij

Li

0
6EIij

L2
i

2EIij

Li
0 − 6EIij

L2
i

4EIij

Li

⎤

⎥⎥
⎦

where E is the Young’s modulus of the material, Li is the
length of member i, and Aij and Iij are the section area
and second moment of area of profile j for member i,
respectively.

Equation (41) ensures that the force variables qij become
zero when profile j is not selected for member i (yij = 0)
and qij = KijTiBiu when profile j is selected for member
i (yij = 1).

In a regular finite element analysis, the global stiffness
matrix K is assembled by replacing qij in (5) with the
expression given by (41). The resulting equilibrium equa-
tion can not be reformulated as a linear system of equations
in terms of the design variables since the global stiffness
matrix depends on the binary decision variables. Therefore,
the linear nodal equilibrium, (5), and the member stiffness
relation, (41), are adopted as separate constraints.

The member stiffness relation in (41) is nonlinear in
terms of the design variables but it can be equivalently
reformulated as a set of linear inequality constraints by
introducing artificial upper and lower bounds (Rasmussen
and Stolpe 2008) of (6). In this equation, the force variables
become equal to qij = KijTiBiu when profile j is selected
for member i (yij = 1). When profile j is not selected for
member i (yij = 0), the force variables do not become zero
but are bounded byKijTiBiu−q̄′

ij � qij � KijTiBiu−q′
ij
.

In order to ensure that the force variables become zero when
profile j is not selected for member i, additional constraints
given by (7) are introduced.

The artificial upper and lower bounds q̄′
ij and q′

ij
ensure

that, when profile j is not selected for member i, the nodal
displacements are not bounded by (6). Each element k of the
artificial bound vectors is calculated as follows (Stolpe and
Svanberg 2003):

q ′
k,ij

= min
u

kr,ijTiBiu (42)

s.t. u � u � u

q̄ ′
k,ij = max

u
kr,ijTiBiu (43)

s.t. u � u � u

where kr,ij represents row r ∈ {1, 3, 6} of the element stiff-
ness matrix Kij , and u and u are the prescribed minimum
and maximum allowed nodal displacements, respectively.
Equations. (42) and (43) are linear optimization problems
with bound constraints, that can be solved without effort
(Stolpe and Svanberg 2003).

A.3 Displacement vectors

Du
i (x) =

[
1 − x

Li
0 0 x

Li
0 0

]
(44)

Dv
i (x) =

[
0 1 − 3x2

L2
i

+ 2x3

L3
i

x
(
1 − x

Li

)2 · · ·

0 3x2

L2
i

− 2x3

L3
i

x

(
− x

Li
+ x2

L2
i

) ]
(45)

Dϕ
i (x) =

[
0 −6x

L2
i

+ 6x2

L3
i

1 − 4x
Li

+ 3x2

L2
i

· · ·
0 6x

L2
i

− 6x2

L3
i

−2x
Li

+ 3x2

L2
i

]
(46)

A.4 Stress vectors

Sσt
ij (x) =

[
− E

Li

6EIij

L2
i Wt,ij

− 12xEIij

L3
i Wt,ij

4EIij

LiWt,ij
− 6xEIij

L2
i Wt,ij

· · ·
E
Li

12xEIij

L3
i Wt,ij

− 6EIij

L2
i Wt,ij

2EIij

LiWt,ij
− 6xEIij

L2
i Wt,ij

]
(47)

Sσb
ij (x) =

[
− E

Li

12xEIij

L3
i Wb,ij

− 6EIij

L2
i Wb,ij

6xEIij

L2
i Wb,ij

− 4EIij

LiWb,ij
· · ·

E
Li

6EIij

L2
i Wb,ij

− 12xEIij

L3
i Wb,ij

6xEIij

L2
i Wb,ij

− 2EIij

LiWb,ij

]
(48)

Sτ
ij (x) =

[
0 − 12ESij

L3
i bij

− 6ESij

L2
i bij

0
12ESij

L3
i bij

− 6ESij

L2
i bij

]
(49)

Appendix B: Detailed results for the portal frame

Table 3 Constrained displacements evaluated at the optimum design

Member Location v [m] |v|
vmax

2 L/2 −0.0223 0.45

2 L −0.0348 0.70

3 L/2 −0.0223 0.45

Fig. 11 Deformation and internal force diagrams at the optimum
design
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Table 4 Constrained stresses evaluated at the optimum design

Member Location σt [MPa] |σt|
σmax

σb [MPa] |σb|
σmax

τ [MPa] |τ |
τmax

1 0 −178.64 0.76 146.08 0.62 64.79 0.28
1 L/2 3.79 0.02 −36.34 0.15 64.79 0.28
1 L 186.21 0.79 −218.76 0.93 64.79 0.28

2 0 188.99 0.80 −215.97 0.92 −98.06 0.42
2 L/4 33.60 0.14 −57.55 0.24 −67.53 0.29
2 L/2 −63.94 0.27 43.01 0.18 −37.00 0.16
2 3L/4 −103.62 0.44 85.71 0.36 −6.47 0.03
2 L −85.43 0.36 70.54 0.30 24.06 0.10

3 0 −85.43 0.36 70.54 0.30 −24.06 0.10
3 L/4 −103.62 0.44 85.71 0.36 6.47 0.03
3 L/2 −63.94 0.27 43.01 0.18 37.00 0.16
3 3L/4 33.60 0.14 −57.55 0.24 67.53 0.29
3 L 188.99 0.80 −215.97 0.92 98.06 0.42

4 0 −178.64 0.76 146.08 0.62 64.79 0.28
4 L/2 3.79 0.02 −36.34 0.15 64.79 0.28
4 L 186.21 0.79 −218.76 0.93 64.79 0.28

Appendix C: Detailed results for the three-bay
three-story frame

Fig. 12 Deformation and internal force diagrams at the optimum
design

Table 5 Constrained deflections evaluated at the optimum design

Member Location v [m] |v|
vmax

13 L/2 −0.0097 0.19
14 L/2 −0.0070 0.14
15 L/2 −0.0103 0.21
16 L/2 −0.0116 0.23
17 L/2 −0.0090 0.18
18 L/2 −0.0105 0.21
19 L/2 −0.0166 0.33
20 L/2 −0.0072 0.14
21 L/2 −0.0185 0.37

Table 6 Constrained interstory drifts evaluated at the optimum design

Member �u [m] |�u|
�umax

1 0.0112 0.96

2 0.0112 0.96

3 0.0114 0.98

4 0.0117 1.00

5 0.0115 0.99

6 0.0113 0.97

7 0.0110 0.94

8 0.0105 0.90

9 0.0097 0.83

10 0.0098 0.84

11 0.0099 0.85

12 0.0102 0.87

Table 7 Constrained stresses evaluated at the optimum design

Member Location σt [MPa] |σt|
σmax

σb [MPa] |σb|
σmax

τ [MPa] |τ |
τmax

1 0 −74.18 0.32 −156.20 0.66 −3.03 0.02

1 L/2 −97.42 0.41 −132.96 0.57 −3.03 0.02

1 L −120.66 0.51 −109.72 0.47 −3.03 0.02

2 0 29.49 0.13 −225.30 0.96 −31.60 0.23

2 L/2 −83.73 0.36 −112.07 0.48 −31.60 0.23

2 L −196.96 0.84 1.16 0.00 −31.60 0.23

3 0 19.58 0.08 −216.54 0.92 −27.39 0.20

3 L/2 −78.57 0.33 −118.39 0.50 −27.39 0.20

3 L −176.71 0.75 −20.25 0.09 −27.39 0.20

4 0 −52.12 0.22 −223.61 0.95 −11.56 0.09

4 L/2 −140.89 0.60 −134.84 0.57 −11.56 0.09

4 L −229.67 0.98 −46.07 0.20 −11.56 0.09

5 0 −84.94 0.36 29.29 0.12 15.64 0.12

5 L/2 −25.76 0.11 −29.90 0.13 15.64 0.12

5 L 33.43 0.14 −89.08 0.38 15.64 0.12

6 0 −33.59 0.14 −166.09 0.71 −15.08 0.11

6 L/2 −104.98 0.45 −94.69 0.40 −15.08 0.11

6 L −176.37 0.75 −23.30 0.10 −15.08 0.11

7 0 −59.14 0.25 −141.36 0.60 −10.32 0.08

7 L/2 −107.99 0.46 −92.50 0.39 −10.32 0.08

7 L −156.85 0.67 −43.64 0.19 −10.32 0.08

8 0 137.91 0.59 −201.39 0.86 −44.84 0.33

8 L/2 −31.75 0.14 −31.74 0.14 −44.84 0.33

8 L −201.40 0.86 137.92 0.59 −44.84 0.33

9 0 −109.53 0.47 −0.74 0.00 6.04 0.04

9 L/2 −44.88 0.19 −65.39 0.28 6.04 0.04

9 L 19.78 0.08 −130.05 0.55 6.04 0.04
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Table 7 (continued)

Member Location σt [MPa] |σt|
σmax

σb [MPa] |σb|
σmax

τ [MPa] |τ |
τmax

10 0 44.20 0.19 −145.61 0.62 −22.66 0.17

10 L/2 −63.08 0.27 −38.33 0.16 −22.66 0.17

10 L −170.36 0.72 68.95 0.29 −22.66 0.17

11 0 −10.02 0.04 −94.70 0.40 −6.97 0.05

11 L/2 −43.02 0.18 −61.70 0.26 −6.97 0.05

11 L −76.03 0.32 −28.70 0.12 −6.97 0.05

12 0 51.49 0.22 −166.76 0.71 −12.33 0.09

12 L/2 −80.56 0.34 −34.72 0.15 −12.33 0.09

12 L −212.60 0.90 97.33 0.41 −12.33 0.09

13 0 47.17 0.20 −45.46 0.19 −57.93 0.43

13 L/2 −86.11 0.37 87.81 0.37 14.53 0.11

13 L 225.73 0.96 −224.02 0.95 87.00 0.64

14 0 97.55 0.42 −86.70 0.37 −62.76 0.46

14 L/2 −65.41 0.28 76.26 0.32 9.70 0.07

14 L 216.75 0.92 −205.89 0.88 82.17 0.60

15 0 121.97 0.52 −102.39 0.44 −69.05 0.51

15 L/2 −79.60 0.34 99.18 0.42 3.42 0.03

15 L 163.95 0.70 −144.37 0.61 75.88 0.56

16 0 49.58 0.21 −59.38 0.25 −60.10 0.44

16 L/2 −97.02 0.41 87.22 0.37 12.37 0.09

16 L 201.49 0.86 −211.29 0.90 84.83 0.62

17 0 113.21 0.48 −125.18 0.53 −67.49 0.50

17 L/2 −78.77 0.34 66.80 0.28 4.98 0.04

17 L 174.36 0.74 −186.33 0.79 77.44 0.57

18 0 124.52 0.53 −135.53 0.58 −71.01 0.52

18 L/2 −89.09 0.38 78.08 0.33 1.46 0.01

18 L 142.42 0.61 −153.42 0.65 73.92 0.54

19 0 2.84 0.01 −7.92 0.03 −56.36 0.41

19 L/2 −120.77 0.51 115.68 0.49 16.11 0.12

19 L 200.74 0.85 −205.83 0.88 88.58 0.65

20 0 143.13 0.61 −141.73 0.60 −68.62 0.50

20 L/2 −55.81 0.24 57.21 0.24 3.84 0.03

20 L 190.37 0.81 −188.96 0.80 76.31 0.56

21 0 179.33 0.76 −175.93 0.75 −86.02 0.63

21 L/2 −126.48 0.54 129.88 0.55 −13.55 0.10

21 L 12.83 0.05 −9.43 0.04 58.91 0.43

References

Arora J (2002) Methods for discrete variable structural optimization.
In: Burns SA (ed) Recent Advances in Optimal Structural Design,
pages 1–40. ASCE

Arora JS, Huang M-W (1996) Discrete structural optimization
with commercially available sections. Structural Engineer-
ing/Earthquake Engineering 13:93–110

Arora JS, Wang Q (2005) Review of formulations for structural
and mechanical system optimization. Struct Multidiscip Optim
30(4):251–272

Camp C, Pezeshk S, Guozhong C (1998) Optimized design of two-
dimensional structures using a genetic algorithm. J Struct Eng
124(5):551–559

Camp CV, Bichon BJ, Stovall SP (2005) Design of steel frames using
ant colony optimization. J Struct Eng 131(7):369–379

Carbas S (2016) Design optimization of steel frames using an
enhanced firefly algorithm, Engineering Optimization, pp. 1–19

Chai S, Sun HC (1996) A relative difference quotient algorithm for
discrete optimization. Struct Optim 12(1):46–56
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