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Abstract This paper presents a new multi-objective optimi-
zation algorithm called FC-MOPSO for optimal design of
engineering problems with a small number of function evalu-
ations. The proposed algorithm expands the main idea of the
single-objective particle swarm optimization (PSO) algorithm
to deal with constrained and unconstrained multi-objective
problems (MOPs). FC-MOPSO employs an effective proce-
dure in selection of the leader for each particle to ensure both
diversity and fast convergence. Fifteen benchmark problems
with continuous design variables are used to validate the per-
formance of the proposed algorithm. Finally, a modified ver-
sion of FC-MOPSO is introduced for handling discrete opti-
mization problems. Its performance is demonstrated by opti-
mizing five space truss structures. It is shown that the FC-
MOPSO can effectively find acceptable approximations of
Pareto fronts for structural MOPs within very limited number
of function evaluations.

Keywords Multi-objective optimization . Structural
optimization . Particle swarm optimization

1 Introduction

Most engineering design problems can be regarded as MOPs.
Ideally, a designer tends to attain an economical solution

which represents the best performance for a particular prob-
lem. From a practical point of view, structural optimization is
not a single-objective problem (SOP) since in fact the designer
needs to consider different objective functions such as mini-
mizing the life cycle cost and maximizing the performance of
the structure through minimizing its seismic energy input,
maximizing its hysteretic energy dissipation and so on.
Moreover, MOPs propose sets of optimal solutions known
as Pareto optimal sets instead of one single optimal point.
Pareto optimal sets are more desirable since decision makers
can access a variety of optimal scenarios and choose the one
which best suits the demands of a particular project. In the last
few decades, evolutionary algorithms (EAs) have attracted
considerable attention of researchers. Since EAs eliminate
the differentiability requirement for objective functions in
classical methods, they can be applied to discrete and contin-
uous optimization problems. Most EAs start the search with
random initial points in the search space which removes the
difficulty of finding an appropriate initial point. Furthermore,
EAs can be applied to highly nonlinear problems. These char-
acteristics make EAs a suitable choice for engineering optimi-
zation problems including structural optimization problems.
However, in most structural optimization problems each func-
tion evaluation may entail multiple structural analyses. Hence,
function evaluations can be such costly that make optimiza-
tion process impractical for real-world problems especially
when nonlinear time history analysis must be conducted. As
an example of such time consuming processes the reader may
refer to the GA-based optimal design of the 3-story building
presented by Gong et al. (2013) which lasted 105 h on a
desktop computer before converging. Therefore, more empha-
sis should be put on the number of function evaluations re-
quired by EAs for structural problems. One of the disadvan-
tages of EAs is their need for many number of function eval-
uations before converging to some acceptable approximation
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of the Pareto front. Therefore, designing algorithms for han-
dling the aforementioned drawback is essential. Regarding the
performance of MOPs, there are few researches that tried to
reduce the number of fitness evaluations. For instance,
Chafekar et al. (2005) proposed a method called OEGADO
to deal with this problem. They verified their algorithm for a
few benchmark problems. However, the method yields ac-
ceptable results within a few thousands function evaluations.
Eskandari and Geiger (2008) proposed another GA-based
method called FastPGA and applied it to a number of uncon-
strained continuous benchmark problems that could be com-
pleted within a few thousands of function evaluations. There
are some other techniques that can also be used to reduce the
number of function evaluations. These include employing
methods for estimating the values of objective functions in-
stead of exact evaluations. An example of such approach can
be found in (Davarynejad et al. 2011) where a fuzzy-based
technique is utilized for function approximations. It was suc-
cessfully applied to the unconstrained continuous ZDT prob-
lems to obtain acceptable results within 1000 real function
evaluations. The reader may refer to (Santana-Quintero et al.
2010) for a more detailed discussion on objective function
approximations.

Among EAs, the PSO method is well known for its fast
convergence. However, the method was originally proposed
for optimization of unconstrained single-objective continuous
problems. There exist some extensions of PSO for
multiobjective problems in the literature. However, as it is also
discussed by Tong et al. (2016), only a few of them are devel-
oped for solving problems with discrete and mixed discrete
and continuous design variables. In this paper, the original
PSO is extended to achieve a fast converging PSO-based al-
gorithm called FC-MOPSO which can solve constrained/
unconstrained continuous/discrete as well as mixed continu-
ous and discrete MOPs within a few hundreds of function
evaluations. The performance of the method is verified against
some well-known EAs.

2 Unconstrained continuous single-objective PSO

The original PSO method was first introduced by Kennedy
and Eberhart (1995) for optimization of continuous nonlinear
single-objective functions. The method was proposed based
on the observation that groups of individuals such as birds
work together to improve their performance. Since then PSO
has gained much popularity among researchers because of its
simplicity and fast convergence. The idea of PSO is to start the
search for an optimal solution through some initial random
particles with initial random velocities (or initial zero veloci-
ties) and to update the velocities by considering two main
aspects, cognition learning and social learning. In later ver-
sions of PSO as discussed by Clerc and Kennedy (2002), a

factor known as constriction factor is applied to the velocity
formulation to control explosion of the system. Hence, the
basic formulation used in this paper for updating the position
of each particle (or the flight stage in PSO) is as follows.

vtþ1
i ¼ χ vti þ ϕ1r1⊛ pbesti−xið Þ þ ϕ2r2⊛

�
lbesti−xið Þ� ð1Þ

xtþ1
i ¼ xti þ vtþ1

i ð2Þ

In this formulation, which has been proposed for the case

of single-objective PSO, vti ¼ vti1 ; v
t
i2 ;…; vtis

h i
is the vector of

velocity for the ith particle at the tth generation, xti ¼
xti1 ; x

t
i2 ;…; xtis

h i
is the position of the ith particle at the tth

generation and s is the number of design variables. χ = 2α/
(ϕ1 + ϕ2 − 2) is the constriction factor and ϕ1 and ϕ2 are the
maximum cognition learning rate and the maximum social
learning rate, respectively. r1 and r2 are vectors consisting of
random numbers between zero and one, pbesti is the best
position of ith particle found so far and lbesti is the local best
or the best particle found in the neighborhood of the ith parti-
cle. Furthermore, if a = [a1, a2, … , an] and b = [b1, b2, … ,
bn] then a⊛ b ≔ [a1b1, a2b2, … , anbn].

It is to be noted that many different neighborhood topolo-
gies have been used in the literature. In this paper, we will use
a random neighborhood topology which will be updated at
each generation. Although it might be possible to obtain better
results by applying certain neighborhood topologies, the ran-
dom topology suggests a more general approach which is less
problem dependent.

Clerc and Kennedy (2002) have shown that the PSO
system is stable if ϕ1 + ϕ2 > 4 and α ∈ (0, 1). In this paper,
ϕ1 = ϕ2 = 2.05 which has been recommended by Simon
(2013) is used. Clerc and Kennedy (2002) also discuss that
consistent convergence to local minima can be guaranteed
although convergence on global optima cannot be proven
except for some special class of functions. Evidently, such
theoretical discussions about the convergence of a PSO
system is valid only if t→∞. Furthermore, this theoretical
background applies only to the unconstrained continuous
single-objective PSO. It would be very difficult to provide
similar mathematical discussions for PSO systems which
deal with these difficulties: (1) multiobjectiveness (2) dis-
creteness and, (3) constraints. That is why FC-MOPSO will
be formulated as an extension of the given PSO variant
which has some theoretical background. (1) and (2) repre-
sent the main idea of PSO algorithms. However, some
modifications must be implemented for handling MOPs.
In Section 3, we will propose a modification that preserves
the basic rationale of PSO so that FC-MOPSO can inherit
the stability characteristics of its ancestor.

By changing the value of α, a tradeoff between the explo-
ration characteristic of a PSO system and its exploitation
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characteristic can be obtained. Larger values of α (or larger
values of the constriction factor) indicate allowing the swarm
to experience larger velocities which results in more explora-
tion. A smaller α, however, emphasizes on more exploitation.
In this paper, it is recommended to use the maximum allow-
able value of αwhich is practically a value near unity likeα =
0.9. Because, FC-MOPSO receives much information form
the swarm that may result in premature convergence or stag-
nation if small values ofα are used. It is also possible to define
a pattern for updating α at each generation. For example,
Larger values of α can be used at earlier generations when
the swarm is meant to emphasize on exploration while smaller
values can be adopted at final generations when the swarm is
supposed to converge to the solution. A simple way for
accomplishing it, is to define α as a linear or exponential
function of t. Using non-constant α values, however, requires
parameter tunings which is not desired because it would make
the method more problem dependent. Regarding the above
discussions, α = 0.9 is used throughout this paper.

3 Unconstrained continuous FC-MOPSO

3.1 Definitions

Without loss of generality, any multi-objective problem can be
defined as follows.

minimize f xð Þ
subject to
g j xð Þ ≤ 0 ; for j ∈ 1; p½ �
h j xð Þ ¼ 0; for j∈ pþ 1; q½ �

where x is the vector of design variables, f(x) = [f1(x), f-
2(x),…,fk(x)] is the vector of k objective functions which are
to be minimized simultaneously, p is the number of inequality
constraints and q is the total number of equality and inequality
constraints. Evidently, by putting p and q equal to zero the
above definition will represent an unconstrained multi-
objective optimization problem. Furthermore, any solution
to the above problem should lie in the search space domain,
i.e., L ≤ x* ≤ U where L = [L1,…,Ls] and U = [U1,…,Us] are
the vectors which define the lower and upper bounds of the
search space domain.

Generally, there is no single point x* which minimizes all k
objective functions simultaneously; instead there is a set of
solutions which are incomparable and is known as the
Pareto set. The basic definitions concerning Pareto optimality
are as follows (Simon 2013).

& Domination: A point x* is said to dominate x if the fol-
lowing two conditions hold: (1) fi(x

*) ≤ fi(x) for all i∊[1,k],
and (2) fj(x

*) < fj(x) for at least one j∊[1,k].

& Weak Domination: A point x* is said to weakly dominate x
if fj(x

*) ≤ fj(x) for all j∊[1,k].
& Nondominated: A point x* is said to be nondominated if

there is no x that dominates x*.
& Pareto optimal points: A Pareto optimal point x* is a point

that is not dominated by any other point in the search
space.

& Pareto set: Pareto set (Ps) is the set of nondominated
points in the search space.

& Pareto front (or Pareto): Pareto front (Pf) is the set of all
function vectors f(x) corresponding to the Pareto set.

3.2 Extending single-objective PSO tomulti-objective PSO

Several approaches can be found in the literature for applying
PSO to MOPs. Some of them such as aggregating approaches
and lexicographic ordering methods try to solve a given MOP
by defining and solving new SOPs. In aggregating ap-
proaches, MOPs are converted to SOPs by combining all ob-
jective functions into one objective function. In lexicographic
ordering methods, objective functions are ranked based on
their importance to the user. Minimization of each objective
function is subsequently considered as a new SOP. See
(Reyes-Sierra and Coello Coello 2006) and (Coello Coello
et al. 2007) for more information.

In this paper, however, a Pareto-based approach is presented
in which the single-objective PSO formulation is extended to a
multi-objective formulation. Therefore, (1) must be modified so
that it can be applied to MOPs because there is no pbest or lbest
available in a multi-objective approach. The reason is that in
MOPs there are Pareto fronts instead of one minimum point.
Researchers have defined a variety of methodologies to deal
with this problem. See, for example, (Coello Coello and
Lechuga 2002); (Reyes-Sierra and Coello Coello 2006);
(Sierra and Coello Coello 2005); (Nebro et al. 2009).

Coello Coello and Lechuga (2002) proposed one of the ear-
liest unconstrained continuous multi-objective PSOs called
MOPSO. The flight stage of the PSO formulation is based on
an inertia weight formulation where inertia weight equal to 0.4
is used. A repository is defined in MOPSO where all
nondominated solutions are stored. Leaders are randomly se-
lected from the same repository. OMOPSO (Sierra and Coello
Coello 2005) and SMPSO (Nebro et al. 2009) are two highly
competitive Pareto-based multi-objective PSO algorithms that
can be applied to continuous MOPs. OMOPSO uses one ar-
chive of leaders for guiding the swarm. A binary tournament
based on the crowding values is used for selecting one leader
for each particle. Furthermore, the swarm is divided into three
sub-swarms of equal sizes. Uniform and non-uniform mutation
operators are applied to the first two sub-swarms, respectively.
No mutation operator is applied to the third sub-swarm.
OMOPSO utilizes a PSO formulation based on inertia weight
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for updating the velocities at each generation. Furthermore,
random cognition and social learning factors are used in
OMOPSO. If any particle gets out of bounds of the search
space, it will be put on the boundaries and the direction of its
velocity will be reversed. The samemechanism that was used in
OMOPSO for selection of the leaders is also used in SMPSO.
However, a constriction factor approach with random social
and cognition learning factors are used in SMPSO. If any par-
ticle gets out of bounds of the search space, it will be put on the
boundaries and its velocity will be reduced by multiplying a
factor between 0.001 and 0.1. 15% of particles are mutated by a
polynomial mutation operator while the rest of particles are not
mutated.

In this paper, a novel approach is proposed to ensure faster
convergence while the diversity of the Pareto front is pre-
served. Most researchers rename the lbest particle to the leader
particle for a multi-objective problem. Selection of the leader
and the local best particle has a direct impact on the behavior
of the swarm both in the rate of its convergence and in the
diversity of the Pareto front. According to the authors’ expe-
rience, even minor changes in selection of the leader will end
up in a totally different behavior. To ensure faster convergence
we define the leader in a way that takes advantage of the
information available from all positions in the search space
that the particles have experienced so far. However, this strat-
egy may result in premature convergence to some local min-
ima. Therefore, other procedures will be incorporated for im-
proving diversity of the archives and enhancing the selection
procedure.

In the original PSO, pbesti represents the best position
found so far by the ith particle. For a multi-objective problem,
we generalize this concept to Pi set which is defined as the set
of nondominated solutions found so far by the ith particle.
Subsequently, a particle called pseli will be selected from Pi
for performing the flight stage. Moreover, by assuming that n
is the population size andN ≤ n− 1 is the number of neighbors
randomly selected for each particle at each generation, the
concept of lbesti is also generalized so that it represents the
leader of the ith particle (leaderi). At each generation and for
each individual i, N neighbor Pj sets (j ∈ [1,N]) are selected
randomly and a nondominated set called Qi is extracted from
the union of the selected Pj sets. Leaderi will be a particle
selected from Qi by some procedure which will be explained
later. Therefore, for a multi-objective problem, the following
equations shall be used for the flight stage.

vtþ1
i ¼ χ vti þ ϕ1r1⊛ pseli−xið Þ þ ϕ2r2⊛

�
leaderi−xið Þ� ð3Þ

xtþ1
i ¼ xti þ vtþ1

i ð4Þ

As mentioned before, the constriction factor is meant to
prevent velocity blowups. However, the authors have

observed better performance for the algorithm proposed in this
paper by applying further limits to velocity vectors through
(5).

vtþ1
i j ←

vtþ1
i j ; if vtþ1

i j

��� ���≤v jm
v jmsign vtþ1

i j

� �
; otherwise

8<
: ; j∈ 1; s½ � ð5Þ

where vm ¼ v1m;…; vsm
� �

is the vector of maximum allowable
velocities. PSO systems usually start the search with random
or zero valued velocities. Starting the search with zero veloc-
ities would indicate that the method should start finding the
correct path based on only the cognition and social learning
mechanisms. It is not the best choice especially if the popula-
tion size is small. Because, little data about the search space is
provided with small population sizes and the method would
have little chance to continue the search with appropriate ve-
locities. It can subsequently result in stagnation in early gen-
erations. On the other hand, starting the search with large
random velocities is not recommended for solving problems
with limited number of function evaluations either. Because, it
would need too many generations before the initial random
velocities could be corrected by cognition and social learning
mechanisms. Therefore, the authors suggest that FC-MOPSO
should be started with random velocities not larger than
vm = 0.1(U − L). In other words, we prevent the method from
starting with large velocities while we also give it some initial
velocities for starting the search. The value of 0.1 is selected to
represent a small value and to prevent each dimension of each
particle from displacing more than 10% of its corresponding
search space size at the initial generation. A small value like
0.1 would let the particles escape from stagnation in early
generations and correct their paths based on cognition and
social learning mechanisms in later generations. For next gen-
erations, however, vm = rand()(U− L) is recommended where
rand() is a random number between zero and one. A random
value, rather than a constant parameter, is used here so that
parameter tuning would not be required. (5) does not apply to
discrete variable problems (see Section 5). Besides, if a com-
ponent of an updated particle from (4) gets outside the search
space it will be put on the boundary of the search space. In

other words, for all j∊[1, s] if it happens that xtþ1
i j < Lj or xtþ1

i j

> U j then xtþ1
i j ¼ Lj or xtþ1

i j ¼ U j will be used, respectively.

In addition to the procedures discussed in the next section
for preventing premature convergence, mutation operators
will be incorporated for increasing the chance of finding glob-
al optimum solutions. Three mutation operators, (1) the poly-
nomial mutation operator (Deb and Deb 2014), (2) the non-
uniform mutation operator (Sierra and Coello Coello 2005)
and (3) the binary mutation operator presented in Fig. 1 were
checked. It was found that the binary mutation operator works
the best for our proposed algorithm. In this method, at each
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generation, after updating the position of each particle, a bi-
narymutation operator is applied to obtain the final position of
the particle at that generation. For continuous MOPs, binary
representations of each particle’s position are used so that the
binary mutation operator can be applied. Throughout this pa-
per we accomplish this conversion with a precision of 0.01.
That is, the length of strings used for converting continuous
variables in the jth dimension of the search space to the binary
format is calculated from (6).

Bj ¼ floor log
U j−Lj

0:01
þ 1

� �.
log 2ð Þ

� �
þ 1 ð6Þ

Following this procedure, the binary representation used
forUj is a string of length Bjwith all its bits equal to one while
the binary representation for Lj is a string of length Bj with all
its bits equal to zero. Therefore, there will be no chance for a
particle to get outside the search space once the mutation is
applied. Moreover, the difference between two consecutive

binary representations will be equal to U j−Lj
	 


= 2B j−1
	 


.
Probabilities equal to pm = 1/s and ρj = 1/Bj are used for
mutating each element of each particle and each bit of that
element, respectively.

3.3 Selection procedure and preservation of diversity

The following aspects are considered for preventing premature
convergence and preserving the diversity of the Pareto front.
Firstly, the size of Pi archives is restricted. Based on a vast
investigation, the number of elements in each Pi set is limited
to nine elements in this paper. That is, after updating the position
of ith particle at each generation, if the particle is not dominated
by any members of Pi set, the particle is added to Pi set.
Moreover, if this new member dominates some members in
the set, those members will be excluded from Pi. Finally, if the
number of members of the set has grown to be more than nine,
some members with the least crowding distances will be elimi-
nated to limit the archive size. In a rare case that there is more
than one particle in Pi with the least crowding distance, ε-dom-
inance is incorporated to eliminate one of the ten members
available in Pi.

A similar procedure is applied to each Qi set. In other words,
after generating Qi from N selected Pi sets, Qi will be pruned

using crowding distances or ε-dominance concept to limit their
size to 100. The concepts of crowding and ε-dominance are
defined in Sections 3.3.1 and 3.3.2.

Secondly, the following procedure is suggested for
selecting pseli from Pi and for selecting lseli from Qi. The
crowding distances of all members in Pi (or Qi) are evaluated
and the one with the largest crowding distance value is the
selected pseli (or lseli). If there are more than one member
holding the largest crowding distance, a roulette-wheel selec-
tion will be employed for preferring one of them. One typical
case that leads to equal crowding distances in a set is the
situation in which the set consists of only two members.
Since the problem is multi-objective, one has to assign a fit-
ness value to each member before applying a roulette-wheel
selection. This can be accomplished by the following equa-
tion.

�f xið Þ ¼ ∑k
j¼1wj f̂ j xið Þ

� �.
∑
k

j¼1
wj

 !
ð7Þ

where �f xið Þ represents the fitness value assigned to particle xi
and wj refers to the weight factor assigned to the jth objective
function. The same wj’s are used in this paper. The hat symbol
on objective function values in (7) indicates that normalized
objective function values evaluated from (8) are used.

f̂ j xið Þ ¼
f j xið Þ−mini∈ 1;mi½ � f j xið Þ

� �
maxi∈ 1;mi½ � f j xið Þ

� �
−mini∈ 1;mi½ � f j xið Þ

� � ; j∈ 1; k½ �

ð8Þ

where mi is the number of particles that are incorporated for
normalizing the values of objective functions for the ith parti-
cle. For a constrained problem, objective functions will be
normalized based on the minimum and maximum values of
objective functions in current generation, i.e. mi = n for i∊[1,
n]. For unconstrained problems normalization will be restrict-
ed to situations that either evaluation of crowding distances or
the selection procedure is encountered. Thus, normalization
for unconstrained problems will be done only based on the
minimum and maximum values available in each Pi (or Qi)
set. In other words, mi will be the number of particles in each
Pi (or Qi) set for unconstrained problems.

For j=1 to s 
If rand( ) ≤ pm  

For b=1 to Bj 
If rand( ) ≤ ρj  

if bth bit of the binary format for  is equal to zero, convert it to one. Otherwise convert it to zero. 

End if 

End for 

End if  
End for 

Return . 

Fig. 1 Pseudo-code of binary mutation operator of the ith particle
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3.3.1 Crowding

Crowding metrics have been used successfully for maintain-
ing diversity of the Pareto front in many EAs. Deb et al.
(2002) defined an efficient crowding distance for modifying
the fitness values in their NSGA-II algorithm. Their approach
does not require parameter tunings unlike other density esti-
mator concepts such as Kernel density estimator (Goldberg
and Richardson 1987). This crowding metric is incorporated
in the present paper after making some changes to its original
definition given by Deb et al. (2002). Moreover, unlike
NSGA-II, crowding distances will not be used for modifying
the fitness values. The metric is rather utilized in selection
procedure and refining Pi and Qi archives.

In this paper, the crowding distance for each particle, C(xi),
is defined as the Euclidian norm of d(xi):

C xið Þ ¼ d xið Þj j ð9Þ
where

d xið Þ ¼ d1 xið Þ;…; d j xið Þ;…; dk xið Þ� � ð10Þ

and

d j xið Þ ¼ 1
.
2 abs f̂ j xið Þ− f̂

−

j xið Þ
� �h

þ abs f̂
þ
j xið Þ− f̂ j xið Þ

� ��
; jε 1; k½ �

ð11Þ

f̂
þ
j xið Þ and f̂

−
j xið Þ are respectively the closest larger value

and the closest smaller value to f̂ j xið Þ among m particles. For

extreme positions, however, only a larger or a smaller value is

available. In such cases f̂
þ
j xið Þ ¼ f̂

�
j xið Þ will be used.

Regarding the above definitions, it can be concluded that a
particle with a smaller crowding distance lies in a more
crowded region of the objective function space and vice versa.

3.3.2 ε-dominance

Another concept that is incorporated for preserving diversity
and preventing premature convergence is the ε-dominance
idea. In this method, the normalized objective function space
is divided into ne hyperboxes. For a minimization problem, if
there is more than one particle in a hyperbox the one closest to
the lowest left corner of the hyperboxwill bemaintainedwhile
other particles are eliminated.

Hyperboxes can be formed by dividing each axis of the
coordinate system into segments with a size equal to εj.

ε j ¼
max
i∈ 1;mi½ �

f j xið Þ
� �

− min
i∈ 1;mi½ �

f j xið Þ
� �

neð Þ1=k
; j∈ 1; k½ � ð12Þ

If hyperboxes are generated in the normalized objective
function space, (12) can be simplified to εj = 1/(ne)

1/k for
j∊[1, k]. In this paper, ne equal to 9 and 100 is used for Pi
and Qi sets, respectively. Fig. 2 shows a schematic for
hyperboxes in 2D objective function space. Particles shown
with filled circles are maintained while the ones represented
by unfilled circles are thrown away.

A pseudo-code for unconstrained continuous multi-
objective problems is presented in Fig. 3.

4 Constrained continuous FC-MOPSO

In this section, a penalty-based approach is introduced to ex-
tend the algorithm proposed in Section 3 to constrained con-
tinuous MOPs. In a penalty-based approach, penalized objec-
tive functions are frequently minimized instead of the original
objective functions. However, a new approach is proposed in
this paper which will benefit from the penalized and non-
penalized objective functions simultaneously. There are a va-
riety of penalty function definitions available in the literature
that can be applied to the method presented here. The authors
have found out that the adaptive penalty function suggested by
Yen (2009) works very well for the FC-MOPSO algorithm.
This adaptive penalty function has the advantage that it takes
into account both the amount of constraint violations and the
number of constraints violated at each generation. Moreover,
with the aid of this penalty function, the information available
from both feasible and infeasible regions will be employed to
encourage the population to move toward a feasible Pareto
front. Let φ(xi) = [φ1(xi),…, φj(xi),…, φk(xi)] represent the
vector of k penalized objective functions for the ith particle.
Then, at each generation t, each component of the penalized
objective function is defined as sum of two parts:

φ j xið Þ ¼ Λ j xið Þ þΩ j xið Þ ð13Þ

Fig. 2 Schematic of hyperboxes and the concept of ε-dominance in 2D
objective function space
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where Λj(x) is called the distance value of particle x and is
defined in (14).

Λ j xið Þ ¼
ψ xið Þ; if r f ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f̂ j xið Þ2 þ ψ xið Þ2
q

; otherwise

(
ð14Þ

where ψ(x) represents the average normalized constraint vio-
lation and is defined as below.

ψ xið Þ ¼ 1

q
∑
q

j¼1

c j xið Þ
c jmax

ð15Þ

Fig. 3 Pseudo-code of the unconstrained continuous FC-MOPSO

Fig. 4 Pseudo-code of the constrained continuous FC-MOPSO
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cj(xi) is the constraint violation of the jth constraint for the ith

particle and cjmax is the maximum constraint violation of the jth

constraint in the current population:

c j xið Þ ¼ max 0; g j xið Þ
� �

; if j∈ 1; p½ �
max 0; hj xið Þ�� ��−δ	 


; if j∈ pþ 1; q½ �

(
ð16Þ

c jmax ¼ max
i∈ 1; n½ �

c j xið Þ ð17Þ

where δ is the threshold used for accepting that an equality
constraint is satisfied. δ = 0.0001 is usually used in benchmark
problems.

The second part of the penalty function is defined as fol-
lows.

Ω j xið Þ ¼ 1−r f
	 


X j xið Þ þ r f Y j xið Þ ð18Þ

where rf = nf /n is the ratio of feasible solutions in current
population and nf is the number of feasible particles among
current population. In the above equation, Xj(xi) and Yj(xi) are
two penalty functions as defined in (19) and (20).

X j xið Þ ¼ 0; if r f ¼ 0
ψ xið Þ; otherwise


ð19Þ

Y j xið Þ ¼ 0; if xi is feasible

f̂ j xið Þ; otherwise

(
ð20Þ

At each generation, after evaluating fitness values (f--

values) for the population, normalized fitness values ( f̂ -
values) are obtained from (8). Finally, having checked the
feasibility of each particle in the population, penalized objec-
tive function values (φ-values) can be computed for each in-
dividual in the population. Fig. 4 outlines the present FC-
MOPSO algorithm for handling continuous constrained
MOPs. In this figure, Pf represents the Pareto front obtained
by constructing a nondominated set from feasible individuals
in the space of f-values. The Pareto set corresponding to Pf is
called Ps.

5 A discrete version of FC-MOPSO

There are very limited studies that tried to address discrete
multi-objective PSO algorithms. One of the most recent of such
studies was accomplished by Tong et al. (2016) where an ex-
tension ofMDPSO (Chowdhury et al. 2013) was recommended
for solving problems with mixed discrete design variables. The
flight stage in MDPSO is performed using a continuous PSO
formulation. The Nearest Vertex Approach (NVA) is subse-
quently used for approximating the discrete-domain position
of a particle. Another example of such studies is the discrete
PSO developed by Chen et al. (2009) that utilizes an inertia-

based formulation of PSO. The method incorporates crossover
and mutation parameters in genetic algorithm so that the flight
stage formulation of PSO can be applied to discrete problems.

Here, the algorithm proposed in previous sections is mod-
ified so that constrained/unconstrained MOPs with discrete or
mixed discrete design variables can also be solved. In fact,
only minor modifications is required before FC-MOPSO can
be applied to such problems. A discrete or mixed discrete
MOP is the case that occurs in design of most real-world civil
structures. Steel buildings, trusses and some types of fixed
offshore platforms are examples where hot rolled steel sec-
tions are used. Therefore, sizing variables in steel structures
are discrete in practice. Sizing variables in concrete structures,
however, deal with mixed design variables. For example, di-
mensions of beam and column sections can be represented by
discrete values that are practical and easy for construction
purposes while the ratio of longitudinal steel reinforcements
can be regarded as continuous design variables. In a more
practical approach, like the one performed by Paya et al.
(2008), these two types of design variables, namely the ratio
of longitudinal reinforcements and cross sectional dimen-
sions, can be merged together to constitute a discrete design
variable. Consequently, a set of predefined sections with
predefined dimensions and steel ratios, which meet the re-
quirements of building design codes, will be available for
the optimization process. A similar approach can be adopted
for other design variables such as lateral reinforcements. The
above discussion reveals that adopting discrete design vari-
ables in civil structures has twomain advantages: (1) a discrete
problem definition is more realistic (2) the search space be-
comes smaller which is easier to search while impractical so-
lutions are already eliminated from the set of solutions.

Soon after introducing the continuous version of PSO,
Kennedy and Eberhart (1997) proposed a discrete binary ver-
sion of the continuous counterpart which will be employed in

Fig. 5 Probability of bit changing selected for the discrete FC-MOPSO
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Table 1 Results for benchmark MOPs after 30 runs

Problem Number of design
variables

Number of
objectives

Number of
constraints

OMOPSO SPEA2 NSGA-II SMPSO FC-MOPSO

IH Iε+ IH Iε+ IH Iε+ IH Iε+ IH Iε+

ZDT1 30 2 0 Mean 0.739 0.480 0.610 0.511 0.856 0.531 0.554 0.506 0.953 0.344

Std. 0.140 0.065 0.121 0.070 0.150 0.074 0.164 0.058 0.088 0.054

ZDT2 30 2 0 Mean 0.739 0.898 0.473 0.796 0.582 0.949 0.527 0.849 0.818 0.503

Std. 0.268 0.110 0.202 0.088 0.222 0.039 0.290 0.141 0.177 0.357

ZDT3 30 2 0 Mean 0.843 0.552 0.711 0.499 0.851 0.461 0.693 0.543 0.962 0.403

Std. 0.126 0.077 0.144 0.068 0.107 0.061 0.136 0.093 0.067 0.057

ZDT4 10 2 0 Mean 0.459 0.667 0.253 0.538 0.678 0.739 0.527 0.356 0.358 0.838

Std. 0.177 0.161 0.118 0.118 0.108 0.180 0.189 0.224 0.148 0.164

ZDT6 10 2 0 Mean 0.608 0.584 0.456 0.866 0.668 0.952 0.294 0.786 0.832 0.381

Std. 0.302 0.207 0.228 0.061 0.307 0.037 0.154 0.084 0.219 0.263

TNK 2 2 2 Mean 0.918 0.130 0.911 0.332 0.959 0.338 0.863 0.191 0.849 0.198

Std. 0.051 0.058 0.104 0.161 0.046 0.331 0.101 0.090 0.083 0.117

Golinski 7 2 11 Mean 0.793 0.051 0.578 0.430 0.771 0.249 0.718 0.152 0.871 0.087

Std. 0.107 0.026 0.264 0.253 0.206 0.174 0.224 0.152 0.147 0.060

CONSTR 2 2 2 Mean 0.812 0.076 0.965 0.153 0.819 0.155 0.782 0.065 0.879 0.072

Std. 0.101 0.032 0.093 0.070 0.141 0.078 0.102 0.014 0.077 0.016

Srinivas 2 2 2 Mean 0.980 0.041 0.941 0.083 0.761 0.133 0.956 0.052 0.947 0.059

Std. 0.021 0.016 0.061 0.056 0.064 0.026 0.035 0.019 0.036 0.016

Water 3 5 7 Mean 0.863 0.176 0.907 0.218 0.278 0.603 0.716 0.252 0.536 0.174

Std. 0.126 0.031 0.133 0.063 0.152 0.113 0.176 0.050 0.181 0.036

CTP2 2 2 1 Mean 0.854 0.087 0.868 0.182 0.860 0.169 0.892 0.125 0.868 0.115

Std. 0.078 0.018 0.129 0.078 0.115 0.043 0.088 0.050 0.098 0.035

CTP3 2 2 1 Mean 0.869 0.068 0.892 0.170 0.852 0.150 0.902 0.103 0.804 0.149

Std. 0.069 0.016 0.098 0.079 0.104 0.061 0.074 0.050 0.105 0.049

CTP4 2 2 1 Mean 0.702 0.532 0.536 0.405 0.543 0.429 0.791 0.773 0.644 0.405

Std. 0.221 0.221 0.201 0.083 0.188 0.108 0.220 0.192 0.212 0.166

CTP5 2 2 1 Mean 0.709 0.673 0.559 0.425 0.651 0.429 0.697 0.693 0.625 0.258

Std. 0.209 0.216 0.215 0.177 0.246 0.155 0.196 0.177 0.163 0.057

CTP6 2 2 1 Mean 0.592 0.167 0.770 0.246 0.840 0.244 0.462 0.177 0.744 0.198

Std. 0.163 0.087 0.230 0.164 0.165 0.154 0.177 0.056 0.199 0.109

Fig. 6 Pareto fronts for ZDT1 problem Fig. 7 Pareto fronts for ZDT2 problem
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this paper. Let D j ¼ D1
j ;…;D

μ j
j

h i
, j∊[1, s] be the vector in-

cluding the μj discrete values available for the j
th design var-

iable and μj refer to the number of discrete variables in the jth

dimension of the search space. Therefore, the number of bits
required for a binary representation of design variables in the
jth dimension will be equal to Bj = floor (log(μj)/ log(2)) + 1.
This way,Dj

1 will be defined by a string of length Bjwhere all
its bits are zeroes and Dj

2 is defined with a string that its first
bit from the right side is equal to one while other bits are

zeroes and so on. It should be noted that D
μ j
j is not defined

by a string with all its bits equal to one. Hence, particles shall
be put on the boundaries if they go outside the search space
during mutation. Moreover, velocities will be defined in terms
of changes of probabilities. In other words, if xi j;b (j∊[1, s] and
b∊[1, Bj]) refers to the bth bit of the jth component of the ith

particle, then vi j;b is the corresponding bit of the velocity and

represents the probability that xi j;b takes a value equal to one.

However, vi j;b can also take values outside the interval [0, 1].
Therefore, to accomplish the interpretation in which velocities
are treated as probabilities, an appropriate mapping such as
sigmoidal function should be employed so that the probability
remains in the interval [0, 1]. The variant of sigmoidal func-
tion that returns values restricted to the interval [0, 1] is de-
fined as S(x) = 1/(1 + exp(−x)). Therefore, the FC-MOPSO al-
gorithm defined in Figs. 3 and 4 is still applicable with two
modifications. Firstly, at each generation (3) and (4) shall be
replaced with (21) and (22), respectively. That is, for each bit
b∊[1, Bj] of the j

th component of the ith particle we have:

vtþ1
i j;b ¼ χ vti j;b þ ϕ1r1 pseli j;b−x

t
i j;b

� �h
þϕ2r2 leaderi j;b−x

t
i j;b

� �i ð21Þ

xtþ1
i j;b ¼ 1; if randð Þ < S vtþ1

i j;b

� �
0; otherwise

(
ð22Þ

Fig. 10 Pareto fronts for ZDT6 problemFig. 8 Pareto fronts for ZDT3

Fig. 9 Pareto fronts for ZDT4 Fig. 11 Pareto fronts for TNK problem
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Secondly, limitations on maximum velocity will not be
applied except for starting the algorithm. That is, random ve-
locity vectors with their bits limited to the interval [−4, 4] are
used for initialization of the algorithm while no vm will be
applied to limit the velocities afterwards.

The probability that a bit will be changed is equal to p

xi j;b
	 
 ¼ S vi j;b

	 

1−S vi j;b

	 
� �
and is depicted in Fig. 5.

6 Test problems and discussion of results

6.1 Benchmark MOPs

15 well-known benchmark problems are employed for vali-
dating the performance of continuous FC-MOPSO. These
problems include five unconstrained and ten constrained
benchmark MOPs. The unconstrained MOPs consist of

ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6. These problems
have been designed by Zitzler et al. (2000) to assess perfor-
mance of optimization algorithms in dealing with different
types of difficulties in finding the true Pareto front. ZDT1
has a convex Pareto front while ZDT2 is the nonconvex coun-
terpart of ZDT1. ZDT3 represents a problemwith discreteness
feature because its Pareto front consists of several noncontig-
uous convex parts. ZDT4 introduces a problem that contains
219 local Pareto front. Therefore, it is suitable for validating
the ability of an algorithm to deal with multimodality. As
noted by Zitzler et al. (2000), ZDT6 is a test problem with
nonuniformity in the search space. The Pareto fronts of this
problem are nonuniformly distributed along the global Pareto
front. Furthermore, the density of solutions is minimum near
the Pareto front and is maximum away from it. The
constrained MOPs considered in this section consist of the
TNK problem (Tanaka et al. 1995), the speed reducer design
problem (Kurpati et al. 2002) which is a multi-objective

Fig. 13 Pareto fronts for CONSTR problem Fig. 15 Pareto fronts for CTP2 problem

Fig. 14 Pareto fronts for Srinivas problemFig. 12 Pareto fronts for Golinski problem
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variant of the SOP originally defined by Golinski (1970),
CONSTR (Deb et al. 2002), Srinivas problem (problem F3
in (Srinivas and Deb 1994)), water resource planning problem
defined by Ray et al. (2001) and CTP2, CTP3, CTP4, CTP5
and CTP6 (Deb et al. 2001). The CTP test suite consists of
problems that cause difficulties either in the entire search
space or near the Pareto front.

The 15 benchmark problems are solved by FC-MOPSO
and are verified against four well-known algorithms available
in jMetal (Durillo and Nebro 2011). There are a variety of
algorithms available in jMetal. However, the authors found
out that four of them yield the best results within the limited
number of function evaluations focused in this paper.
Therefore, OMOPSO (Sierra and Coello Coello 2005),
SMPSO (Nebro et al. 2009), NSGA-II (Deb et al. 2002) and
SPEA2 (Zitzler et al. 2002) are to be employed.

Since EAs are random-based, the results are commonly
presented after performing some Monte Carlo simulations.

Hence, the results presented here are those obtained after 30
runs (M = 30) with the same starting random numbers for all
optimizers. For all fifteen benchmark problems, the algo-
rithms were run with a population size of 10 (n = 10) and
the termination criteria was set to be 400 function evaluations
or 40 generations equivalently (g = 40). Other parameters for
the algorithms in jMetal such as mutation and crossover prob-
ability are reasonably left to be their default values in jMetal.
Throughout this paper our FC-MOPSO algorithm uses a
neighborhood size equal to N = 9 for cases with n = 10 and
N = 4 for cases with n = 30.

There are many metrics available in the literature that can
be employed for comparing twoPareto fronts but it should be
noted that none of them is always reliable (Yan et al. 2007).
Therefore, more than one metric is commonly used for com-
par ing the performance of a lgor i thms. Here , the
hypervolume indicator (IH) is used for estimating the diver-
sity of a Pareto and its closeness to the true Pareto. The

Fig. 16 Pareto fronts for CTP3 problem

Fig. 17 Pareto fronts for CTP4 problem

Fig. 18 Pareto fronts for CTP5 problem

Fig. 19 Pareto fronts for CTP6 problem
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additive unary epsilon indicator (Iε+) is also utilized as an-
other indicator of closeness to the truePareto.Adefinition for
hypervolume of a Pareto front is given in (23) where np is the
number of points in the Pareto front and r= [r1, r2,…, rk] is a
reference point such that it is dominated by all points in the
Pareto front. Other parameters in (23) have already been de-
fined in previous sections.

IH P f
	 
 ¼ 1

np
∑
j¼1

np

∏
k

i¼1
ri− f i x j

	 
	 
 ð23Þ

In this paper, for each problem, all Pareto fronts from allM
simulations besides the true Pareto of the problem are put
together. This new set is normalized for each of its objective
functions by using (8). These normalized Pareto fronts are
utilized for evaluation through (23) with a reference point with
all its elements set equal to 1.01. At each simulation, the
Pareto fronts are normalized based on the maximum
hypervolume in that simulation and the results are reported.
Generally speaking, a higher value of IH indicates a more
preferred Pareto regarding its diversity and closeness to the
true Pareto. For the case of Iε+ indicator, on the other hand, the
normalized Pareto fronts are employed to evaluate the metric
for each Pareto in comparison to the true Pareto. The reader
may refer to (Fonseca et al. 2005) for a definition of Iε+. The

smaller is the value of Iε+, the closer it is to the true Pareto.
With the above mentioned procedure, IH and Iε+ can take
values between zero and one. Table 1 represents the mean
and standard deviations for the problems discussed. Bolded
values in Table 1 show the best result obtained among all five
algorithms for each problem. Figs. 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, and 19 illustrate the best Pareto fronts
achieved after 30 runs for all problems except for the Water
problem that has five objective functions and cannot be plot-
ted. From Table 1, it can be verified that FC-MOPSO has the
highest number of best results among all algorithms.
Moreover, Figs. 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
and 19 along with Table 1 show that FC-MOPSO absolutely
outperforms other optimizers in ZDT test suite problems ex-
cept for ZDT4 that deals with multimodality. ZDT problems
are of unconstrained type. Therefore, the excellent perfor-
mance of FC-MOPSO in ZDT problems indicates that extend-
ing the original single-objective PSO to FC- MOPSO in
Section 3 has been quite successful. Note that none of the
optimizers considered in this paper except for SMPSO could
converge to the true Pareto front of ZDT4 within 400 function
evaluations. The results of these optimizers have been so far
away from the true Pareto front that it was not possible to
illustrate them in Fig. 9. Fortunately, structural engineering
optimization problems do not include high multimodality.

6.2 Truss design examples

Five truss design examples are solved to analyze the perfor-
mance of FC-MOPSO in structural optimization problems.
Both discrete and continuous variants of FC- MOPSO are
adopted for solving these problems. Furthermore, a problem
with mixed discrete and continuous design variables is solved

Fig. 20 Schematic of the spatial
25-bar truss structure

Table 2 Load
conditions for 25-bar
truss

Node Px (kips) Py (kips) Pz(kips)

1 1.0 −10 −10
2 0.0 −10 −10
3 0.5 0.0 0.0

6 0.6 0.0 0.0
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in Section 6.2.5. All continuous problems are also solved by
the following algorithms: OMOPSO, SMPSO, NSGA-II and
SPEA2. Discrete variants of the problems are solved by
NSGA-II. Pareto fronts obtained from FC-MOPSO and other
optimizers are reported after 20 runs for problems with two
objective functions. For problems with more than two objec-
tive functions, the results are presented after 10 runs. All prob-
lems are solved for two cases: (1) n = 10, g = 10 and (2) n = 30,
g = 100. It should be reminded that the discrete search space is
a subdomain of the continuous search space. Hence, potential-
ly, the solutions of a continuous optimization problem can
outperform discrete solutions since some parts of the true
Pareto front might correspond to regions of the search space
that are not available in discrete search space.

6.2.1 Spatial 25-bar truss

The spatial 25-bar truss shown in Fig. 20 was studied as an
SOP in many researches such as (Lee and Geem 2004) and
(Talatahari et al. 2012). In this paper, a discrete multi-objective
approach to this problem that was defined by Luh and Chueh
(2004) is considered. It is desired to minimize two objective
functions simultaneously: (1) the weight of the structure and
(2) the displacement of node 1 in Y-direction. The constraints
are defined such that the principal stress in no element exceeds
an allowable stress equal to σa = ±40 ksi. Furthermore,

available discrete cross sectional areas are assumed to be
D = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2,
1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6,
2.8, 3.0, 3.2, 3.4] (in2). The problem is also solved by consid-
ering continuous cross-sectional areas larger than 0.01 in2 and
less than 3.4 in2. There are eight sizing variables deriving from
the following member grouping: (1) A1, (2) A2 ~ A5, (3)
A6 ~ A9, (4) A10 ~ A11, (5) A12 ~ A13, (6) A14 ~ A17, (7)
A18 ~ A21, and (8) A22 ~ A25. A modulus of elasticity equal
to E = 10Msi and a density equal to ρ = 0.1 lb./in3 is used for
all members. Loading conditions for this truss are summarized
in Table 2.

Fig. 21 compares the results obtained by FC-MOPSO with
those from the other optimizers. IH and Iε+ indicators for 3000
and 100 function evaluations are reported in Tables 3 and 4,
respectively. Similarly, comparisons between discrete solu-
tions found by FC-MOPSO with those from NSGA-II are
reported in Table 5.

For the case of 3000 function evaluations, Table 3 shows that
the continuous FC-MOPSO outperforms all other optimizers as
far as it concerns IH indicator. From this table, it can also be
confirmed that FC-MOPSO is the second best optimizer regard-
ing the Iε+ metric. The difference between Iε+ for FC-MOPSO
and the best Iε+, which was found by SPEA2, is very small.
Table 4 and Fig. 21a show that for very small number of func-
tion evaluations (namely, one hundred evaluations) FC-MOPSO

(a) Continuous solutions, n=10, g=10 (b) Continuous solutions, n=30, g=100 (c) Discrete solutions

Fig. 21 Comparison of the Pareto fronts obtained by different algorithms in the 25-bar truss problem

Table 3 Performance
comparison of continuous
solutions from FC-MOPSO with
other algorithms for truss
examples (n = 30, g = 100)

Problem OMOPSO SPEA2 NSGA-II SMPSO FC-MOPSO

IH Iε+ IH Iε+ IH Iε+ IH Iε+ IH Iε+

25-bar
truss

Mean 0.822 0.076 0.908 0.041 0.877 0.046 0.775 0.084 0.975 0.045

Std. 0.064 0.024 0.053 0.026 0.061 0.016 0.069 0.025 0.036 0.009

72-bar
truss

Mean 0.698 0.115 0.807 0.148 0.656 0.185 0.691 0.111 0.860 0.144

Std. 0.049 0.013 0.037 0.054 0.058 0.017 0.037 0.012 0.044 0.023

120-bar
truss

Mean 0.871 0.113 0.970 0.051 0.928 0.050 0.867 0.121 0.950 0.086

Std. 0.071 0.040 0.039 0.022 0.045 0.020 0.074 0.041 0.041 0.015
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is the best optimizer regarding both IH and Iε+ indicators. In
other words, the relative performance of FC-MOPSO, compared
with other optimizers studied, increases when a smaller number
of function evaluations is used.

As it can be seen from Table 5 and Fig. 21c, for both cases of
100 and 3000 function evaluations, discrete solutions found by
FC-MOPSOoutperform those fromNSGA-IIwith a remarkable
difference. It is noted that the value of IH relating to NSGA-II for
100 evaluations is larger than IH for 3000 evaluations which
may seem counterintuitive. The reason is that, as it can be seen
from Fig. 21c, most points found by NSGA-II in 100 function
evaluations are gathered in a small central portion of the true
Pareto front. Such situations can result in delusively high values
of IH. That is why, as it was already discussed in Section 6.1, the
results should always be justified with more than one metric
along with visual inspections whenever it is possible. For this
case, the Iε+ indicator does not yield counterintuitive results
since its value for 100 function evaluations is smaller than its
value for 3000 function evaluations.

The small standard deviation values of FC-MOSO reported
in Tables 3, 4, and 5 confirm that the algorithm have a con-
sistent behavior in 20 runs.

6.2.2 Spatial 56-bar truss

The spatial 56-bar truss shown in Fig. 22 is considered as an
example of structural MOPs with more than two objective

functions. As a discrete optimization problem, practical equal
leg double angles as listed in Table 6 are used. Accordingly,
cross sectional areas between 200 mm2 and 2000 mm2 should
be used for a continuous problem. Loading conditions for this
truss consist of 4 kN in the Y-direction and 30 kN in the Z-
direction at node 1 while all other nodes are loaded with 4 kN
in the Y-direction and 10 kN in the Z-direction. The objective
functions are to minimize the weight of the structure, the total
displacement of node 1 and the first natural frequency of the
truss. Note that these objective functions are in conflict with
one another. The mass matrix of the truss is assembled by
adopting lumped mass formulation for truss elements. The
vertical displacements of nodes 4, 5, 6, 12, 13 and 14 is limited
to ±40 mm while the displacement in the Y-direction for node
8 is not allowed to exceed ±20 mm. The modulus of elasticity
and material density are assumed to be E = 210 GPa and
ρ = 7800 kg/m3, respectively.

Fig. 23 illustrates the results obtained from FC-MOPSO
along with the optimum solutions obtained by other opti-
mizers. Fig. 23a and b show the best continuous Pareto fronts
obtained by different optimizers for 100 and 3000 function
evaluations, respectively. It can be observed that FC-
MOPSO could find an acceptable and diverse approximation
of the Pareto front while other optimizers have failed to con-
verge to such solutions.

Fig. 23b shows that the continuous FC-MOPSO almost
approximated the whole Pareto front while the results of other
optimizers cover only a small portion of the Pareto front.

Table 5 Performance
comparison of discrete solutions
from FC-MOPSO with NSGA-II
for truss examples

Problem NSGA-II
(n = 10, g = 10)

FC-MOPSO
(n = 10, g = 10)

NSGA-II (n = 30,
g = 100)

FC-MOPSO
(n = 30, g = 100)

IH Iε+ IH Iε+ IH Iε+ IH Iε+

25-bar truss Mean 0.810 0.247 0.918 0.154 0.672 0.142 0.998 0.035

Std. 0.102 0.055 0.068 0.041 0.100 0.044 0.007 0.008

72-bar truss Mean 0.943 0.242 0.988 0.184 0.713 0.201 0.930 0.087

Std. 0.054 0.023 0.018 0.035 0.061 0.033 0.041 0.009

120-bar truss Mean 0.779 0.464 0.769 0.242 0.967 0.186 0.928 0.065

Std. 0.193 0.113 0.118 0.062 0.055 0.040 0.063 0.017

Table 4 Performance
comparison of continuous
solutions from FC-MOPSO with
other algorithms for truss
examples (n = 10, g = 10)

Problem OMOPSO SPEA2 NSGA-II SMPSO FC-MOPSO

IH Iε+ IH Iε+ IH Iε+ IH Iε+ IH Iε+

25-bar
truss

Mean 0.813 0.227 0.911 0.264 0.873 0.237 0.810 0.219 0.929 0.181

Std. 0.114 0.061 0.064 0.066 0.091 0.068 0.101 0.051 0.085 0.066

72-bar
truss

Mean 0.944 0.232 0.987 0.314 0.845 0.310 0.923 0.250 0.895 0.261

Std. 0.029 0.051 0.025 0.047 0.104 0.086 0.047 0.056 0.070 0.047

120-bar
truss

Mean 0.784 0.273 0.830 0.261 0.889 0.236 0.811 0.274 0.892 0.197

Std. 0.137 0.063 0.092 0.059 0.101 0.077 0.093 0.062 0.059 0.040
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Similarly, Fig. 23a shows that for 100 function evaluations
and in comparison to other optimizers, FC-MOPSO has man-
aged to find better approximation of the Pareto front.

Results from discrete solutions are illustrated in Fig. 23c.
This figure shows that FC-MOPSO could yield much better
solutions than NSGA-II. Especially for 100 function evalua-
tions, NSGA-II approximates only a very small portion of the
Pareto front in comparison to FC-MOPSO where the whole
Pareto front is well approximated.

FC-MOPSOpreserves thebest experiencesof eachparticle in
Pi sets. This preservation along with the techniques that are car-
ried out for pruning the archives and proper selection of the
leaders gives FC-MOPSO a better chance for exploring the
search space in comparison to other optimizers. Note that using
the IH and Iε+ indicators for comparing two Pareto fronts can be
counter-intuitive if there is a great difference in the number of the

Pareto optimal points. The number of Pareto optimal points
foundbyFC-MOPSOat each run ismuch larger than those from
other optimizers for this problem as well as the optimization
problemdefined inSection6.2.5.Hence, the IHand Iε+ indicators
are not evaluated for these problems.

6.2.3 Spatial 72-bar truss

Another well-known optimization test problem often considered
in the literature is the weight optimization of the spatial 4-story
72-bar truss shown in Fig. 24. See, for example, (Adeli and
Kamal 1986); (Erbatur et al. 2000); (Lee and Geem 2004);
(Jansen and Perez 2011). In this study, discrete sizing optimiza-
tion is carried out by using the first 31 sections defined in
Table 6. For a continuous solution, cross sectional areas between
0.1 in2 and 2.5 in2 are utilized. Four objective functions are

Fig. 22 Schematic of the spatial
56-bar truss structure
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considered for simultaneous minimization: (1) the weight of the
structure, (2) the maximum value of displacements of the upper-
most nodes in X and Y directions, (3) the first natural frequency
and (4) the total potential energy of the structure. The constraints
imposed on the problem are to limit the stress of elements to ±25
ksi. The modulus of elasticity and density are assumed to be 10
Msi and 0.1 lb./in3, respectively. Two load cases are considered.
The first one is to apply PX = 5.0 kips, PY = 5.0 kips and
PZ = −5.0 kips at node 17. The second load case consists of
PZ = −5 kips, applied to nodes 17, 18, 19 and 20. Cross-
sectional areas of elements are linked into the following 16
groups: (1) A1 ~ A4, (2) A5 ~ A12, (3) A13 ~ A16, (4) A17 ~ A18,
(5) A19 ~ A22, (6) A23 ~ A30, (7) A31 ~ A34, (8) A35 ~ A36, (9)
A37 ~ A40, (10) A41 ~ A48, (11) A49 ~ A52, (12) A53 ~ A54, (13)
A55 ~ A58, (14) A59 ~ A66, (15) A67 ~ A70, and (16) A71 ~ A72.

It is not possible to illustrate the 4D Pareto fronts obtained by
the optimizers. Tables 7, and 8 show the extreme points of
Pareto fronts found by different algorithms. However, they can-
not be used for drawing a final conclusion since it can be ob-
served that most extreme points of the Pareto fronts obtained
from each optimizer is a nondominated point with respect to the
corresponding extreme points found by other optimizers.
Therefore, IH and Iε+ should be used for comparing the perfor-
mance of the optimizers. Table 3 shows that the continuous FC-
MOPSO outperforms other optimizers in terms of hypervolume.
Standard deviations are also reasonably small and confirm the
stability of FC-MOPSO. From Table 5, it can be confirmed that
FC-MOPSO absolutely outperforms NSGA-II in discrete solu-
tions. It is noted that the focus of FC-MOPSO is not solving
problems with many objective functions (say, four and more

Table 6 List of equal leg double angles

Section No. 1 2 3 4 5 6 7 8

Section ID.* 2 L20 × 3 2 L25 × 3 2 L20 × 4 2 L30 × 3 2 L25 × 4 2 L35 × 3 2 L25 × 5 2 L30 × 4

Cross sectional area (mm2) 224 284 290 348 370 408 452 454

(in2) 0.347 0.440 0.450 0.539 0.574 0.632 0.701 0.704

Section No. 9 10 11 12 13 14 15 16

Section ID. 2 L40 × 3 2 L35 × 4 2 L30 × 5 2 L40 × 4 2 L35 × 5 2 L45 × 4 2 L40 × 5 2 L35 × 6

Cross sectional area (mm2) 470 534 556 616 656 698 758 774

(in2) 0.729 0.828 0.862 0.955 1.017 1.082 1.175 1.200

Section No. 17 18 19 20 21 22 23 24

Section ID. 2 L50 × 4 2 L45 × 5 2 L40 × 6 2 L50 × 5 2 L45 × 6 2 L55 × 5 2 L50 × 6 2 L60 × 5

Cross sectional area (mm2) 778 860 896 960 1018 1064 1138 1164

(in2) 1.206 1.333 1.389 1.488 1.578 1.649 1.764 1.804

Section No. 25 26 27 28 29 30 31 32

Section ID. 2 L45 × 7 2 L55 × 6 2 L50 × 7 2 L60 × 6 2 L50 × 8 2 L65 × 6 2 L70 × 6 2 L55 × 8

Cross sectional area (mm2) 1172 1262 1312 1382 1482 1506 1626 1646

(in2) 1.817 1.956 2.034 2.142 2.297 2.334 2.520 2.551

Section No. 33 34 35 36 37 38 39 40

Section ID. 2 L50 × 9 2 L65 × 7 2 L75 × 6 2 L60 × 8 2 L70 × 7 2 L65 × 8 2 L55 × 10 2 L75 × 7

Cross sectional area (mm2) 1648 1740 1750 1806 1880 1970 2020 2020

(in2) 2.554 2.697 2.713 2.799 2.914 3.054 3.131 3.131

*Equal leg angle sections are designated by L × t (mm), where L and t are respectively the leg size and the thickness of the leg

(a) Continuous solutions, n=10, g=10 (b) Continuous solutions, n=30, g=100 (c) Discrete solutions 

Fig. 23 Comparisons of optimal solutions obtained by different optimizers for the 56 bar truss problem

A new PSO-based algorithm for multi-objective optimization with continuous and discrete design... 525



numbers of objective functions) since these kinds of problems
are not conventional in design of civil structures.

6.2.4 Spatial 120-bar truss

The spatial 120-bar truss shown in Fig. 25 was defined by Soh
and Yang (1996) and is taken here as an example of medium-
scale structure to further analyze the performance of the FC-
MOPSO algorithm. This truss was optimized for its weight by
Lee and Geem (2004) by considering continuous tubular cross
sections between 0.775 in2 and 20.0 in2. In this study, two
objective functions are minimized: (1) the total weight of the
structure (2) the maximum displacements of all nodes in all
coordinate directions. Practical discrete tubular cross-sectional
areas are defined in Table 9.

Furthermore, cross sections between 0.775 in2 and 20.0 in2

are considered for a continuous problem definition. Yield stress,
modulus of elasticity and density are set equal to σy = 58 ksi,
E = 30,450 ksi and ρ = 0.288 lb./in3, respectively. Stress con-
straints based on AISC-ASD (1989) are applied, namely tensile
stresses are limited to σ−

all;i ¼ 0:6σy for each element while

compressive stresses are limited to σþ
all;i as follows.

σþ
all;i ¼

1−
λi

2C2
c

� �
σy

� �. 5

3
þ 3λi

8Cc
−

λ3
i

8C3
c

� �
; if λi < Cc

12π2E

23λ2
i

; otherwise

8>>>><
>>>>:

ð24Þ
whereCc = (2π

2E/σy)
0.5 and λi = kiLi/ri. ki, Li and ri represent the

effective length factor (equal to 1 for all members in this exam-
ple), length of element and radius of gyration for each element,
respectively. All elements are clustered into seven groups as
defined in Fig. 25. All loads are applied in Z-direction and
consist of −13.49 kips at node 1, −6.744 kips at nodes 2 through
14 and −2.247 kips on all other unsupported nodes.

Continuous solutions for 3000 function evaluations are
presented in Fig. 26b. From this figure along with Table 3, it
can be confirmed that all optimizers have yielded good ap-
proximations of the Pareto front. Especially, IH and Iε+ values
for FC-MOPSO, SPEA2 and NSGA-II are very close to unity
and zero, respectively. As it can be seen from Fig. 26a and
Table 4, FC-MOPSO outperforms all other optimizers for 100
function evaluations. These results imply that the relative per-
formance of FC-MOPSO, compared with other optimizers, is
improved when a smaller number of function evaluations is
used.

The best Pareto fronts for the discrete problem are shown in
Fig. 26c from which the efficiency of FC- MOPSO over
NSGA-II can be clearly confirmed. The superiority of FC-
MOPSO is also confirmed from Table 5 where the Iε+ indica-
tors for FC-MOPSO are much better than those from NSGA-
II. Hypervolume values for FC-MOPSO are very close to the
values related to NSGA-II.

6.2.5 Sizing and geometric optimization of the spatial 25-bar
truss with mixed design variables

The spatial 25-bar truss problem defined in Section 6.2.1 has
been solved as a single-objective weight optimization problem
withmixed design variables in the literature. See, for example,
(Gholizadeh 2013) and (Mortazavi and Toğan 2016). In this
paper, three objective functions (1) the weight of the structure
(2) the maximum of all nodal displacements and (3) the first
natural frequency of the structure will be minimized simulta-
neously. Material properties, load conditions, constraints on
sizing variables and available discrete cross sectional areas are
already defined in Section 6.2.1. The problem includes thir-
teen design variables: (1) A1, (2) A2 ~ A5, (3) A6 ~ A9, (4)
A10 ~ A11, (5) A12 ~ A13, (6) A14 ~ A17, (7) A18 ~ A21, (8)
A22 ~ A25 (9) x4 = x5 = − x3 = − x6, (10) y3 = y4 = − y5 = −
y6, (11) z3 = z4 = z5 = z6, (12) x8 = x9 = −x7 = −x10, and (13)
y7 = y8 = −y9 = −y10. The first eight variables are discrete
sizing variables and the latter five variables represent nodal
coordinates that are considered as continuous geometric vari-
ables. All other nodal coordinates are fixed at the coordinates
shown in Fig. 20. Furthermore, the following constraints are
applied on geometric variables:

20 in. ≤ x4 ≤ 60 in.
40 in. ≤ y4 ≤ 80 in.
90 in. ≤ z4 ≤ 130 in.
40 in. ≤ x8 ≤ 80 in.

Fig. 24 Schematic of the spatial 72-bar truss structure
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100 in. ≤ y8 ≤ 140 in.

Continuous and discrete FC-MOPSO should be utilized
simultaneously for solving the problem. In other words, the
algorithm of Section 4 is used for dealing with continuous
geometric variables while the algorithm proposed in
Section 5 is used for dealing with discrete sizing variables.
This method shall be called mixed FC-MOPSO.

The results obtained from FC-MOPSO and NSGA-II are
illustrated in Fig. 27. An approximation of true Pareto front is
also illustrated. The true Pareto front was approximated by
considering all Pareto fronts that were obtained from all sim-
ulations of the two optimizers.

Fig. 27a and b show that FC-MOPSO clearly outperforms
NSGA-II in solving the problem with mixed continuous and
discrete design variables. In fact, NSGA-II could approximate
a small portion of the Pareto front. Fig. 27b shows that almost

all points corresponding to the approximation of true Pareto
belong to FC-MOPSO.

Extreme points of the Pareto fronts are also listed in
Table 10. However, as it was discussed in Section 6.2.3, this
table cannot be used for preferring one algorithm over another.

7 Conclusions

A new PSO-based approach called FC-MOPSO was devel-
oped for handling multi-objective optimization problems with
continuous or discrete variables and including different types
of constraints. The extension of the original single-objective
PSO to a multi-objective PSO was carefully accomplished to
preserve the basic rationale in PSO.

FC-MOPSOreserves thebestpositionsthateachindividualhas
experienced as a nondominated set. Thesenon-dominated sets are

Fig. 25 Schematic of the spatial
120-bar truss structure
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Table 9 List of tubular sections employed for the 120-bar truss example

Section No. 1 2 3 4 5 6 7 8
Round tube ID.* 48.3 × 3.2 42.4 × 4 60.3 × 2.9 48.3 × 4 60.3 × 3.6 76.1 × 2.9 60.3 × 4 76.1 × 3.6
Cross sectional area (mm2) 453 483 523 557 641 667 707 820

(in2) 0.702 0.749 0.811 0.863 0.994 1.034 1.096 1.271
Radius of gyration (mm) 16 13.6 20.3 15.7 20.1 25.9 20 25.7

(in) 0.630 0.535 0.799 0.618 0.791 1.020 0.787 1.012
Section No. 9 10 11 12 13 14 15 16
Round tube ID. 88.9 × 3.2 60.3 × 5 76.1 × 4 88.9 × 3.6 88.9 × 4 101.6 × 3.6 76.1 × 5 108 × 3.6
Cross sectional area (mm2) 862 869 906 965 1070 1110 1120 1180

(in2) 1.336 1.347 1.404 1.496 1.659 1.721 1.736 1.829
Radius of gyration (mm) 30.3 19.6 25.5 30.2 30 34.7 25.2 36.9

(in) 1.193 0.772 1.004 1.189 1.181 1.366 0.992 1.453
Section No. 17 18 19 20 21 22 23 24
Round tube ID. 114.3 × 3.6 88.9 × 5 101.6 × 4.5 108 × 4.5 114.3 × 4.5 133 × 4 88.9 × 6.3 101.6 × 5.6
Cross sectional area (mm2) 1250 1320 1370 1460 1550 1620 1630 1690

(in2) 1.938 2.046 2.124 2.263 2.403 2.511 2.527 2.62
Radius of gyration (mm) 39.2 29.7 34.4 36.6 38.9 45.6 29.3 34

(in) 1.543 1.169 1.354 1.441 1.531 1.795 1.154 1.339
Section No. 25 26 27 28 29 30 31 32
Round tube ID. 139.7 × 4 108 × 5.6 114.3 × 5.6 101.6 × 7.1 159 × 4.5 133 × 5.6 168.3 × 4.5 139.7 × 5.6
Cross sectional area (mm2) 1710 1800 1910 2110 2180 2240 2320 2360

(in2) 2.651 2.79 2.961 3.271 3.379 3.472 3.596 3.658
Radius of gyration (mm) 48 36.3 38.5 33.5 54.6 45.1 57.9 47.5

(in) 1.890 1.429 1.516 1.319 2.150 1.776 2.280 1.870
Section No. 33 34 35 36 37 38 39 40
Round tube ID. 114.3 × 7.1 133 × 6.3 139.7 × 6.3 193.7 × 4.5 159 × 5.6 168.3 × 5.6 139.7 × 7.1 193.7 × 5
Cross sectional area (mm2) 2390 2510 2640 2670 2700 2860 2958 2964

(in2) 3.705 3.891 4.092 4.139 4.185 4.433 4.584 4.594
Radius of gyration (mm) 38 44.9 47.2 66.9 54.3 57.6 46.9 66.7

(in) 1.496 1.768 1.858 2.634 2.138 2.268 1.846 2.626
Section No. 41 42 43 44 45 46 47 48
Round tube ID. 159 × 6.3 219.1 × 4.5 193.7 × 5.4 168.3 × 6.3 219.1 × 5 168.3 × 7.1 193.7 × 6.3 219.1 × 5.9
Cross sectional area (mm2) 3020 3030 3190 3210 3360 3600 3710 3950

(in2) 4.681 4.697 4.945 4.976 5.208 5.58 5.751 6.123
Radius of gyration (mm) 54 75.9 66.6 57.3 75.7 57 66.3 75.4

(in) 2.126 2.988 2.622 2.256 2.980 2.244 2.610 2.969
Section No. 49 50 51 52 53 54 55 56
Round tube ID. 193.7 × 7.1 273 × 5 219.1 × 6.3 168.3 × 8.8 193.7 × 8 273 × 5.6 244.5 × 6.3 219.1 × 7.1
Cross sectional area (mm2) 4160 4209.734 4211.745 4410 4670 4700 4710 4730

(in2) 6.448 6.525 6.528 6.836 7.239 7.285 7.301 7.332
Radius of gyration (mm) 66 94.8 75.3 56.5 65.7 94.6 84.2 75

(in) 2.598 3.732 2.965 2.224 2.587 3.724 3.315 2.953
Section No. 57 58 59 60 61 62 63 64
Round tube ID. 323.9 × 5 193.7 × 8.8 273 × 6.3 323.9 × 5.6 219.1 × 8.8 273 × 7.1 244.5 × 8 323.9 × 6.3
Cross sectional area (mm2) 5010 5110 5280 5600 5810 5930 5940 6290

(in2) 7.766 7.921 8.184 8.68 9.006 9.192 9.207 9.75
Radius of gyration (mm) 113 65.4 94.3 113 74.4 94 83.7 112

(in) 4.449 2.575 3.713 4.449 2.929 3.701 3.295 4.409
Section No. 65 66 67 68 69 70 71 72
Round tube ID. 219.1 × 10 323.9 × 7.1 273 × 8.8 244.5 × 10 244.5 × 11 323.9 × 8.8 355.6 × 8 273 × 11
Cross sectional area (mm2) 6570 7070 7300 7330 8070 8710 8740 9050

(in2) 10.184 10.959 11.315 11.362 12.509 13.501 13.547 14.028
Radius of gyration (mm) 74 112 93.7 83 82.6 111 123 92.7

(in) 2.913 4.409 3.689 3.268 3.252 4.370 4.843 3.650
Section No. 73 74 75 76
Round tube ID. 323.9 × 11 355.6 × 10 406.4 × 8.8 355.6 × 12.5
Cross sectional area (mm2) 10,800 10,900 11,000 13,500

(in2) 16.74 16.895 17.05 20.925
Radius of gyration (mm) 111 122 141 121

(in) 4.370 4.803 5.551 4.764

*Tubular sections are designated by D × t (mm), where D and t are respectively the diameter and the thickness of a tubular section
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subsequentlyusedfor selectinga leaderanda localbestparticle for
each individual andupdating itsposition.This feature supports the
swarmwiththemostpossibleinformationabout thebest regionsof
the searchspace.Suchprocedure can result in a fast rateof conver-
gence butmay also lead to converging to localminima.However,
FC-MOPSOavoids premature convergenceby restricting the size
of archives, utilizing appropriate selection procedures and apply-
ing mutation operators. Restricting the size of archives and the
selection procedure is done in away that the swarm is encouraged
tomove to less explored regions of the search space. Such charac-
teristics increase the chance of finding an acceptable approxima-
tion of the Pareto in limited number of function evaluations.
Furthermore, extension of the single-objective PSO to FC-
MOPSOwas accomplished in a way that it is also possible to use
anydesiredneighborhoodtopologyother thantherandomonethat
wasrecommendedinthispaper. Inotherwords,anyneighborhood
topologydefined for single objective PSOmethods can be readily
applied to FC-MOPSO aswell.

Themethodologiesproposed in thispaperare effective, consis-
tent with each other and easy to implement. The continuous and
discreteFC-MOPSOcanbereadilymixedwitheachother tosolve

problems with mixed design variables. Therefore, FC-MOPSO
can be applied to unconstrained/constrained continuous/ discrete/
mixed multi-objective problems while most other PSO-based al-
gorithmsavailableintheliteraturearenotmeant toaddressall these
scenarios.

The performance of FC-MOPSO was validated by consid-
ering a wide range of well-known benchmark problems. It was
shown that the proposedmethod performs very well in finding
acceptable approximations of Pareto fronts within limited
number of function evaluations. This characteristic along with
the capability of handling discrete and mixed search spaces
makes FC-MOPSO an appropriate tool for structural optimi-
zation problems. It is an effective method because most struc-
tural MOPs deal with discrete or mixed discrete and continu-
ous design variables on one hand and suffer from high costs in
function evaluations on the other hand. Function evaluations
can be quite costly especially for cases where more rigorous
analyses such as nonlinear time history analyses are to be
adopted.

The proposed method avoids defining parameters that need to
be tuned. Two types of parameters could be distinguished in FC-

(a) Continuous solutions (n=10, g=10) (b) Continuous solutions (n=30, g=100) (c) Discrete solutions

Fig. 26 Comparisons of optimal solutions obtained by different optimizers for the 120 bar truss problem

(a) n=10, g=10 (b) n=30, g=100

Fig. 27 Comparisons of optimal solutions obtained by FC-MOPSO and NSGA-II for sizing and geometric optimization of the 25 bar truss problem
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MOPSO: (1) the three parameters inherited from its ancestor (i.e.
ϕ1, ϕ2 andα) and (2) all other parameters specifically defined for
FC-MOPSOsuch aspm,ρj andC(xi). Theuser is not asked to tune
type1parametersbecauseof the theoreticalbackground for stabil-
ity of PSO algorithms. Type 2 parameters are not required to be
tuned either. Because, they were defined in a way that parameter
tuningwould not be required.

The number of design variables of the problems considered in
this paper was at most sixteen variables for truss examples and
thirty variables for continuous benchmark MOPs. FC-MOPSO
could find satisfactory results for these problems within 100 and
400 function evaluations. Naturally, for larger problems it may be
necessary to use higher number of function evaluations. It can be
doneby considering larger populations or larger number of gener-
ationsorboth. If thepopulationsize isverysmall (sayforexample,
n = 10), the swarmwill receive little information about the search
space.Moreover, it is likelythat thenumberoffunctionevaluations
is small in such cases (for example, large number of evaluations
like n = 10, g = 1000 is an unlikely scenario because n = 100,
g=100isprobablypreferred)andtheswarmwillhave toconverge
to a solution more rapidly. Therefore, using neighborhood sizes
equal to n - 1 is recommended in such cases. N = n - 1 somehow
represents a fully informed PSO. For larger population sizes it is
recommended to adopt small neighborhood sizes to restrict the

amount of information passed to each particle and thereby,
avoiding premature convergence. For example, N = 4 and N = 8
can be used for n = 30 and n = 100, respectively.
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