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Abstract In this paper, a new kind of multivariate global
sensitivity index based on energy distance is proposed. The
covariance decomposition based index has been widely used
for multivariate global sensitivity analysis. However, it just
considers the variance of multivariate model output and ig-
nores the correlation between different outputs. The proposed
index considers the whole probability distribution of dynamic
output based on characteristic function and contains more in-
formation of uncertainty than the covariance decomposition
based index. The multivariate probability integral transforma-
tion based index is an extension of the popularly used
moment-independent sensitivity analysis index. Although it
considers the whole probability distribution of dynamic out-
put, it is difficult to estimate the joint cumulative distribution
function of dynamic output. The proposed sensitivity index
can be easily estimated, especially for models with high di-
mensional outputs. Compared to the classic sensitivity indi-
ces, the proposed sensitivity index can be easily used for dy-
namic systems and obtain reasonable results. An efficient
method based on the idea of the given-data method is used
to estimate the proposed sensitivity index with only one set of
input-output samples. The numerical and engineering

examples are employed to compare the proposed index and
the covariance decomposition based index. The results show
that the input variables may have different effect on the whole
probability distribution and variance of dynamic model output
since the proposed index and the covariance decomposition
based index measure the effects of input variables on the
whole distribution and variance of model output separately.

Keywords Sensitivityanalysis .Dynamicoutput .Probability
integral transformation . Characteristic function . Energy
distance

1 Introduction

Uncertainties are often encountered in the practical systems and
mathematical models (Iman et al. 2005; Nannapaneni et al.
2016; Xiao et al. 2012), which lead to uncertain performance.
Uncertainty analysis has been widely used to help decision
makers understand the degree of confidence of the model re-
sults so that they can know the degree of confidence in the
decision they made and assess the risk (Borgonovo and Peccati
2006). However, most applications of uncertainty analysis do
not provide information on how the uncertainty of model out-
put can be apportioned to the uncertainty of model inputs, and
therefore, on which factors to devote data collection resources
so as to reduce the uncertainty most effectively (Wang 2017;
Xiong et al. 2010). Global sensitivity analysis (GSA) has been
widely used to apportion the uncertainty of model output to
different sources of uncertainty in the model inputs (Saltelli
et al. 2008). Thus, GSA can help researchers find the signifi-
cant or non-significant input factors (Morris 1991), measure the
respective contributions of input factors to the uncertainty of
model output or detect the interaction effect between different
input factors. Then, researchers can reduce the uncertainty of
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model output effectively through the calibration of the most
influential input factors and simplify the model by fixing the
non-influential input factors into nominal values. In addition, it
can also help researchers obtain a comprehensive insight on the
model behavior and structure (Xu et al. 2017). Due to this
property, GSA has been widely used in risk assessment and
decision making, etc. For example, Saltelli and Tarantola
(2002) used GSA on the safety assessment for nuclear waste
disposal, Hu and Mahadevan (2016) proposed an enhanced
surrogate model-based reliability analysis method based on
GSA, Patil and Frey (2004) used GSA for the food safety risk
assessment, Borgonovo and Peccati (2006) used GSA tech-
niques in the investment decisions, Lamboni et al. (2009) used
GSA for dynamic crop models to help researchers make better
decisions in the growing season of crops. More details of GSA
can be found in the reviews of other researchers, such as Refs.
(Borgonovo and Plischke 2016; Wei et al. 2015).

The traditional GSA methods, such as the nonparametric
methods (Helton 1999), variance based methods (Saltelli et al.
2010; Sobol 2001), distribution based methods (Borgonovo
2007; Liu and Homma 2010; Pianosi and Wagener 2015), the
relative entropy based method (Liu et al. 2006), the probabil-
ity distance based method (Greegar and Manohar 2015), etc.
focus on the models with scalar output, which can be consid-
ered as a random variable. However, many practical models
with dynamic output, which can be considered as random
process, are widely used in engineering. In these models,
time-dependent model outputs are usually considered (in prac-
tical, time-dependent output is often discretized, which leads
to high dimensional multivariate output). Usually, an appro-
priate scalar objective function (such as an aggregated statistic
like sum, average or maximum value) is selected at first, then
GSA is performed on the selected objective function (Saltelli
et al. 2000). While if no appropriate scalar objective function
can be obtained, then the GSA should be performed on model
output at each time moment separately (Lilburne and
Tarantola 2009). Although performing GSA on a pre-
defined scalar function of the dynamic output can be conve-
nient and useful when the selected scalar function has a mean-
ingful interpretation, it leads to many potential scalar func-
tions, and sometimes it is impossible to find a proper scalar
function (Li et al. 2016). On the other hand, conducting GSA
on the model output at each instant can give information on
how the sensitivity of input variable evolves over time, how-
ever, it may lead to redundancy since strong correlation often
exists between outputs from one instant to another (Garcia-
Cabrejo and Valocchi 2014) and can not get how the input
variables affect the whole model output in an entire time in-
terval. As mentioned by Campbell et al. (2006), it may be
insufficiently informative to perform GSA on a specific scalar
function of the outputs or on the output at each time instant
separately. Thus, it is more appropriate to apply GSA on the
dynamic model output as a whole.

Similar to the variance based GSAmethod for models with
scalar output, which utilizes the variance to describe the un-
certainty of model output, the uncertainty of dynamic output
(multivariate output) can be represented by the covariance
matrix. Then Gamboa et al. (2013) proposed a set of multi-
variate global sensitivity indices based on the decomposition
of the covariance matrix of model output which are equivalent
to the Sobol’ indices (Sobol 1993) in the scalar case. These
indices can be considered as the average of all the Sobol’
indices for each output weighted by the variance of the corre-
sponding output, and they do not consider the covariance
among different outputs. Based on the idea of the output de-
composition method proposed by Campbell et al. (2006),
Lamboni et al. (2011) used principal component analysis
(PCA) to perform the decomposition of model output and
proposed a set of multivariate global sensitivity indices ac-
cording to the variance based GSA method. These indices
can still be considered as averaging all the Sobol’ indices for
the principal components weighted by the variance of each
principal component. Since the total variance of all the prin-
cipal components is equal to the total variance of the original
model output, these two sets of indices are equivalent if the
selected principal components preserve all the variance of the
original model output. This has also been pointed out by
Garcia-Cabrejo and Valocchi (2014). The PCA based method
still misses the covariance among different model outputs.

The multivariate sensitivity analysis methods mentioned
above are all based on the variance of the model output, which
implicitly assume that the variance is sufficient to describe
output variability (Saltelli 2002). However, the variance only
provides a summary of the whole distribution and it will result
in inevitable loss of information when representing the uncer-
tainty of output with variance alone (Helton and Davis 2003).
Thus, a sensitivity index based on the whole distribution of
dynamic output is preferable to have a comprehensive assess-
ment of the influence of model inputs on the dynamic output.
Based on the density based GSA method for scalar output
(Borgonovo 2007), Cui et al. (2010) proposed a multivariate
sensitivity index based on the joint probability density function
(PDF) of the multivariate output. Although this method can
take both the whole distribution and the correlation of the
multivariate output into consideration, it suffers the “curse of
dimensionality” for calculating the high dimensional
integration and the difficulty in estimating the joint PDF of
the high dimensional output variables. Later, Li et al. (2016)
utilized the joint cumulative distribution function (CDF) to
describe the whole uncertainty of multivariate output since
the CDF is easier to be estimated than the PDF (Liu and
Homma 2009). Then the multivariate global sensitivity index
was defined based on the multivariate probability integral
transformation (PIT) distribution of the multivariate output. It
is recognized that valuable information of the correlation struc-
ture is contained in the joint CDF of the multivariate output. In

280 S. Xiao et al.



addition, due to the univariate nature of the multivariate PIT,
this index can be calculated through a univariate integration.
Although the multivariate PIT based method is easier to be
implemented than the joint PDF-based method, it still needs
to estimate the joint CDF of the multivariate output, which is
very difficult in the case of high dimension model outputs.
This is often the case when the time-dependent output is
discretized, which usually will lead to a very high dimensional
model output.

In this work, we propose a new multivariate global sensi-
tivity index which measures the effect of the input uncertainty
on the whole probability distribution of the model output, and
it takes the correlation among different outputs into consider-
ation. This new sensitivity index is defined based on the en-
ergy distance (Rizzo and Székely 2016; Székely and Rizzo
2013), which is used to measure the difference between the
unconditional distribution of the multivariate output and the
conditional one when a certain input variable is fixed.
Compared to the joint PDF based method and the multivariate
PIT based method, the new method does not need to estimate
the joint PDF or CDF of the multivariate output and can be
estimated through a surprisingly simple form of expectation.

The rest of this paper is organized as follows: Section 2
briefly reviews the covariance decomposition based method
and the multivariate PIT based method. In Section 3, the en-
ergy distance is briefly introduced at first, then the new mul-
tivariate global sensitivity index is defined based on the ener-
gy distance and the properties of the new sensitivity index are
discussed. Section 4 gives the comparison of the proposed
sensitivity index with the existent indices and the estimation
of the proposed sensitivity index. A numerical example and
two engineering examples are employed in Section 5 to show
the validity and the benefits of the proposed sensitivity index.
Section 6 gives the conclusion.

2 Review of the multivariate global sensitivity
analysis methods

Let Xi (i = 1 , 2 , … , d) be a set of independent random input
variables with PDFs f X i

xið Þ (i = 1 , 2 , … , d). The dynamic

output is defined as

Y tð Þ ¼ g X 1:X 2;…;X d; tð Þ; t∈T ð1Þ

where Y(t) is the dynamic output and g represents the deter-
ministic model response function. The model output becomes
a vector Y = (Y(t1), Y(t2), … , Y(tm)) if the domain T is dis-
crete or more generally a function Y(t) (t∈T ) if T is contin-
uous. In practical application, many continuous functions are
often discretized for a more convenient calculation and
analysis. Here, we will consider the discrete case.

2.1 Covariance decomposition based method

The multivariate sensitivity analysis based on covariance
decomposition proposed by Gamboa et al. (2013) is
established on the high dimensional model representa-
tion (HDMR) (Sobol 1993) of the outputs, i.e.

Y trð Þ ¼ g0;tr þ ∑
d

i¼1
gi X i; trð Þ þ ∑

1≤ i< j≤d
gi;j X i;X j; tr
� �

þ…þ g1;2;…;d X 1;X 2;…;Xd; trð Þ; r ¼ 1;…;m

ð2Þ
where

g0;tr ¼ E Y trð Þð Þ

gi X i; trð Þ ¼ E Y trð Þ X ijð Þ−g0;tr

gi;j X i;X j; tr
� �

¼ E Y trð Þ X i;X j
��� �

−gi X i; trð Þ−g j X j; tr
� �

−g0;tr⋯

ð3Þ

and tr (r = 1 , 2 , … , m, and m is the number of the
time instant) is the time instant which indicates different
outputs and E(•) denotes the expectation operator.

Take the covariance matrices for both sides of (2), then the
following equation can be obtained

C Y t1ð Þ;…; Y tmð Þð Þ ¼ ∑
d

i¼1
Ci Y t1ð Þ;…; Y tmð Þð Þ

þ ∑
1≤ i< j≤d

Ci; j Y t1ð Þ;…; Y tmð Þð Þ

þ⋯þ C1;2;…;d Y t1ð Þ;…; Y tmð Þð Þ

ð4Þ

Equation (4) denotes that the covariance matrix of multivar-
iate output can be partitioned into the sum of covariance matri-
ces that comes from changes in single, pairs, triplets, etc. of
input variables (Garcia-Cabrejo and Valocchi 2014). For the
scalar output, this equation becomes the decomposition of the
variance, which is used to define the traditional variance based
global sensitivity indices. For the case of multivariate output,
Gamboa et al. (2013) showed that the covariance matrix C can
be projected onto a scalar through multiplication by a matrixM
and then taking the trace. They also showed that the matrixM
can be taken as the identify matrix, i.e.M = I. Then it leads to

Tr C Y t1ð Þ;…; Y tmð Þð Þ½ � ¼ ∑
d

i¼1
Tr Ci Y t1ð Þ;…; Y tmð Þð Þ½ �

þ ∑
1≤ i< j≤d

Tr Ci; j Y t1ð Þ;…; Y tmð Þð Þ
� �

þ⋯þ Tr C1;2;…;d Y t1ð Þ;…; Y tmð Þð Þ
� �

ð5Þ
Thus, the multivariate main effect index of input variable Xi

is defined as

S1Mi Y t1ð Þ;…; Y tmð Þð Þ ¼ Tr Ci½ �
Tr C½ � ¼

∑m
r¼1V gi X i; trð Þð Þ
∑m

r¼1V Y r j
� �� � ð6Þ
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And the multivariate total effect index of Xi can be defined as

STM
i Y t1ð Þ;…; Y tmð Þð Þ ¼

Tr Ci½ � þ ∑
d

j¼1; j≠i
Tr Ci; j
� �

þ⋯þ Tr C1;2;…;d
� �

Tr C½ �

¼
∑m

r¼1V gi X i; trð Þð Þ þ ∑
d

j¼1; j≠i
∑m

r¼1V gi;j X i;X j; tr
� �� �

þ⋯þ ∑m
r¼1V g1;2…;d X 1;X 2;…;X d ; trð Þ

� �
∑m

r¼1V Y trð Þð Þ

ð7Þ

Since all the elements along diagonal in C are positive, the
trace of C is positive. This trace is equal to the sum of vari-
ances of all the outputs Y(tr) (r = 1 , … ,m), i.e., the total
variance of all the output variables. The trace of Ci is the total
variance of all the output variables associated with changes in
input variable Xi. According to the law of total variance, the
numerator in (6) can be represented as ∑m

j¼1V gi X i; trð Þð Þ ¼
∑m

j¼1V E Y trð Þðð X ij ÞÞ ¼ ∑m
j¼1V Y trð Þð Þ −E V Y trð Þðð X ij ÞÞ.

V(Y(tr)|Xi) is the conditional variance of Y(tr) when Xi is fixed
at a certain value. E(V(Y(tr)|Xi)) denotes the average residual
variance of Y(tr) when Xi can be fixed. Thus, ∑m

j¼1V Y trð Þð Þ −
E V Y trð Þðð X ij ÞÞ represents the average reduction of the total

variance of all the output variables when Xi can be fixed. S1Mi
can be interpreted as the expected percentage reduction in the
total variance of output variables when the uncertainty of Xi is
eliminated. STM

i is the summation of all the sensitivity indices

related to input variable X1, thus STM
i can measure both the

individual effect of Xi and the interaction effects between Xi
and other input variables on the outputs.

According to the definition of S1Mi in (6), S1Mi can also be
represented as

S1Mi ¼
∑m

j¼1V E Y t j
� �

X ij
� �� �

∑m
r¼1V Y trð Þð Þ ¼ ∑

m

j¼1

V Y t j
� �� �

∑m
r¼1V Y trð Þð Þ S1i;t j ð8Þ

where S1i;t j ¼
V E Y t jð Þ X ijð Þð Þ

V Y t jð Þð Þ is the main effect index of Xi on

the single output Y(tj). Thus, S1Mi can be regarded as the
weighted average of the main effect indices of Xi on the single
output Y(tj) (j = 1 , … ,m), and the weight of each term is

proportional to the variance of each output. Similarly, STM
i

can also be represented as

STM
i ¼

∑m
j¼1E V Y t j

� �
X∼ij

� �� �
∑m

r¼1V Y trð Þð Þ

¼ ∑
m

j¼1

V Y t j
� �� �

∑m
r¼1V Y trð Þð Þ STi;t j ð9Þ

where X~i denotes all the input variables except Xi, STi;t j ¼
E V Y t jð Þ X∼ijð Þð Þ

V Y t jð Þð Þ is the total effect index of Xi on the single out-

put Y(tj). Thus, STM
i is also the weighted average of the total

effect indices of Xi on the single output Y(tj) (j = 1 , … ,m).

According to the definition, it can be seen that the
covariance decomposition based indices mainly concern
the variance of model outputs, which may be insuffi-
cient for representing the uncertainty of model output.
In addition, they also ignore the covariance terms in the
covariance matrix, which represent the correlation be-
tween different outputs.

2.2 Multivariate probability integral transformation
based method

The base of the multivariate sensitivity analysis method
proposed by Li et al. (2016) is the multivariate proba-
bility integral transformation (PIT) (Genest and Rivest
2001). Let FY(y1, y2, … , ym) be the joint CDF of the
multivariate output Y = (Y(t1), Y(t2), … , Y(tm)), then the
m-dimensional PIT of Y can be obtained by taking the
CDF of Y, i.e., V = FY(y1, y2, … , ym). The CDF of V,
represented by KV(v), is known as the PIT distribution
of Y. For the univariate case, KV(v)is a standard uniform
distribution. While for the multivariate case, KV(v) is
not a standard uniform distribution since it relies on
the correlation structure of the joint CDF of Y.
Specifically, KV(v) is distributed in [0, 1] for the multi-
variate case and it can be represented as KV(v) = P(V ≤
FY(y1, y2, … , ym), where P(•) denotes the probability of
event • in the bracket. Since KV(v) is obtained from the
joint CDF of the multivariate output Y, it contains valu-
able information about the joint CDF of Y.

Denote FY X ij y1; y2;…; ymð Þ as the conditional joint
CDF of Y when fixing a input variable Xi at a certain
value. Then the corresponding conditional PIT distribu-
tion is KV X ij vð Þ ¼ PðV ≤ FY X ij y1; y2;…; ymð Þ. Thus, the
effect of input variable fixed in a certain value on the
multivariate output can be measured through the differ-
ence between KV(v) and KV X ij vð Þ, which can be repre-
sented as

s X ið Þ ¼ ∫10 KV vð Þ−KV X ij vð Þ
�� ��dv ð10Þ

Since Xi is a random variable with PDF f X i
xið Þ, the average

effect of Xi on the multivariate output can be measured
through the expectation of s(Xi), i.e.

EX i s X ið Þð Þ ¼ ∫þ∞
−∞ f X i

xið Þ ∫10 KV vð Þ−KV X ij vð Þ
�� ��dv� �

dxi ð11Þ

The final multivariate sensitivity index is defined as

ηi ¼
1

2
EX i s X ið Þð Þ ð12Þ

ηi represents the normalized average effect of Xi on the PIT
distribution ofY. Larger value of ηi will indicate greater effect
of Xi on the multivariate output.
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It can be seen that the multivariate PIT based index
ηi focuses on the joint CDF of model output, which
contains all the uncertainty information of model output.
However, it needs to estimate the joint CDF of model
output, which is a difficult task, especially for the cases
of high dimensional output. In addition, when the model
output becomes a scalar random variable, the index ηi is
not suitable. Since the PIT distribution of an one-
dimensional variable is standard uniform distribution,
thus KV(v) is equal to KV X ij vð Þ, which leads to that ηi
is zero.

3 Multivariate global sensitivity analysis based
on energy distance

In this section, we will propose a new multivariate sen-
sitivity index which will take the whole distribution of
the multivariate output into consideration. Firstly, the
energy distance, which is used for the definition of the
new index, will be introduced.

3.1 Energy distance

Energy distance is a distance between probability distri-
butions (Rizzo and Székely 2016; Székely and Rizzo
2013), which is analogous to the potential energy be-
tween objects in a gravitational space. For two indepen-
dent random vectors X and Y in ℝd, the energy distance
between them is defined as

ε X;Yð Þ ¼ 2E X−Yk k−E X−X
0		 		−E Y−Y

0		 		 ð13Þ

where E denotes expectation operator, ‖•‖ denotes the
Euclidean norm if the argument is real and the complex
norm when the argument is complex, E‖X‖ <∞, E‖Y‖
<∞, X′ denotes an independent and identically distrib-
uted (iid) copy of X and Y′ denotes an iid copy of Y.

A significant advantage of the energy distance is that
ε(X,Y) = 0 if and only if X and Y are identically dis-
tributed. Thus, the energy distance has been used for
testing of equal distributions (Székely and Rizzo 2004;
Székely et al. 2007). This advantage of energy distance
can be explained with the following proposition
(Székely and Rizzo 2013).

Proposition For d-dimensional independent random vec-
tors X and Y with E‖X‖ + E‖Y‖ <∞, ϕX(t) and ϕY(t)
denote the characteristic functions of X and Y separate-
ly, then their energy distance can be represented as

ε X;Yð Þ ¼ 2E X−Yk k−E X−X
0		 		−E Y−Y

0		 		 ¼ 1

Cd
∫Rd

ϕX tð Þ−ϕY tð Þk k2

tk kdþ1 dt

ð14Þ

where

Cd ¼
π dþ1ð Þ=2

Γ
d þ 1

2


 � ð15Þ

with Γ(•) is the complete gamma function. Thus, ε(X,
Y) ≥ 0 with equality to zero if and only if X and Y are
identically distributed.

The proof of this proposition can be found in
(Székely and Rizzo 2005). Equation (14) shows that
energy distance is the weighted L2 distance between
characteristic functions, with the weight function w(t)-
= ‖t‖−(d + 1). The characteristic function is the Fourier
transform of the PDF, and it also contains all the infor-
mation of the distribution of random vectors. Thus, the
energy distance measures the difference between the
distributions of two random vectors.

Another advantage of energy distance is that it is distribu-
tion free, i.e., the estimated value of energy distance does not
depend on the distribution form of random vectors, although it
can be represented as the form of characteristic function. Due
to the form of expectation in (13), the energy distance can be
estimated with the following surprisingly simple form. Let x1
;…; xn1 denote the samples of X and y1;…; yn2 denote the
samples of Y, then the energy distance can be estimated as
follows (Rizzo and Székely 2016)

εn1;n2 X;Yð Þ ¼ 2A−B−C ð16Þ

where A, B, C are simply the average of the pairwise distance:

A ¼ 1

n1n2
∑
i¼1

n1

∑
j¼1

n2

xi−y j

		 		
B ¼ 1

n21
∑
i¼1

n1

∑
j¼1

n2

xi−x j
		 		

C ¼ 1

n22
∑
i¼1

n1

∑
j¼1

n2

yi−y j

		 		
ð17Þ

Since the value of the energy distance does not has a
upper bound, a normalized energy distance ε X;Yð Þ can
be obtained as follows (Rizzo and Székely 2016)

ε X;Yð Þ ¼
2E X−Yk k−E X−X0		 		−E Y−Y0		 		

2E X−Yk k ð18Þ

Then 0≤ε X;Yð Þ≤1 with ε X;Yð Þ ¼ 0 if and only if X
and Y are identically distributed. In the next subsection,
the normalized energy distance is applied to define the
multivariate global sensitivity index.
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3.2 The new sensitivity index

Consider the dynamic model Y(t) = g(X1 . X2, … , Xd, t) used
in Section 2 with the discrete model output Y = (Y(t1),
Y(t2), … , Y(tm)). Let Y|Xi denote the conditional multi-
variate output when one input variable Xi is fixed at a
certain value. The effect of the fixed value of Xi on the
multivariate output can be measured by the energy dis-
tance between Y and Y|Xi as follows

d X ið Þ ¼ ε Y;Y X ijð Þ ð19Þ

Then d(Xi) is a function only dependent on Xi. Since Xi is a
random variable with PDF f X i

xið Þ, the average effect of Xi on
the multivariate output can be described by the expectation of
d(Xi) as follows

EX i d X ið Þð Þ ¼ ∫d X ið Þ f X i
xið Þdxi ð20Þ

Then the multivariate global sensitivity index is de-
fined as follows

ξi ¼ EX i d X ið Þð Þ ð21Þ

ξi denotes the expected difference between the distribu-
tions of the unconditional output Y and the conditional
output Y when fixing Xi. Larger value of ξi means that
the input variable Xi has a greater effect on the multi-
variate output.

Similarly, the multivariate global sensitivity index for any
group of input variables (X i1 ;X i2 ;…;X ip ) can also be defined

as follows

ξi1;i2;…;ip ¼ EX i1 ;X i2 ;…;X ip
d X i1 ;X i2 ;…;X ip

� �� �
¼ EX i1 ;X i2 ;…;X ip

ε Y;Y X i1 ;X i2 ;…;X ip

� ���� �� �
¼ ∫ℝrε Y;Y X i1 ;X i2 ;…;X ip

� ���� �
f X i1 ;X i2 ;…;X ip

xi1 ; xi2 ;…; xip
� �

dxi1dxi2⋯dxip

ð22Þ

The properties of the proposed sensitivity index are listed
in Table 1.

Proof of property 1 Since

0≤ε Y;Y X ijð Þ≤1

Thus, it can be obtained that

0 ¼ E 0ð Þ≤E ε Y;Y X ijð Þ
� �

≤E 1ð Þ ¼ 1

Namely

0≤ξi≤1

Proof of property 2 and 3 If Y is independent of Xi, then the
distribution of Y would be the same with the distribution of
Y|Xi, thus, it can be obtained that ε Y;Y X ijð Þ ¼ 0, i.e., ξi ¼ E
ε Y;Y X ijð Þð Þ ¼ 0.
If Y is dependent on Xi but independent on Xj, then the

distribution of Y|(Xi, Xj) will be equal to the distribution of

Y|Xi, thus, ε Y;Y X i;X j
� ���� �

¼ ε Y;Y X ijð Þ, i.e., ξi;j ¼ ε

Y;Y X i;X j
� ���� �

¼ ε Y;Y X ijð Þ ¼ ξi.

4 Discussion and estimation of the proposed
sensitivity index

4.1 Discussion of the proposed sensitivity index

The proposed sensitivity index ξi measures the effect of input
variables on the multivariate output through the average ener-
gy distance between the unconditional multivariate output and
the conditional one. Since the energy distance can be used to
measure the difference between the distributions of two ran-
dom vectors through the weighted L2 distance between char-
acteristic functions, ξi can measure the effect of input variables
on the whole distribution of the multivariate output. For the
covariance decomposition based indices, they just utilize a
certain moment (variance) of whole distribution for the mul-
tivariate output, which can not represent the whole uncertainty
information of multivariate output. In addition, they only use
the variances of the multivariate output, but neglect the co-
variance (correlation) between different outputs. Thus, com-
pared to the covariance decomposition based indices, the pro-
posed index captures more information of the uncertainty of
model output and can obtain more reasonable results.

Both ξi and the multivariate PIT based index measure the
effect of input variables on the whole distribution of the mul-
tivariate output, the main difference is that ξi utilizes the
weighted L2 distance between characteristic functions but
the PIT based index uses the L1 distance between the PIT
distributions. The multivariate PIT transforms the joint CDF
of multivariate output into a univariate function, which may
miss some useful information. The characteristic function still
contains all the information of model output. Another advan-
tage of ξi is that it can be easily calculated due to the form of
expectation in (13). For the PIT based method, it needs to
calculate the joint CDF of the multivariate output, which is

Table 1 Properties of the sensitivity index proposed in this work

No. Property Meaning/Condition

1 0 ≤ ξi ≤ 1 Bounds of ξi are known

2 ξi = 0 If Y is independent of Xi

3 ξi,j = ξi If Y is dependent on Xi but independent of Xj
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quite difficult compared to the proposed method, especially
for the cases of high dimensional output. When the time-
dependent output is discretized, which will lead to a very high
dimension of model outputs, the PIT based method will not be
appropriate.

For the special case of scalar variables X and Y, the energy
distance can also be represented as follows

ε X ; Yð Þ ¼ 2∫ FX tð Þ−FY tð Þð Þ2dt ð23Þ

where FX(•) and FY(•) are the CDFs of X and Y, separately. It
can be seen that, the energy distance for scalar variables is also
the L2 distance between the CDFs. Thus, for the scalar model
output, the proposed sensitivity index can also be represented
as the average difference between the unconditional CDF and
conditional CDF of model output. This is similar to the sensi-
tivity index proposed by Liu and Homma (Liu and Homma
2010), which used the absolute operator instead of the square
operator. As mentioned before, the multivariate PIT based
index is not suitable for the special case of scalar model output
since the index will always be zero.

4.2 Estimation of the proposed sensitivity index

According to the definition of the proposed index, a direct
way to estimate ξi needs a double loop sampling, which is
similar to the method used in Refs.(Borgonovo 2007; Li
et al. 2016). However, the double loop sampling method is
not efficient enough, especially for the computationally inten-
sive models. Later, Plischke et al. (2013) proposed an efficient
method to estimate the distribution based index proposed in
(Borgonovo 2007) with just one set of input-output samples,
and it also has been developed into a general and consistent
method for estimating many sensitivity indices (Borgonovo
et al. 2016). In this subsection, this idea is adopted to estimate
the proposed index ξi.

For a certain input Xi, suppose the corresponding sample
space is [b1, b2], and partition the sample space of Xi into L
successive and non-overlapping subintervals Al = [al − 1, al],
where b1 = a0 < a1 < ⋯ < al < ⋯ < aL = b2 and l = 1 , 2 ,
… , L. Then the following theorem can be obtained (The
proof similar to that in (Zhai et al. 2014) is given in
Appendix).

Theorem 1 Suppose the model Y = g(X, t) is continuous with
respect to X. Then, whenΔa ¼ max

l
al−al−1j j approaches ze-

ro, the following equation can be obtained

lim
Δa→0

∑
L

l¼1
Plε Y;Y X i∈Aljð Þ ¼ EX i ε Y;Y X ijð Þ

� �
ð24Þ

where Pl ¼ ∫alal−1 f X i
xið Þdxi ¼ FX i alð Þ−FX i al−1ð Þ and FX i ⋅ð Þ

is the CDF of Xi.

Theorem 1 shows that when the maximum length of inter-
vals Δa approaches zero (the number of intervals approaches

infinity), the estimator ξ̂i ¼ ∑
L

l¼1
Plε Y;Y X i∈Aljð Þ approaches

ξi. Then based on Theorem 1, the following steps are proposed
to estimate the sensitivity indices and the flow chart is shown
in Fig. 1.

1) Generate N samples {x1, … , xN} according to the joint
PDF fX(x) of model inputs, and then obtain the corre-
sponding output sample set B = {y1, … , yN} through
running the model Y = g(X, t).

2) Partition the sample space of model input Xi into L suc-
cessive and non-overlapping subintervals Al = [al − 1, al],
l = 1 , 2 , … , L.

3) Partition the output samples into L subsets based on the
partition of Xi, i.e.,

Bl ¼ y j x ji∈Al
��� 


; l ¼ 1; 2;…; L ð25Þ

Then estimate the energy distance between Y and Y|Xi ∈Al
using the sample setsB andBl according to (16) and (17). Denote
the estimated value as �̂ε Y;Y X i∈Aljð Þ (l= 1 , 2 , … , L).

Start

Generate a set of input samples and get the
corresponding output samples

Partition the sample space of into successive and
non-overlapping subintervals

Let i=1

Let l=1

l<LYes

Estimate the sensitivity index of

No

i < d Yes

No

End

iX L

Partition the output samples into subsets based on
the partition of i.e.,

L
,iX

Estimate the energy distance between andY i lX AY

l=l+1

iX

i=i+1

1 ,{ , }Nxx
1{ , }, NB y y

1, ],[ ll lA a a 1,2 ,,l L

{ },j j
l i lB x Ay 1,2 ,,l L

Fig. 1 The flow chart for estimating the proposed sensitivity index
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4) Estimate ξi as follows

ξ̂i ¼ ∑
L

l¼1
Pl�̂ε Y;Y X i∈Aljð Þ ð26Þ

5) Repeat steps 2) to 4) to estimate the sensitivity index for
all the input variables.

For a group of input variables (X i1 ;X i2 ;…;X ip ), the pro-

cedure above can also be used to estimate the corresponding
sensitivity index ξi1;i2;…;ip . The difference is that one needs to

partition the joint sample space of (X i1 ;X i2 ;…;X ip ) into sub-

spaces. Then partition the output samples based on the parti-
tion of (X i1 ;X i2 ;…;X ip ).

The same output samples {y1, … , yN} can be partitioned
into different subsets for different Xi, thus, one group of sam-
ples will be enough to estimate the sensitivity indices for each
model input. The sampling process for generating the samples
of model input can be realized by many different methods
(simple random sampling, Latin hypercube sampling, quasi
random sampling, etc.). In this work, the Sobol’ quasi random
sequence (Sobol” 1976; Sobol’ et al. 2011) is utilized to gen-
erate the samples due to its low discrepancy property. Several
partition strategies are available in (Plischke 2012). In this
paper, the equiprobability partition (Zhai et al. 2014) is
adopted, which is a widely used and effective scheme. The
previous studies showed that there exists a tradeoff of
selecting the number of subintervals for a given set of input-
output samples, it should be guaranteed that both the number
of subintervals and the number of samples in each subinterval
are enough. A recommended strategy for selecting the number

of subintervals is L ¼
ffiffiffiffi
N

p� �
(take the integer part of

ffiffiffiffi
N

p
, and

N is the total sample size) to achieve a balance of number of
subintervals and the number of samples in each subinterval (Li
and Mahadevan 2016). This strategy is used in this work.

5 Examples

In this section, a numerical example and two engineering ex-
amples with high dimensional model output are adopted.
Since the estimation of the PIT based method is very difficult
in the case with high dimensional model output, only the
covariance decomposition method and the proposed method
are applied on these example to have a comparison.

5.1 Numerical example

Here, a numerical example with time-dependent output is
adopted. The model response function can be represented as

g x; tð Þ ¼ x21x3cos 2π⋅20tð Þe−x2t−3x2cos 2π⋅40tð Þe−x1t

þ x1 þ 1ð Þcos 2π⋅60tð Þe−x2t−2x3

ð27Þ

Each value of the time parameter t corresponds to a
model output. Here, t lies in the interval [0, 5] and it is
discretized into 128 time points equally distributed in
[0, 5], which correspond to 128 model outputs. The in-
dependent input variables x1, x2, x3 follow normal dis-
tribution and their distribution parameters are shown in
Table 2.

Figure 2 shows the estimated values of the proposed
index for the three input variables with different sample
sizes by the proposed method in Section 4.2. It shows
that the proposed estimation method can obtain a stable
result as the sample size increases.

Table 3 shows the values of different indices. The results
indicate that the importance rankings of the input variables
based on the proposed sensitivity index and the covariance
decomposition based sensitivity indices are different. For the
covariance decomposition based sensitivity indices, the im-
portance ranking is x2 > x1 > x3, while for the proposed sensi-
tivity index, the importance ranking is x1 > x2 > x3. The differ-
ence of the importance ranking is caused by the fact that co-
variance decomposition based sensitivity indices measure the

Table 2 Distribution parameters of the input variables for the
numerical example

x1 x2 x2

Mean 2 1 3

Standard deviation 0.4 0.4 0.4

102 103 104
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

sample size

i

x1
x2

x3

Fig. 2 Values of the proposed index with different sample sizes for the
numerical example

Table 3 Values of different indices for the numerical example

x1 x2 x3

S1Mi
0.2355 (2) 0.5437 (1) 0.1316 (3)

STM
i

0.3047 (2) 0.6203 (1) 0.1441 (3)

ξi 0.1067 (1) 0.0792 (2) 0.0788 (3)
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effect of input variables on the variance of the model output
and do not consider the correlation between different model
outputs, while the proposed sensitivity index measure the ef-
fect of input variables on the entire probability distribution
(represented by the characteristic function) of the model out-
puts. Thus, x2 has the most effect on the variance of the model
output and x1 has the most effect on the entire probability
distribution of the model output. This also denotes that the
variable having the most effect on the variance of model out-
put may not have the most effect on the entire probability
distribution of model outputs. In addition, x2 has more effect
on the variance of model output than x3, but almost has the
same effect on the entire probability distribution of model
output with x3.

5.2 A vibration problem

In this example, a vibration problem used in (Hu and Du
2015) is adopted and it is shown in Fig. 3. The stiffness of
spring k2, damping coefficient c2, mass m2, stiffness of spring
k1, and massm1 are considered as random input variables, and
they are described in Table 4. The amplitude of the vibration
of mass m1 subjected to force f0 sin(Ωt) is given by

q1max ¼ f 0
c22Ω

2 þ k2−m2Ω
2

� �2
c22Ω

2 k1−m1Ω
2−m2Ω

2
� �2 þ k2m2Ω

2− k1−m1Ω
2

� �
k2−m2Ω

2
� �� �2

 !1=2

ð28Þ

This equation can be non-dimensionalized using a static

deflection of main system, defined by q1st ¼
f 0
k1
. Thus, the

non-dimensional displacement of m1 is considered as the out-
put and can be given as

Y ¼ g X;Ωð Þ ¼ q1max

q1st
¼ k1 K1= K2 þ K2

3

� �� �1=2 ð29Þ

where

K1 ¼ c22 Ω2 þ k2−m2Ω
2

� �2
K2 ¼ c22 Ω2 k1−m1Ω

2−m2Ω
2

� �2
K3 ¼ k2m2Ω

2− k1−m1Ω
2

� �
k2−m2Ω

2
� � ð30Þ

Fig. 3 A vibration problem

Table 4 Distribution parameters of the input variables for the vibration
problem

Variable Distribution Mean Standard deviation

k1(N/m) Normal 3 × 106 9 × 104

m1 (kg) Normal 1.6 × 104 2 × 102

k2(N/m) Normal 8.5 × 104 2 × 103

m2 (kg) Normal 480 5

c2(Ns/m) Normal 300 5

102 103 104
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

sample size

i

k1

m1

k2
m2

c2

Fig. 4 Values of the proposed index with different sample sizes for the
vibration problem
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The parameterΩ is the excitation frequency in [8, 28] rad/s.
Different values of Ω will lead to different model outputs. In
this example, Ω will take the values from 8 rad/s to 28 rad/s
with a step size of 0.2 rad/s, which correspond to 101 model
outputs.

The estimated values of the proposed sensitivity in-
dex through the method proposed in Section 4.2 with
different sample sizes are shown in Fig. 4, which indi-
cates that as the sample size increases, the proposed
method can converge toward a stable result.

The values of different sensitivity indices are shown in
Table 5. For both kinds of indices, k1 is the most important
variable, which means that k1 not only has the most effect on
variance of model output but also has the most effect on the
entire probability distribution of model output. For the covari-
ance decomposition based indices,m2 is the second important
variable and it almost has the same effect on the variance of
model output with k1, the other variables have little effect on
the variance of model output. However, for the proposed sen-
sitivity index, k2 and m1 are the second and third important
variables separately, and they almost have the same effect on
the entire probability distribution of model output, but has less
effect on the entire probability distribution of model output
than k1 apparently.m2 and c2 have the least effect on the whole
probability distribution of model output, and they are just a
little less important than m1 and k2. The results also show that
the relative importance of input variables based on these two
kinds of indices may not be the same. Since k1 is the most
important variable based on these two kinds of sensitivity

indices, more attention should be paid on k1 to have a more
accurate estimation of the output.

5.3 Automobile front axle

In this example, an automobile front axle beam used in (Shi
et al. 2017) is adopted. In the automobile engineering, the
front axle beam is used to carry the weight of the front part
of the vehicle (Fig. 5(a)). Since the whole front part of the
automobile rests on the front axle beam, it must be robust
enough in construction to make sure it is reliable. The I-
beam is often used in the design of the front axle due to its
high bend strength and light weight. Figure 5(b) shows the
dangerous cross-section. The maximum normal stress and
shear stress are σ =M/Wx and τ = T/Wρ separately, where M
and T are time-dependent bending moment and torque, i.e.,M
¼ M0

1
10 cos

1
10 zþ 1

10

� �
and T ¼ T 0sin 1

3 z, where M0 and T0
are the basic bending moment and torque, z is the time param-
eter which lies in the interval [0, 10] second. Wx and Wρ are
section factor and polar section factor which are given as

Wx ¼
a h−2tð Þ3

6h
þ b

6h
h3− h−2tð Þ3
h i

Wρ ¼ 0:8bt2 þ 0:4 a3 h−2tð Þ=t
� � ð31Þ

The limit state function for checking the strength of front
axle can be expressed as:

g ¼ σs−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ 3τ2

p
ð32Þ

where σs is the ultimate stress of yielding. According to
the material property of the front axle, the ultimate
stress of yielding σs is 460 MPa. The geometry vari-
ables of I-beam a , b , t , h and the basic bending mo-
ment M0 and torque T0 are independent normal vari-
ables with distribution parameters listed in Table 6.
The time parameter z will take the values from 0.1 to

Table 5 Values of different indices for the vibration problem

k1(N/m) m1 (kg) k2(N/m) m2 (kg) c2(Ns/m)

S1Mi
0.0840 (1) 0.0799 (2) 0.0379 (3) 0.0071 (4) 0.0001 (5)

STM
i

0.9986 (1) 0.9854 (2) 0.0598 (3) 0.0141 (4) 0.0001 (5)

ξi 0.0461 (1) 0.0107 (3) 0.0109 (2) 0.0086 (4) 0.0078 (5)

(a) Schematic diagram of front axle (b) Cross section of front axle

a

b

t

h
Fig. 5 Diagram of the
automobile front axle
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10 s with a step size of 0.1 s, which will lead to 100
model outputs.

Fig. 6 shows the estimated values of the proposed
sensitivity index through the proposed method with in-
creasing sample sizes. It denotes that the estimated
values converge to a stable value as the sample size
increases. Table 7 shows the values of different sensi-
tivity indices. For the covariance decomposition based
sensitivity indices, T0 has the most significant effect on
the variance of model output and b comes at the sec-
ond. The other variables has little effect on the variance
of model output. For the proposed sensitivity index, h
has the most significant effect on the whole probability
distribution of model output. The second and third im-
portant input variables are M0 and b separately, and
they almost have the same effect on the whole proba-
bility distribution of model output. The other variables
have the least effect on the whole probability distribu-
tion of model output. Based on the results, if one fo-
cuses on the variance of model output, more attention
should be paid on T0 and b. While if one is interested
in the whole probability distribution of model output,
then more attention should be paid on h, M0 and b.

6 Conclusion

A multivariate global sensitivity index is proposed in
this work to measure the effect of input variables on

the entire probability distribution of the discretized dy-
namic output. Compared to the covariance decomposi-
tion based indices, which just considers the variance of
model output and neglects the correlation between dif-
ferent model outputs, the proposed sensitivity index
considers the whole probability distribution of the mod-
el output, which contains more information of model
output. Compared to the multivariate PIT based method,
which needs to estimate the joint CDF of multivariate
output and is quite difficult to implement for high di-
mensional outputs, the proposed sensitivity index can be
represented as the form of expectations and can be eas-
ily estimated, especially for high dimensional outputs.
To estimate the proposed sensitivity index more effi-
ciently, the given-data method is adopted in this work,
which just needs one set of input-output sample. The
numerical and engineering examples are used to com-
pare the proposed method and the covariance decompo-
sition based method. It can be seen that the input rank-
ings based on these two kinds of sensitivity indices are
not necessarily the same. This is caused by the fact that
the covariance decomposition based indices consider the
effect of input variables on the variance of model output
while the proposed index considers the effect of input
variables on the whole distribution of model output.
Through these two kinds of sensitivity indices, one
can easily obtain the input variables which have signif-
icant effect on the whole probability distribution of out-
put and the input variables which have the significant
effect on the variance of output separately. When the
output variable is normally distributed or the response
function is a quadratic utility function, variance is suf-
ficient to describe the uncertainty of model output.
Otherwise, the whole probability distribution is prefera-
ble to have a more comprehensive description of the
uncertainty of model output.
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Table 6 Distribution parameters of the input variables for automobile
front axle

a(mm) b(mm) t(mm) h(mm) M0(N·mm) T0(N·mm)

Mean 12 65 14 85 3.5 × 106 3.1 × 106

Standard
deviation

0.06 3.25 0.07 4.25 1.75 × 105 1.55 × 105

10 2 10 3 10 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

sample size

i

a
b
t
h
M0
T0

Fig. 6 Values of the proposed index with different sample sizes for the
automobile front axle

Table 7 Values of different indices for the automobile front axle

a(mm) b(mm) t(mm) h(mm) M0(N·mm) T0(N·mm)

S1Mi
0.0003

(6)
0.3227

(2)
0.0036

(4)
0.0717

(3)
0.0012 (5) 0.5190 (1)

STM
i

0.0024
(6)

0.3648
(2)

0.0086
(4)

0.0832
(3)

0.0035 (5) 0.5433 (1)

ξi 0.0023
(6)

0.0556
(3)

0.0035
(4)

0.1409
(1)

0.0583 (2) 0.0034 (5)
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Appendix. Proof of Theorem 1

First, rewrite ξi ¼ EX i d X ið Þð Þ as follows

ξi ¼ EX i d X ið Þð Þ
¼ ∫b2b1ε Y;Y X ijð ÞdFX i xið Þ

¼ ∑
L

l¼1
∫alal−1ε Y;Y X ijð ÞdFX i xið Þ

According to the mean value theorem, there exists a value
λl ∈ [al − 1, al] such that

∫alal−1ε Y;Y X ijð ÞdFX i xið Þ ¼ ε Y;Y λljð Þ FX i alð Þ−FX i al−1ð Þð Þ

Thus, it can be obtained that

ξi ¼ ∑
L

l¼1
ε Y;Y λljð Þ FX i alð Þ−FX i al−1ð Þð Þ

¼ ∑
L

l¼1
ε Y;Y λljð ÞPl

When Δa→ 0, the interval [al − 1, al]→ ξl. Then based on
the definition of Riemann integration, it can be obtained that

lim
Δa→0

∑
L

l¼1
Plε Y;Y X i∈Aljð Þ ¼ EX i ε Y;Y X ijð Þ

� �
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