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Abstract This paper presents a gradient based concurrent
multi-scale design optimization method for composite frames
considering specific manufacturing constraints raised from the
aerospace industrial requirements. Geometrical parameters of
the frame components at the macro-structural scale and the
discrete fiber winding angles at the micro-material scale are
introduced as the independent design variables at the two geo-
metrical scales. The DMO (Discrete Material Optimization)
approach is utilized to couple the two geometrical scales and
realize the simultaneous optimization of macroscopic topolo-
gy and microscopic material selection. Six kinds of
manufacturing constraints are explicitly included in the opti-
mization model as series of linear inequalities or equalities.
The capabilities of the proposed optimization model are dem-
onstrated with the example of compliance minimization, sub-
ject to constraint on the composite volume. The linear con-
straints and optimization problems are solved by Sequential
Linear Programming (SLP) optimization algorithmwithmove
limit strategy. Numerical results show the potential of weight
saving and structural robustness design with the proposed

concurrent optimization model. The multi-scale optimization
model, considering specific manufacturing constraints, pro-
vides new choices for the design of the composite frame struc-
ture in aerospace and other industries.
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1 Introduction

Frame structures composed of laminated composites like glass
or carbon fiber-reinforced polymers (GFRP/CFRP) have been
extensively used in aerospace structure and civil engineering
with excellent performances for the high ratio of stiffness and
weight. For convenience, GFRP/CFRP frame structures are
simply referred to as composite frames in the following parts
of the paper. The composite frame is utilized especially for
aerospace vehicles, load-bearing structure of satellites, spatial
stations, transmission towers and wind turbine structures,
where large-scale, high stiffness and low weight are empha-
sized (Schutze 1997; Ibrahim et al. 2000). Therefore, optimi-
zation of laminated composites has undergone tremendous
development in last decades. Some contributions on this topic
have been summarized in the review articles of Ghiasi et al.
(2009, 2010) and Bakis et al. (2002). It is worth noting that, in
recent years, Discrete Material Optimization (DMO) of lami-
nated composites has achieved considerable progress and
attracted much attention due to the requirements of
manufacturing the optimal design of composite structures.
Based on an extension of the multi-phase topology
optimization (Sigmund and Torquato 1997) Lund and
Stegmann proposed the DMOmethod for multi-phase optimi-
zation of laminated composites (Lund and Stegmann 2005;
Stegmann and Lund 2005). The DMO method has been
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successfully used to dispose many physical problems (Hvejsel
et al. 2011; Lund 2009; Niu et al. 2010; Duan et al. 2014). As
an alternative to the DMO schemes, Bruyneel (2011) intro-
duced the Shape Functions with Penalization (SFP) scheme
based on the shape functions of a quadrilateral first order finite
element. Gao et al. (2012) proposed a Bi-valued Coding
Parameterization (BCP) scheme which can be considered as
a generalization of the SFP scheme.

Despite remarkable achievements have been made for the
optimization of laminated composites, there still are two chal-
lenging issues for design of laminated composites. The first
one is design for practical applications. Thismeans that certain
design guidelines or rules, referred to as manufacturing con-
straints, should be considered to e.g., reduce the risk of local
failure in the structure. In Bailie et al. (1997), they mentioned
eight weaknesses associated with laminated composites. An
efficient way to prevent these weaknesses from happening is
to follow a set of fundamental manufacturing constraints
based on industrial experiences from tests and analyses.
These manufacturing constraints have been developed to help
the designers to exploit the material’s strengths while reducing
the risk of structure and material failure. Costin and Wang
(1993), Wang and Costin (1992) and Liu et al. (2011) consid-
ered manufacturing constraints in aircraft structural design
with lamination parameters and numbers of plies with the
predefined angles (such as [0°, ∓45°, 90°]) as design variables.
Manne and Tsai (1998) utilized plydrop tapering for thickness
optimization of symmetric layups to avoid warping. Recently,
adopting SFP interpolation scheme, Bruyneel et al. (2012)
realized the optimal stacking sequence design of laminated
composites considering several manufacturing constraints.
Irisarri et al. (2014) considered an extensive set of design
guidelines to realize the optimal design of laminated compos-
ite structures with ply drops using a stacking sequence table
(SST) method. Sørensen and Lund (2013), Sørensen et al.
(2014) carried out the serial works on thickness and material
choice design of laminated composites with certain
manufacturing constraints. A more detailed discussion about
design guidelines and their justification is provided in Bailie
et al. (1997).

Another challenging issue is how to fully exploit the po-
tential of composite structures due to the coupling effects be-
tween the macro structures (size, shape of structural compo-
nents and structural configurat ion) and mater ial
microstructure (Yan et al. 2015a, b; Rodrigues et al. 2002)
(fiber orientation, fiber content and layer thickness). As a kind
of architecture material, laminated composites offer a good
opportunity to tailor the material properties. Many researchers
have carried out corresponding multi-scale lightweight mate-
rial design of composite structures. Gao et al. (2013) proposed
a simultaneous optimization of layout design and discrete
fiber orientation of laminated structures. Ferreira et al.
(2013) adopted Discrete Material Optimization (DMO)

approach to perform a hierarchical optimization of laminated
composite structures with simultaneous consideration of the
fiber orientation and cross-section size/shape. As an immedi-
ate extension of the original DMO method, Sørensen et al.
(2014) considered the topology variables of layer thickness
and fiber orientation as the design variables and presented
simultaneous optimization of the thickness and fiber
orientation of laminate composites including certain
manufacturing constraints. Blasques and Stolpe (2012) carried
out a framework of simultaneous topology and material opti-
mization (fiber orientation and laminate thickness) in optimal
design of laminated composite beams with specific structural
requirements, e.g., compliance, eigenfrequency constraints
and structure weight. Liu et al. (2008) proposed the PAMP
(Porous AnisotropicMaterial with Penalization) model, which
has also been extended to multi-scale optimal design of com-
posite material accounting for strength optimization (Yan et al.
2014), thermo-mechanical loads (Yan et al. 2015a; Deng et al.
2013) and frequency optimization (Niu et al. 2009). However,
in the previous references, few works are related with multi-
scale optimization of composite frame structures. Actually, in
order to achieve lightweight designs with specific structural
performance (e.g., compliance, frequency) for composite
frame structure, it is an efficient approach to simultaneously
optimize the ply parameters of the composite material and its
structural configurations.

The present paper proposes a concurrent multi-scale design
optimization model for composite frames with respect to min-
imum structural compliance under the volume constraint. The
cross-section of the beam at the macro-scale and the discrete
fiber winding angles at the micro-scale are introduced as the
independent design variables to realize the topology and
stacking sequence optimization at the two geometrical scales
simultaneously. Especially, in the optimization model, six
kinds of specific manufacturing constraints have been explic-
itly expressed as series of linear inequalities or equalities, and
the sensitivities of these specific manufacturing constraints are
easy to derive and obtain. At the micro-scale the DMO ap-
proach has been applied to achieve the micro-scale material
interpolation. The extension of the open-source composite
beam analysis tool BECAS developed by Blasques and
Lazarov (2012), see also Blasques and Stolpe (2011), has been
adopted to realize high-fidelity analysis of the composite
frame structure. In the numerical examples, we implement
four kinds of optimization models, which consider the effect
of single-scale optimization, multi-scale optimization, and dif-
ferent constraint parameters on the optimization results.

The organization of the remainder parts of this paper is as
follows. In Section 2, the concurrent multi-scale optimization
concept and the discrete material optimization model with
evaluation of convergence are introduced. Section 3 presents
the explicit mathematical formulation of the manufacturing
constraints considered in the present paper. Section 4

520 J. Yan et al.



introduces the mathematical formulation of the optimization
problem and the structural analysis model. Sensitivity analysis
formulas are presented in Section 5. Section 6 presents the
optimal results and the comparison of the single-scale and
multi-scale optimization. Finally, a section with conclusions
closes the paper.

2 Concurrentmulti-scale optimal design of composite
frame with Discrete Material Optimization (DMO)
approach

2.1 Concurrent optimization of composite frame

Because frame structures frequently adopt constant circular
cross-sections and a fixed number of layers in most aerospace
applications, for the ease of derivation and without loss of
generality, frames made of tubes with constant circular
cross-sections and a fixed number of layers are investigated
in the present paper. The joints connecting the composite
tubes can transfer moments and are assumed infinitely stiff.
At the macroscopic level, the radius of the cross-section is
used as the macro design variable, similar as that in the clas-
sical size optimization of frame structures. The radius of the
tube can be recognized as the size and topology variable at the
same time. When the radius reaches its lower limit, the tube
can be regarded to be deleted from the ground structure and
thereby realize the structural topology optimization (Bendsøe
and Sigmund 2003; Eschenauer and Olhoff 2001). As has
been shown in the schematic diagram of Fig. 1, the middle
hidden beam component means the macro design variable of
the beam has reached its lower limit and has been deleted from
the ground frame structure.

At the microscopic level, the discrete fiber winding angle
selection is solved by using the DMO approach in the sense
that the structural constituents are chosen from among a given
set of candidate materials. In most practical applications, the
candidate composite ply is restricted to [0°, ∓45°, 90°], which
are the conventional orientations used in aeronautics (Baker
et al. 2004). Considering the manufacturing process, Mallick

(2007) suggested that 0° and 90° fiber winding angles in fila-
ment winding process should be implemented by 5° and 85°

fiber winding angles, respectively. So in this work, we con-
sider the assembly of [5°, ∓45°, 85°] as a set of candidate com-
posite fiber winding angles. The fiber winding angle is as-
sumed to be constant in a given ply.

2.2 Discrete Material Optimization (DMO) approach

To ensure the integrity of this paper and the reading conve-
nience, the basic idea and formula of the DMO model are
briefly introduced in this section. For the detailed description
please refer to the references (Stegmann and Lund 2005;
Hvejsel and Lund 2011; Lund 2009; Niu et al. 2010; Duan
et al. 2014).

The discrete material optimization formulation is imple-
mented in a finite element framework. In the DMO approach
the element constitutive matrix per layerDe

i; j (the superscript e
refers to “element”, and the subscripts mean the i’th tube and
j’th layer) can be expressed as a weighted sum of the consti-
tutive matrices Di , j , c of the candidate materials (the subscript
c means the c’th candidate material). In general, for multi-
layer structures, the interpolation method can be implemented
layer-wise for each element, i.e., for all layers in all elements.
Various parameterization schemes have been developed in
Lund and Stegmann (2005); Stegmann and Lund (2005).
Consequently, the interpolation scheme is written by layers,
and the constitutive relation for the j’th layer can be expressed
as a sum over the number of candidate materials Ncand for the
layer:

De
i; j ¼ ∑Ncand

c¼1 ωi; j;cDi; j;c ð1Þ

where each candidate material is characterized by a constitu-
tive matrix Di , j , c. The weighting functions ωi , j , c all attain
values between 0 and 1 because no stiffness or mass matrix
can contribute more than the physical material properties, and
a negative contribution is physically meaningless. In (1), the
parameterization model can be realized for single-layers and
layer-wise for multiple layers for a large number of candidate

Fig. 1 Schematic diagram of the
concurrent optimization of a
composite frame composed of
three beams
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materials. In this paper, the generalization of the SIMP multi-
material interpolation schemes (Hvejsel and Lund 2011) is
used to push the weighting functions towards 0 or 1 and obtain
a distinct material selection. The weighting functions can be
expressed as

ωi; j;c ¼ xi; j;c
� �p ð2Þ

where p is a penalty parameter and the design variables xi , j , c
are the artificial materials density of candidates. If xi , j , c = 1, it
means that the distinct c’th candidate material has been select-
ed from a set of candidate materials for the j’th layer of the i’th
tube. It is worth noting that in the original DMO multi-
material interpolation, to keep the physically meaning in the
case of a mass constraint or eigenfrequency optimization, a
normalized weighting scheme was adopted (Stegmann and
Lund 2005).

Hvejsel and Lund (2011) formulated multi-material varia-
tions of the SIMP (Bendsoe 1989) and RAMP (Stolpe and
Svanberg 2001) interpolation schemes and relied on a large
number of sparse linear constraints to enforce the selection of
at most one material in each design subdomain. Inspired by
Hvejsel and Lund (2011), in the present paper, the simple
linear equality constraints on candidate artificial material den-
sity and continuous penalty strategy are adopted. The linear
equality constraints on candidate artificial material densities
can be expressed as

∑Ncand

c¼1 xi; j;c ¼ 1 ð3Þ

In this paper, the equality constraint in (3) is labeled as
DMO normalization constraint (DMOnC), which should be
realized layer-wise for laminated composites with multiple
layers and solved by SLP (Sequential Linear Programming)
method (Fletcher et al. 1998 or Gomes and Senne 2011). The
details about DMOnC constraint and other manufacturing
constraints will be shown in Section 3. With the micro-scale
parameters of the DMO material interpolation recognized as
the micro design variable (i.e., xi , j , c), the manufacturing con-
straints can be explicitly expressed as linear equalities or in-
equalities in the form of the micro-scale parameters. Then,
considering the coupling effect of design variables at the two
geometrical scales and the specific manufacturing constraints,
the concurrent multi-scale optimization of composite frames
can be established for the specified structural loading and
boundary conditions.

2.3 Evaluation of convergence of DMO

A convergence measure given in Stegmann and Lund (2005)
is adopted to describe whether the optimization has converged
to a satisfactory result, i.e., a single candidate material has
been chosen in a specified element and all other materials have

been discarded. For each layer, the following inequality is
evaluated according to all weighting functions layer-wise.

ωi; j;c≥ε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
i; j;1 þ ω2

i; j;2 þ⋯þ ω2
i; j;Ncand

q
ð4Þ

where ε is a tolerance level; typically, ε ∈ [0.95 ~ 0.99]. If
inequality (4) is satisfied for any ωi , j , c in the j’th layer, that
layer is flagged as converged. The convergence assessment
criterion Hε is defined as the ratio between the number of

converged layers Nl;tot
c and the total number of layers Nl,tot.

Nlay is the number of layers in each tube, and it is assumed that
each tube has the same number of layers in the present paper.
Thus, Nl,tot can be expressed as the number of tubes multiplied
by the number of layers in a tube Nl,tot = Ntub ∙Nlay:

Hε ¼ Nl;tot
c

Nl;tot ð5Þ

If the tolerance level is 95% and fully converged, i.e., Hε =

0.95 = 1, all layers have a single weight factor that contributes
more than 95% to the Euclidian norm of the weight factors.

3 Manufacturing constraints

Recent years, manufacturing constraints have attracted more
and more attention in design of laminate composites, e.g.,
minimum percentage of each orientation constraints (10%
rule), contiguity constraints, balance constraints, symmetry
constraints (e.g., Bruyneel et al. 2012; Seresta et al. 2007;
Kassapoglou 2013), damage tolerance constraints, ply-drop
design constraints (e.g., Irisarri et al. 2014), thickness varia-
tion rate and intermediate constraints (e.g., Sørensen and Lund
2013; Sørensen et al. 2014). Taking into account the relevance
of the above mentioned manufacturing constraints for the case
of composite frames, the variable stiffness design i.e., thick-
ness variation and ply-drop problems are not considered in
this work and will be left for future work. The benefits of
obeying these constraints are obvious in designing laminated
composites, such as the following lists.

[1] Manufacturing constraints make it possible to exploit the
strengths of the material while mitigating the adverse
effects of the material (e.g., matrix cracking and delam-
ination; warping under thermal loading; out-of-plane
failure modes).

[2] Manufacturing constraints can furthermore be used to
limit the complexity of the optimized design, thereby
making it possible to achieve a higher degree of manu-
facturability (Sørensen et al. 2014).

[3] Following certain manufacturing constraints, we can
greatly improve the robustness of composite structures
and improve service time of equipments.
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The explicit linear equality or inequality manufacturing
constraints are presented with respect to micro-scale design
variables (xi , j , c). The linear formulations are highly attractive
from an optimization point of view and possible to achieve for
all the manufacturing constraints presented in this paper.

3.1 Contiguity constraint (CC)

The definition of the contiguity constraint (CC) is that nomore
than a given number of plies, CL, of the same orientation
should be stacked together. The benefit of this manufacturing
constraint is to avoid matrix cracking failure (Sørensen et al.
2014). The contiguity constraint with respect to micro-scale
parameters can be formulated as a linear inequality described
by (6). Let CL ∈N∗ denote the contiguity limit, then for any
i ∈Ntub , j ∈Nlay , c ∈Ncand, it should follow (6), and the loop
shouldmeet the dimension of j + CL ≤Nlay. Ntub is the number
of tubes in the frame structure.

The CC can be expressed as

xi; j;c þ⋯þ xi; jþCL;c≤CL; jþ CL≤Nlay ð6Þ

Table 1 gives an example of a laminate with four layers and
four candidate materials in each layer. To present the contigu-
ity constraint clearly for this example, the first candidate ma-
terial, i.e., −45∘ and the contiguity constraint with CL = 1 are
considered. Then the contiguity constraint can be expressed as
linear inequalities:

xi;1;1 þ xi;2;1≤CL; xi;2;1 þ xi;3;1≤CL; xi;3;1 þ xi;4;1≤CL ð7Þ

Here we note that, the contiguity constraint should be im-
plemented layer-wise for every candidate material, i.e., for all
four fiber winding angles considered in this work.

For example, if a composite tube has twenty layers i.e.,
Nlay = 20, and every layer has four candidate materials i.e.,
Ncand = 4, the total number of contiguity constraints should
be calculated as (Nlay − CL)∗Ncand = (20 − 1)∗4 = 76, when
the contiguity limit is equal to one i.e., CL = 1.

3.2 10% rule (ten percent rule, TPR)

In the 10% rule, a minimum of 10% of plies of each of the 5∘,
±45∘ and 85∘ angles is required. The benefit of this constraint
is to obtain laminates that are more robust in the sense that

they are less susceptible to the weaknesses associated with
highly orthotropic laminates. It is important to note that the
10% fiber-dominated guideline is often interpreted differently
with regard to the ±45∘ plies. Some project directives require
there is at least 5% “+45∘” and 5% “−45∘” plies, rather than
10% of +45∘ and −45∘ plies. There are no guidelines that
establish a rigorous differentiation between these two alterna-
tive minimum 45° ply contents. Other projects have issued
guidelines requiring at least 6% (rather than 10%) 85° plies
are included when there are at least 20% “±45∘” plies. In most
aerospace application, the 10% rule is frequently adopted, and
therefore the 10% rule is adopted in the implementation of the
present paper.

The TPR is expressed as

∑Nlay

j¼1xi; j;c≥10% Nlay ð8Þ

Equation (8) can be explained as the sum for every candi-
date material density (xi , j , c) in the whole laminate should be
greater or equal than 10%. That is to say, if the combination of
a laminate is −45∘ (8%); 5∘ (62%); +45∘ (25%); 85∘ (5%),
then it does not fulfill the 10% rule, because the layer propor-
tions of the −45∘ and 85∘ candidate materials in the whole
laminate are less than 10%.

3.3 Balance constraint (BC)

Balance constraint means that angle plies (those at any angle
other than 5∘ and 85∘) should occur only in balanced pairs
with the same number of +θ∘and −θ∘ plies (θ∘ ≠ 5∘ , 85∘). For
the set of the 5° , ∓ 45° , 85° candidate materials, any +45∘ ply
should be accompanied by a −45∘ ply. A typical example of
the difference between balanced and unbalanced laminates is
shown in Fig. 2. The parameterized linear equality constraint
with respect to candidate artificial material density xi , j , c can
be expressed as (9).

The BC is computed as

∑Nlay

j¼1xi; j;þc−∑Nlay

j¼1xi; j;−c ¼ 0; c≠ 5∘∪85∘ð Þ ð9Þ

In (9), xi , j , + c denotes a positive angle, conversely, xi ,
j , − c denotes an accompanied negative angle. In the set of
the 5° , ∓ 45° , 85° candidate materials, xi , j , + c is +45

∘ ply,
and xi , j , − c is −45∘ ply. An example of the balance con-
straint for a four layer laminate as shown in Table 1 can

expressed as ∑4
j¼1xi; j;1−∑

4
j¼1xi; j;3 ¼ 0. This equation guar-

antees the +45∘ and −45∘ candidates have the same number
of plies in the laminate.

3.4 DamTol constraint (DTC)

A damage tolerance constraint, abbreviated as DamTol con-
straint, is introduced. It states that the 5∘ ply along the axial

Table 1 Example of
laminate with four layers
and four candidate
materials in each layer

−45∘ 5∘ +45∘ 85∘

xi , 1 , 1 xi , 1 , 2 xi , 1 , 3 xi , 1 , 4
xi , 2 , 1 xi , 2 , 2 xi , 2 , 3 xi , 2 , 4
xi , 3 , 1 xi , 3 , 2 xi , 3 , 3 xi , 3 , 4
xi , 4 , 1 xi , 4 , 2 xi , 4 , 3 xi , 4 , 4

Concurrent multi-scale design optimization of composite frames 523



direction cannot be selected in the inner and outer layer. This
manufacturing constraint is very reasonable for composite
frames, because it is not easy to wind the fiber on the inner
and outer surface of the tube with 5∘ fiber along the axial
direction. Furthermore, a composite tube with the layer of 5∘

can easily delaminate, which should be avoided. So this con-
straint can be expressed as the artificial density of 5∘ candidate
material in the outer surface is zero and the same as in the
inner surface i.e., xi;1;c ¼ 0; xi;Nlay;c ¼ 0; c∈ 5∘½ �ð Þ. The sepa-
rated two equality constraints can be compounded as one
equality constraint as (10).

The DTC constraint is defined as

xi;1;c þ xi;Nlay;c ¼ 0; c∈ 5∘½ � ð10Þ

As an alternative strategy, the DamTol constraint can
also be realized through micro-scale DMO material inter-
polation strategy. That is to say, the candidate materials set
of the outer and inner surfaces does not contain the 5∘

candidate material. For a four layer laminate as shown in
Table 1, the damage tolerance constraint can be expressed
as xi , 1 , 2 + xi , 4 , 2 = 0.

3.5 Symmetry constraint (SC)

Whenever possible, the winding sequence should be sym-
metric about the mid-plane, which in the case of the com-
posite tube in the present paper specifically refers to the
average radius plane of the tube. There are two reasons
why this guideline is representative of a good practice:
(1) to uncouple bending and membrane response, and (2)
to prevent warping under thermal loading. Clearly, this
guideline cannot always be rigorously enforced such as in
zones where thickness is tapered. However, any asymme-
try existence due to manufacturing constraints should be
minimized.

This constraint can be expressed as follows.

xi; j;c ¼ xi;Nlay− jþ1;c ð11Þ

It should be noted that, to guarantee the symmetry of the
layers, the fiber winding thickness is fixed at constant thick-
ness, even though fiber winding thickness is not considered as
design variable.

3.6 DMO normalization constraint (DMOnC)

As has been mentioned, in order to keep the physical meaning
in the case of a mass constraint or eigenfrequency optimiza-
tion, the sum of the candidate artificial materials density in the
same layer should be equal to one, which should be realized
layer-wise for laminated composites with multiple layers.

The DMOnC normalization constraint is expressed as

∑Ncand

c¼1 xi; j;c ¼ 1 ð12Þ

4 Mathematical formulation of the optimization
problem and the structural analysis model

4.1Mathematical formulation of the optimization problem

We consider the concurrent multi-scale optimization of com-
posite frame structures with the objective of minimizing the
structural compliance under specific manufacturing and total
volume constraints. The details of the specific manufacturing
constraints have been presented in Section 3. The macro-scale
inner tube radius (ri) of the circular cross-section and micro-
scale artificial materials density (xi , j , c) related to the discrete
fiber winding angles are introduced as the independent design
variables to realize the topology and stacking sequence opti-
mization of the two geometrical scales simultaneously.
Considering manufacturing constraints, the optimization for-
mulation can be listed as

Find X ¼ ri; xi; j;c
� � ð13Þ

Min C ¼ UTKU ð14Þ
S:T : K De ri; xi; j;c

� �� �
U ¼ F

V rið Þ ¼ ∑Ntub

i¼1π ttoti
2 þ 2rittoti

h i
Li≤V

Manufacturing Constraints CC; TPR;BC;DTC; SC;DMOnCð Þ
ri∈ rmin; rmax½ �
xi; j;c∈ 0; 1½ �

i ¼ 1; 2;…;Ntub; j ¼ 1; 2;…; N
lay
.

2
; c ¼ 1; 2;…;Ncand

8>>>>>>>><
>>>>>>>>:

ð15Þ

where xi , j , c is the artificial density of DMO candidate mate-
rials, ri is the inner radius of the composite tube, and ttoti is the

Fig. 2 Illustration of balanced
and unbalanced symmetric
laminates
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total layer thickness of the tube. The subscripts i, j and c
denote the number of tube, layer and candidate material, re-
spectively. Ntub, Nlay and Ncand denote the total number of
tubes, layers and candidate materials, respectively. �V is the
allowable volume of the macro-design domain and Li is the
length of the tube. rmin (rmin = 0.1mm in the present paper) is a
small positive value to avoid singularity of the stiffness matrix
during optimization iterations. rmax is the upper bound of the
inner radius. As mentioned, in the optimization model, the
DamTol constraint (DTC) and symmetry constraint (SC) are
realized through the micro-scale DMO material interpolation
strategy and the association of design variables. Because of
the symmetry constraints applied on the micro-scale design
variables, only half of layers are considered as design vari-

ables, and the range of number of layers is j ¼ 1; 2;…; N
lay
.

2:

4.2 Structural analysis of composite frame

The response of the composite frames is analyzed based on an
extension of the beam finite element tool called BEam Cross
section Analysis Software (BECAS) developed by Blasques
and Lazarov (2012). BECAS is an analysis tool of cross sec-
tions for anisotropic and inhomogeneous beam sections with
arbitrary geometry. It has been successfully used by Blasques
and Stolpe (2012) and Blasques (2014) to develop the multi-
material topology optimization of wind turbine blades with
respect to static and frequency design. In the present paper,
the BECAS analysis tool is extended to be applied to the
composite frame structures combined with DMO discrete ma-
terial interpolation scheme. For the detailed description about
BECAS, please refer to the references (Blasques and Lazarov
2012; Blasques and Stolpe 2012; Blasques 2014).

4.3 SLP and move limit strategy

The optimization problems to solve contain many linear con-
straints, which can be efficiently handled using a SLP
(Sequential Linear Programming) approach. Thus, SLP is ap-
plied in this paper, and the approach is implemented in the
Matlab environment. Without precautions, a SLP approach is
generally subject to oscillating function and design variable
values, and a move limit strategy is required to accommodate
inevitable oscillations. Let δuri and δ

u
xi; j;c denote the move limits

for variables ri and xi , j , c, respectively. Let u denote the itera-

tion number. The initial move limits are set to δ0ri ¼ 0:01 and

δ0xi; j;c ¼ 0:1. With the optimization iteration, the macro and

micro move limits are changed according to a certain criterion
described below. Then the move limit strategy can be
expressed as

max rmin; rui −δ
u
ri

� �
≤ruþ1

i ≤min rui þ δuri ; rmax
� �

∀i ð16aÞ

max 0; xui; j;c−δ
u
xi; j;c

� �
≤xuþ1

i; j;c ≤min xui; j;c þ δuxi; j;c ; 1
� �

∀i; j ð16bÞ

Let O(u) denote the oscillation indicator for iteration (u)
such that

O uð Þ
ri ¼ ru−1i −ru−2i

rui −ru−1i
ð17aÞ

O uð Þ
xi; j;c ¼

xu−1i; j;c−xu−2i; j;c

xui; j;c−xu−1i; j;c
ð17bÞ

As mentioned, the move limits δuri and δuxi; j;c are being

adjusted according to a certain criterion. The reduction or
expansion of the move limits depends on the oscillation

indicator. If O uð Þ
ri or O uð Þ

xi; j;c is less than 0, then δuri ¼ δuri ∙β
2,

δuxi; j;c ¼ δuxi; j;c ∙β
2, else δuri ¼ δuri

.
β
, δuxi; j;c ¼

δuxi; j;c
.

β
. Here, β

is the move limit expansion or recovery factor. In this
work, β = 0.7 is found appropriate according to our numer-
ical experiences.

4.4 Continuation strategy

In order to obtain discrete designs at the micro-scale, i.e., a
distinct selection of one of the candidates in every layer, a
continuation strategy for the penalization parameter p in
(2) is adopted in this paper. The initial penalty parameter
p is set as p = 1. It has been shown by Hvejsel and Lund
(2011) that the value of the penalty factor p larger than p =
3 will not help too much to penalize intermediate values of
the design variables. So in the present paper the power p is
linearly increasing with a slope of 0.1 of every ten itera-
tions from 1 to 3. Numerical examples show that this ap-
proach is effective.

5 Design sensitivity analysis

In order to perform gradient-based optimization, gradients
should be obtained efficiently. Due to its ease of derivation
and implementation, the semi-analytical method (SAM)
(Lund 1994; Blasques and Stolpe 2011) is adopted instead
of deriving and implementing analytical sensitivities in this
work. The SAM is computationally efficient and thus often
used for the sensitivity analysis of finite element models.
This section only presents the compliance sensitivity anal-
ysis with respect to micro design variable xi , j , c. The sen-
sitivity of the compliance with respect to macro-scale de-
sign variable ri can be obtained in a similar procedure.
Assume the applied static loads are design independent,
then the sensitivity of the objective function (i.e., the
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structure compliance C) in (14) with respect to the micro-
scale design variable xi , j , c is given as

∂C
∂xi; j;c

¼ ∑Nele

e¼1

∂UT
e

∂xi; j;c
KeUe þ UT

e
∂Ke

∂xi; j;c
U e þ Ke

∂Ue

∂xi; j;c

	 
	 

ð18Þ

where Ue is the displacement vector of element e. Ke is the
corresponding element stiffness matrix of element e.
Furthermore, making use of the equilibrium conditions
KU =F and assuming design independent loads, (18) can be
simplified (see Bendsøe and Sigmund 2003) as

∂C
∂xi; j;c

¼ −∑Nele

e¼1U
T
e

∂Ke

∂xi; j;c
Ue ð19Þ

It is possible to rewrite (19) using the element stiffness

matrix given by Ke ¼ ∫ΩeBTDeBdΩ
e where B is the strain-

displacement matrix and Ωe is the volume of the e’th finite
element:

∂C
∂xi; j;c

¼ −∑Nele

e¼1U
T
e ∫ΩeBT ∂De xi; j;c; ri

� �
∂xi; j;c

BdΩeUe ð20Þ

In the current implementation, the sensitivities
∂De xi; j;c;rið Þ

∂xi; j;c
are determined by central differences. The SAM approach
is computationally more efficient than the OFD (Overall
Finite Difference) method, because the factorization of
global stiffness matrix, which is the most time consuming
part in the computation, is only calculated once for N de-
sign variables. In the OFD using forward differences, the
stiffness matrix needs to be assembled and factored N + 1
times for N design variables. Thus the semi-analytical
method is much more efficient. Then the sensitivities of
∂De xi; j;c;rið Þ

∂xi; j;c are calculated as

∂De xi; j;c; ri
� �
∂xi; j;c

≈
De xi; j;c þΔxi; j;c; ri

� �� �
−De xi; j;c−Δxi; j;c; ri

� �
2Δxi; j;c

ð21Þ

where Δxi , j , c is a small perturbation parameter of the micro-
scale design variable. The sensitivity of the compliance with
respect to macro-scale design variable ri can be obtained in a
similar semi-analytical procedure. For each of the macro-scale
design variables ri, perturbed finite element meshes are gen-
erated for the BECAS cross sectional analysis tool, and then

the sensitivities
∂De xi; j;c;rið Þ

∂ri are obtained by central difference

approximations. The global volume constraint in (15) is only a
function of the macro radius design variables. The sensitivity
of the volumewith respect to the radius ri of the frame is easily
obtained as

∂V rið Þ
∂ri

¼ 2πttoti Li ð22Þ

The manufacturing constraints in the present paper are for-
mulated as series of linear inequalities or equalities. Thus, the
sensitivities of all manufacturing constraints are given explic-
itly and are easy to derive and implement.

6 Numerical examples

In this section, the classical 10-beam and large-scale thirty-
five-beam composite frame structures have been investigated,
the 10-beam frame structure is Example 1. In these two nu-
merical examples, considering the engineering practical appli-
cation, we assume every composite tube has the same number
of layers i.e., Nlay = 20, and every layer has a constant thick-

ness i.e., ttoti =Nlay ¼ 0:1mm, such that the total thickness ttoti is
2mm.

The fiber candidate materials are glass fiber reinforced ep-
oxy with orthotropic properties as shown in Table 2.

In order to clearly demonstrate the optimization problem,
four optimization models labeled as CMsMC1, CMsMC2,
MACs and MICsMC are studied in Example 1. For
CMsMC1 and CMsMC2 models, to investigate the effects of
the contiguity constraint parameter CL (contiguity limit), in
CMsMC1 optimization model the CL is set as CL = 1, and in
CMsMC2 optimization model the CL is set as CL = 2. The
optimization model of single macro-scale (tube inner radius
ri) without considering manufacturing constraints is labeled as
MACs, and the optimizationmodel of singlemicro-scale (can-
didate material density xi , j , c) considering manufacturing

Table 2 Material
properties of the
uni-directional glass
reinforced epoxy

E11 143 GPa

E22 = E33 10 GPa

G12 6 GPa

G13 5 GPa

G23 3 GPa

υ12 0.3

υ13 0.2

υ23 0.52

ρ 1800 kg/m3

Fig. 3 10-beam composite frame structure
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constraints is labeled as MICsMC. From the above four opti-
mization models, we can gain insight into the interaction ef-
fects of the structure and the layup of composite material, and
the benefits of the concurrent multi-scale optimization.

In MACs model, fiber winding angles of all the layers are
fixed at a constant angle θi , j = 14.6° and the initial value of the
inner radius is 25 mm i.e., rinit = 25mm. The MACs model
thereby has the same initial objective function as the other
models. Here, rmin is the lower limit of the inner radius of
the tube, and as mentioned previously we adopt rmin =
0.1mm and rmax = 0.1m in the Example 1. When the radius
reaches this limit, we assume that the tube can be deleted. θi , j
is the fiber winding angle of the j’th layer in the i’th tube. In
MICsMC optimization, with consideration of all the
manufacturing constraints mentioned in Section 3, the fiber
winding angles are considered as the design variables. ri is
fixed at a constant value i.e., ri = 25mm. The initial values of
the micro-scale design variables, xi , j , c, may in principle be

any number between 0 and 1, but in general the values should
be chosen such that the initial weight is uniform, i.e., ωi , j ,

c = ωi , j , k (k ≠ c) for all i, j, c, k=1 , 2⋯ Ncand. In this way no
candidate material is favored a priori. With consideration of
the DamTol constraint, the initial outer layer values are xi , 1 ,
c = 0.33, and other layer values are xi , j ≠ 1 , c = 0.25. In the con-
current multi-scale optimization models (CMsMC1 and
CMsMC2) the initial macro- and micro-scale design variables
are similar with those in MACs and MICsMC, respectively.

6.1 Example 1

The loading/boundary conditions and geometric sizes with
tube number are shown in Fig. 3.

With consideration of all the manufacturing constraints in
Section 3, the number of design variables in every tube is 40 in
CMsMC1 and CMsMC2 optimization models, for the exam-
ples presented in this paper, which contains 1 sizing design
variable (ri) and 39 candidate material density design variables
(xi , j , c). It should be noted that, considering the symmetry
constraints, the number of candidate material density design

variables (xi , j , c) is Nlay
.

2

� �*
Ncand, and the DamTol con-

straint is realized through micro-scale DMO material interpo-
lation strategy. Then, the real number of micro-scale design

variables is Nlay
.

2

� �*
Ncand−1, that is 10*4–1 = 39. Then the

Table 3 Optimization results of 10-beam composite frame structure

Models
Optimized macro

structure

Objective function 

value

Convergence measure

.

CMsMC1 0.4885 100%

CMsMC2 0.4336 100%

MACs 0.6759 Not relevant

MICsMC 0.7187 100%

Fig. 4 Iteration history of the objective function of Example 1

Table 4 The optimized radius of tubes of MACs optimization model
(θi , j = 14.6

°)

Beam number 1 2 3 4 5

Radius, m 0.0379 0.0356 0.0776 rmin rmin
Beam number 6 7 8 9 10

Radius, m rmin 0.0485 rmin 0.0507 rmin
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total number of design variables is 400 for this 10-beam ex-
ample. There are 7 kinds of constraints, one is volume con-
straint, and the others are manufacturing constraints. The sym-
metry constraint is realized by the technique of design variable
linking. So in each tube, there are 36 CC constraints when
contiguity limit is 1, 4 TPR (10% rule) constraints, 10
DMOnC constraints and 1 BC constraint. Generally, the com-
putational effort for optimization is non-linearly increasing as
the constraint number increases. For the 10- beam example in
the present study, each tube has 51 constraints leading to the
total 510 constraints which will be larger for a frame com-
posed with more beams. But for present paper’s concurrent
multi-scale optimization model with considering specific
manufacturing constraints, all these specific manufacturing
constraints have been simplified as explicit linear constraints,
and then the sensitivity of these constraints with respect to the
micro-scale design variable xi , j , c will be easily and explicitly
obtained. Meanwhile, the SLP optimization algorithm
(Mehrotra 1992; Zhang 1998) can efficiently solve the

optimization problem with linear constraints. This makes it
possible to solve the concurrent multi-scale optimizationmod-
el considering specific manufacturing constraints proposed in
the present paper.

6.2 Optimization results of example 1

The comparison of the macro-scale optimized configurations,
the value of the objective function and DMO convergence
measure of the above four different optimization models are
presented in Table 3. For MACs model, which only considers
the inner tube radius ri as design variables, the convergence
measure Hε = 0.95 given by (5) is not relevant. The iteration
history is illustrated in Fig. 4. The values of objective func-
tions C in (14) are normalized with respect to the initial ob-
jective function, and the four models have the same initial
value of the objective function.

The detailed optimal results of macro and micro-scale de-
signs are provided in Tables 4, 5, and 6. Table 4 presents the
macro-scale optimized results of the inner tube radius with the
micro-scale variables fixed at θi , j = 14.6°. Table 5 presents the
micro-scale optimization results of the MICsMC model when
the macro variables are fixed at ri = 25mm. Table 6 presents
the two-scale optimization results of the CMsMC1 and
CMsMC2 models. In Tables 4 and 6, the label rmin denotes
that the macro radius has reached its lower limit. It is worth
noting that when the radius reaches its lower limit, the layer
thicknesses are still existing with very little total thickness
ttoti ¼ 2mm. Therefore, we calculate the optimum structural
compliance with and without the minimum radius tubes (r =
rmin) for CMsMC1, CMsMC2 and MACs models, respective-
ly. The analysis results are shown in Table 7. The values of the
compliance in the table are true values and have not been
normalized with respect to the initial objective function.

Table 5 The detailed optimization results ofMICsMCmodel (ri= 25mm)

Beam number Fiber winding angle, °

1 (−45/5/45/5/45/5/85/5/−45/5)sa

2 (−45/5/45/5/45/5/85/5/−45/5)s
3 (−45/5/45/5/45/5/85/5/−45/5)s
4 (−45/5/45/5/45/5/85/5/−45/5)s
5 (45/5/−45/5/85/5/45/5/−45/5)s
6 (−45/5/45/5/45/5/85/5/−45/5)s
7 (−45/5/45/5/45/5/85/5/−45/5)s
8 (−45/5/45/5/45/5/85/5/−45/5)s
9 (−45/5/45/5/45/5/85/5/−45/5)s
10 (−45/5/45/5/45/5/85/5/−45/5)s

a s represents symmetric layers

Table 6 The detailed optimization results of CMsMC1 and CMsMC2 model of Example 1

Beam number Optimized macro variables ri, m Fiber winding angle, °

CMsMC1 model CMsMC2 model CMsMC1 model CMsMC2 model

1 0.0395 0.0388 (−45/5/45/5/45/5/85/5/−45/5)s* (45/5/5/85/5/5/−45/5/85/5)sa

2 0.0345 0.0343 (−45/5/45/5/45/5/85/5/−45/5)s (85/5/5/85/5/5/−45/5/5/45)s
3 0.0749 0.0749 (−45/5/45/5/45/5/85/5/−45/5)s (45/5/5/85/5/5/−45/5/85/5)s
4 rmin rmin (45/5/45/5/85/5/−45/5/−45/5)s (45/5/5/85/5/5/−45/5/85/5)s
5 rmin rmin (45/5/45/5/85/5/−45/5/−45/5)s (45/5/5/85/5/5/−45/5/85/5)s
6 rmin rmin (45/5/45/5/85/5/−45/5/−45/5)s (45/5/5/85/5/5/−45/5/85/5)s
7 0.0469 0.0487 (−45/5/45/5/45/5/85/5/−45/5)s (85/5/5/85/5/5/−45/5/5/45)s
8 0.0011 0.0008 (−45/5/45/5/45/5/85/5/−45/5)s (45/5/5/85/5/5/−45/5/85/5)s
9 0.0504 0.0510 (45/5/45/5/85/5/−45/5/−45/5)s (45/5/5/85/5/5/−45/5/85/5)s
10 rmin rmin (−45/5/45/5/45/5/85/5/−45/5)s (85/5/5/85/5/5/−45/5/5/45)s

a s represents symmetric layers
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From Table 7 we observe that, for three kinds of optimization
models, the largest difference of the compliance with and
without the minimum radius tubes in the models is 1.36% of
CMsMC1 model. That means the contribution from the min-
imum radius tubes to the overall structure stiffness is very
small, and thus these minimum radius tubes can be deleted
from the ground structure to realize topology optimization on
macro-scale.

6.3 Discussion of example 1

From the optimization iteration history shown in Fig. 4, with
the same material volume, the objective function values of the
four types of optimization model i.e., CMsMC1, CMsMC2,
MACs, and MICsMC with respect to the initial values de-
crease by 51.15%, 56.64%, 32.41% and 28.13%, respectively.
We can intuitively observe that when the minimum compli-
ance is applied as the objective function, the values of the
objective function of concurrent multi-scale optimization are
significantly better than those from the single-scale optimiza-
tions. Furthermore, the structural performance improvements
are approximately 24 ~ 28%. This is reasonable, because
CMsMC1 and CMsMC2 models can account for the coupled
effects of the macro-structure topology together with the
micro-material selection. Conversely, the single-scale MACs
and MICsMC models can only improve the performance of
the structure from the macro- or micro-scale. Thus the inter-
action between the structure and material cannot be consid-
ered. In this numerical example, from the value of the objec-
tive function, the MACs and MICsMC models result in quite
similar structural stiffness with completely different topolo-
gies. It should be noted specially that in the concurrent
multi-scale optimization model, the CMsMC2 model can ob-
tain a better design than that from the CMsMC1 model. This is

because the contiguity limit is 2 in the CMsMC2model, which
relaxes the constraints on micro-scale design variables and
enlarges the design domain compared to the CMsMC1 model.

Table 3 shows the optimized configurations of macro-
structures based on the four optimization models. The
CMsMC1, CMsMC2 andMACsmodels almost have the same
optimized macroscopic structure configuration in which the
design variables of tubes 4, 5, 6 and 10 have reached the lower
limit of their cross-sectional radius. The optimized macro con-
figurations comply with the loading condition from the view
of structural analysis. An interesting observation is that, in
CMsMC1 and CMsMC2 models, tube 8 is maintained with a
small radius value, which indicates that the material distribut-
ed on the eighth tube can further improve the structural per-
formance, while in MACs model tube 8 is deleted from the
ground structure. It also reflects the impact of micro-scale
design variables on macro-scale structural topology. Here it
should be noted that, in MACs optimization model, the micro
fiber winding angles are fixed at θi , j = 14.6° to guarantee the
MACs model has the same initial objective function as other
models. Of course, with different fixed micro fiber winding
angles, the optimized macro configuration of the MACs mod-
el will be different, but it is impossible for engineers to give
the optimal initial fiber winding angles directly for a complex
structure which shows the necessity of an optimization model
for the composite structure.

Observing the micro-scale design variables from Tables 5
and 6, only fiber winding angles of the first ten layers are listed
due to the symmetry constraints adopted for the micro-scale
design variables. Firstly, because the outer and inner layers do
not contain the 5∘ candidate material, there is no 5∘ ply placed
in the outer layer of the laminate in Tables 5 and 6. Secondly,
when contiguity limit equals one (CL = 1), all arbitrary conti-
guity layers have different fiber winding angles, as shown in
the micro-scale design variables of the MICsMC and
CMsMC1 model. That means all the adjacent fiber winding
angles are different. With CL = 2 in CMsMC2 model, more 5∘

ply layers are selected than in CMsMC1 and MICsMC
models. CMsMC2 model relaxes the constraints on micro-
scale design variables and enlarges the design domain. 5∘

ply layers are beneficial to improve the axial stiffness of the
structure with respect to the loading case in the present exam-
ple, then the CMsMC2 model can obtain a lower objective
function value. However, the larger CL may lead to crack
propagation in the laminate ultimately. So in most engineering

Table 7 Comparison of compliance values including and excluding
minimum radius tubes

Models Compliance of the optimum structure Deviation

Without the rmin tubes With the rmin tubes

CMsMC1 2488.1 2454.3 1.36%

CMsMC2 2143.5 2117.0 1.24%

MACs 2719.9 2686.8 1.21%

(a) CMsMC1 model (b) CMsMC2 model

Fig. 5 Micro-scale fiber winding
angle with manufacturing
constraints
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applications the CL is settled as 2 ~ 3, especially in aerospace
engineering. Finally, if without the 10% rule constraints, the
85∘ fiber winding angles may not appear. The 10% rule effec-
tively avoids a single fiber angle to dominate excessively to
make the laminate more robust in the sense that they are less
susceptible to the weaknesses associated with highly
orthotropic laminates.

Take the third tube as an example. Figure 5 gives the de-
scription of the different manufacturing constraints on micro-
scale design variables.

6.4 Example 2

The loading/boundary conditions and geometric sizes with
tube number are shown in Fig. 6, and L = 1m. Example 1
has detailed discussions on the pros and cons of the
CMsMC1, CMsMC2, MACs and MICsMC models.
Therefore, Example 2 only considers the multi-scale
CMsMC2 model to further verify the effectiveness of the con-
current multi-scale design optimization method for composite
frames considering specific manufacturing constraints.

For CMsMC2 model in the Example 2, the number of
design variables in each tube is 40, which is the same with
that in CMsMC2 in Example 1. Then the total number of
design variables is 1400 for this 35-beam example. The sym-
metry constraint is realized by the technique of design variable
linking. So in each tube, there are 32 CC constraints when
contiguity limit is 2, 4 TPR (10% rule) constraints, 10
DMOnC constraints and 1 BC constraint. Then the number
of specific manufacturing constraint is 47 in each tube, which
leads to the total 1645 manufacturing constraints. Besides the
upper bound of the inner radius is rmax = 0.075 m in the
Example 2, all the parameters, initial value of design variables
and the material properties are the same with the CMsMC2
model in Example 1.

6.5 Optimization results and discussion of example 2

The iteration history of CMsMC2model is illustrated in Fig. 7.
The value of objective function C in (14) is also normalized
with respect to the initial objective function. Table 8 presents
the detailed two-scale optimization results of the CMsMC2
model. Figure 8 shows the optimized macro-scale topology
configuration of the CMsMC2 model.

From the iteration history of the objective function shown
in Fig. 7, with respect to the initial values, the objective func-
tion values of CMsMC2 model has decreased by 69.87%.
Figure 8 shows that the CMsMC2 model obtains a symmetri-
cal optimized macroscopic structure configurations.

From Table 8, the micro-scale fiber winding angles are
strictly following the specific manufacturing constraints for
this 35-beam frame example. The detailed discussion about
the manufacturing constraints is the same with that for

Fig. 6 35-beam composite frame
structure

Fig. 7 Iteration history of the objective function of Example 2 of 35-beam
composite frame structure with contiguity limit of 2
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Example 1. And we could clearly observe that, the proposed
concurrent multi-scale design optimization method for com-
posite frame is effective to solve a problem with relatively
larger number of constraints.

As seen from the above discussion and summary in two
examples, the proposed concurrent multi-scale optimization
model for composite frames can efficiently realize the optimi-
zation on two geometrical scales and obtain better results than
that from a single-scale optimization. Based on the DMO ap-
proach, some specified important manufacturing constraints
have been mathematically expressed and numerically solved,
and the optimization results show that the manufacturing con-
straints are strictly observed.

7 Conclusion

Concurrent multi-scale design optimization of composite
frames is established in this paper using the Discrete
Material Optimization (DMO) approach with consideration
of several different manufacturing constraints. The capabili-
ties of the proposed method are demonstrated for compliance
minimization subject to a constraint of specified composite
volume. Furthermore, an extensive set of design guidelines
referred to as manufacturing constraints are considered in the
optimization model. These manufacturing constraints are ex-
plicitly expressed as series of linear inequalities or equalities
in the optimization model and efficiently solved by a SLP
optimization algorithm with move limit strategy and semi-
analytical sensitivity analysis. With consideration of the de-
sign guidelines, it can help to reduce the risk of structural and
material failure and the complexity of the optimal design.

Table 8 The detailed optimization results of the CMsMC2 model of
Example 2

Beam
number

Optimized macro variables
ri, m

Fiber winding angle, °

1 0.0378 (45/5/5/85/5/5/−45/5/85/5)sa

2 0.0166 (85/5/5/85/5/5/−45/5/5/45)s
3 rmin (45/5/5/85/5/5/−45/5/85/5)s
4 0.0384 (45/5/5/85/5/5/−45/5/85/5)s
5 rmin (45/5/5/85/5/5/−45/5/85/5)s
6 0.0173 (85/5/5/85/5/5/−45/5/5/45)s
7 rmin (85/5/5/45/5/85/5/5/−45/5)s
8 0.0403 (85/5/5/85/5/5/−45/5/5/45)s
9 rmin (45/5/5/85/5/5/−45/5/85/5)s
10 rmin (85/5/5/85/5/5/−45/5/5/45)s
11 rmin (85/5/5/85/5/5/−45/5/5/45)s
12 rmin (45/5/5/85/5/5/−45/5/85/5)s
13 0.0400 (85/5/5/85/5/5/−45/5/5/45)s
14 0.0557 (85/5/5/85/5/5/−45/5/5/45)s
15 0.0750 (85/5/5/45/5/85/5/5/−45/5)s
16 rmin (85/5/5/85/5/5/−45/5/5/45)s
17 0.0583 (85/5/5/85/5/5/−45/5/5/45)s
18 rmin (85/5/5/85/5/5/−45/5/5/45)s
19 rmin (45/5/5/85/5/5/−45/5/85/5)s
20 0.0750 (45/5/5/85/5/5/−45/5/85/5)s
21 rmin (85/5/5/85/5/5/−45/5/5/45)s
22 rmin (85/5/5/85/5/5/−45/5/5/45)s
23 0.0750 (85/5/5/45/5/85/5/5/−45/5)s
24 rmin (85/5/5/85/5/5/−45/5/5/45)s
25 rmin (85/5/5/85/5/5/−45/5/5/45)s
26 0.0749 (45/5/5/85/5/5/−45/5/85/5)s
27 0.0592 (85/5/5/85/5/5/−45/5/5/45)s
28 rmin (45/5/5/85/5/5/−45/5/85/5)s
29 rmin (85/5/5/85/5/5/−45/5/5/45)s
30 0.0550 (85/5/5/85/5/5/−45/5/5/45)s
31 rmin (85/5/5/85/5/5/−45/5/5/45)s
32 0.0750 (85/5/5/45/5/85/5/5/−45/5)s
33 0.0750 (85/5/5/45/5/85/5/5/−45/5)s
34 0.0750 (85/5/5/45/5/85/5/5/−45/5)s
35 0.0750 (85/5/5/45/5/85/5/5/−45/5)s

a s represents symmetrical layers

Fig. 8 Optimized topology
configuration of CMsMC2 model
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Numerical results show that the concurrent multi-scale op-
timization of composite frames can further explore the poten-
tial of macro-structure and micro-material to achieve light
weight design of composite frames. The two-scale optimiza-
tion model provides a new choice for the design of composite
frames in aerospace and other industries. In future work, the
concurrent multi-scale optimization of composite frame struc-
tures with variable cross-section, thickness and frequency
constraint problem will be explored.
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