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Abstract In this work we present LSEGO, an approach
to drive efficient global optimization (EGO), based on
LS (least squares) ensemble of metamodels. By means of
LS ensemble of metamodels it is possible to estimate the
uncertainty of the prediction with any kind of model (not
only kriging) and provide an estimate for the expected
improvement function. For the problems studied, the pro-
posed LSEGO algorithm has shown to be able to find the
global optimum with less number of optimization cycles
than required by the classical EGO approach. As more infill
points are added per cycle, the faster is the convergence
to the global optimum (exploitation) and also the quality
improvement of the metamodel in the design space (explo-
ration), specially as the number of variables increases, when
the standard single point EGO can be quite slow to reach
the optimum. LSEGO has shown to be a feasible option
to drive EGO with ensemble of metamodels as well as for
constrained problems, and it is not restricted to kriging and
to a single infill point per optimization cycle.
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1 Introduction

In the last decades, the use of metamodeling methods
(also known as surrogate modeling or response surface
methodology) to replace expensive computer simulation
models such as FE (Finite Elements) or CFD (Computa-
tional Fluid Dynamics) found in automotive, aerospace and
oil-gas industries, for example, has become a common place
in both research and practice in engineering design, analy-
sis and optimization. A collection of engineering research
and applications in this field has been recently published in
Koziel and Leifesson (2013).

In this context, surrogate based (or response surface
based, or metamodel based) optimization refers to the pro-
cess of using fast running metamodels as surrogates of
original complex and long time running computer simula-
tion models to approximate the objectives and constraint
functions in a standard optimization algorithm. This
methodology has shown to be effective in both multidisci-
plinary and multiobjective optimization problems and it has
been widely applied in research and industry. Refer to the
reviews by Queipo and et al (2005), Simpson et al. (2008)
and Forrester and Keane (2009) for a broad and detailed
discussion on this subject.

The surrogate based optimization is in general an itera-
tive (cyclic) process. At each cycle, instances of simulation
models with different parameters are evaluated (sampling
points from a Design of Experiments, DOE). The surrogate
models are fit based on these sampling data and the result-
ing approximate functions are used in the search of optimum
points (exploitation), analysis of the response behavior,
sensitivity and trends in the design space (exploration).
Once optimum design candidates and other extrema points
are found, they are evaluated with the true simulation
models and if necessary the new points are included in the
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sampling space in order to improve the approximation and
to restart the iterative process. See in Jones (2001) a review
on different approaches (also known as sequential sam-
pling approaches) used to drive the global surrogate based
optimization.

Efficient global optimization (EGO) is an iterative surro-
gate based approach where, at each optimization cycle, one
infill point is selected as the one that maximizes the expected
improvement with respect to the optimum of the objective
function. The EGO concept emerged after the work of Jones
et al. (1998), that was based mainly on previous research
on Bayesian Global Optimization (Schonlau 1997; Mockus
1994). Traditionally EGO algorithms are based on krig-
ing approximation and a single infill point is generated per
optimization cycle.

A question that arises is that the selection of only
one infill point per optimization cycle can be quite slow
to achieve the convergence to the optimum. If parallel
computation is an available resource, then multiple infill
points should be defined and therefore less cycles might be
required for convergence. This aspect can be crucial spe-
cially if the computer models take several hours to run1

and a single point EGO approach becomes prohibitive, spe-
cially in multidisciplinary optimization scenarios. In prac-
tical terms, when parallel resources are not an issue, it can
be worthwhile to run more simulations per cycle in order
to reach an optimum in a reasonable lead time, even if
the total number of simulations is higher at the end of the
optimization process.

The aspect of single versus multiple infill points per
cycle is known and has been discussed since the origins
of EGO-type algorithms at later 1990s. Schonlau (1997)
proposed extensions to the standard EGO algorithm to
deliver “m points per stage”, but he pointed out numerical
difficulties in the evaluation of the derived expressions accu-
rately at a reasonable computational cost. In addition, his
results were limited to a two-variable function and indicate
18.9% penalty for the parallel approach in terms of function
evaluations for the same accuracy.

Besides this apparent disadvantage in terms of func-
tion evaluations, it can be observed an increasing research
interest on EGO approaches with multiple infill points per
cycle (and other metamodel based parallelization strategies
as well) published in the last ten years. This is because

1For instance, even with high end computers clusters used nowadays
in automotive industry, one single full vehicle analysis of high fidelity
safety crash FEM model takes up to 15 processing hours with 48 CPU
in parallel. With respect to CFD analysis one single complete car aero-
dynamics model for drag calculation, by using 96 CPU, should take up
30 hours to finish. An interesting essay regarding this “never-ending”
need of computer resources in structural optimization can be found in
Venkatararaman and Haftka (2004).

parallel computation is nowadays a relatively easy resource
and the potential penalty of parallel approaches in terms of
function evaluations should be neglected in favor of quickly
delivering optimization results.

Although it can be considered a relatively new research
field surrogate based global optimization is gaining popular-
ity as pointed out in Haftka et al. (2016). In this recent and
broad survey they examined and discussed the publication
focused on parallel surrogate-assisted global optimization
with expensive models. According to the authors this area is
not mature yet and it is not possible to conclude with respect
to the comparative efficiency of different approaches or
algorithms without further research.

As discussed by Haftka et al. (2016) different classes
of algorithms or strategies can be defined with the objec-
tive of balancing exploitation and exploration of the design
space during the optimization. In simple terms exploitation
refers to deep diving (or zooming) in the candidate areas of
feasible optimum points in order to improve the objective
function and the constraints to deliver better optimiza-
tion results. On the other hand, exploration means adding
infill points in different areas of the design space in order
to reduce the uncertainty and to improve the metamodel
prediction capability.

The different classes of strategies involve the ones based
on nature inspired algorithms like genetic, evolutionary,
particle swarm, etc., that are naturally parallelized (the
populations can be divided in different regions, or proces-
sors) and are commonly applied in global optimization. In
addition surrogate based strategies (like EGO) can be used
together with the parallelization to improve the exploitation
and exploration features of the algorithms.

In this sense, specifically in the branch of metamodel-
based multiple points per cycle algorithms (like EGO or
other approaches with similar objectives), refer for instance
to Sóbester et al. (2004), Henkenjohann and Kukert (2007),
Ponweiser et al. (2008), Ginsbourger et al. (2010), Viana
and Haftka (2010), Janusevskis et al. (2012), Viana et al.
(2013), Desautels et al. (2012), Chaudhuri and Haftka
(2012), Rehman et al. (2014), Mehari et al. (2015), Encisoa
and Branke (2015) and other interesting and relevant works
referenced and discussed in Haftka et al. (2016).

In our previous research work, Ferreira and Serpa (2016),
we presented and discussed the concept of least squares
(LS) regression, in order to find the optimal weights in
ensemble of metamodels (or weighted average surrogates,
WAS). We proposed the augmented least squares ensem-
ble of metamodels (LS-a), a variation of the standard least
squares regression to create ensemble of metamodels. In this
way, the ensemble of metamodels constructed based on LS
approach inherits the variance estimator, which can be used
in the definition of the expected improvement function to be
applied in EGO-type algorithms.
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Viana et al. (2013) proposed the MSEGO (multiple
surrogates EGO). They devised a way export the uncer-
tainty estimate for one kriging model to the other non-
kriging models in a multiple surrogates set. With different
uncertainty estimates, they generate different instances of
expected improvement functions to be maximized and to
provide multiple parallel infill points in each EGO cycle.

We suggested an alternative scheme to generate multiple
infill points per cycle in the EGO algorithm by using a LS
ensemble, in order to take advantage of multiple surrogates,
as applied in Viana et al. (2013). In the present work we
extend the results of Ferreira and Serpa (2016) by proposing
an approach that is able to provide multiple points per cycle
in a EGO-type algorithm by using least squares ensemble of
metamodels.

We use the acronym LSEGO, that stands for “least
squares ensemble efficient global optimization”. In the
numerical experiments performed, LSEGO has shown to be
a feasible alternative to drive EGO algorithms with ensem-
ble of metamodels, and in addition it is not restricted to krig-
ing nor a single infill point per optimization cycle. LSEGO
was applied in the optimization of analytical benchmark
functions (up to six variables) and including some exam-
ples of constrained optimization as well. In addition LSEGO
produced competitive results as compared to MSEGO for
the optimization of two benchmark functions.

The remainder of the present text will be divided as fol-
lows. In Section 2 we present the theoretical fundamentals
of efficient global optimization and the standard EGO algo-
rithm. In Section 3 we present and discuss our proposed
LSEGO approach. In Section 4 we present the numerical
experiments performed to validate and compare the LSEGO
approach with the traditional EGO algorithm and the respec-
tive results and discussion are presented in Section 5.
Finally, the concluding remarks are presented in Section 6.

2 Theoretical background

2.1 Metamodel based optimization

Let x = [
x1 . . . xnv

]T ∈ �nv be a vector of nv parameters
or design variables. Metamodels are nothing but methods
that attempt to fit a function ŷ = f̂ (x) : �nv → � to a
set of known N data points χ : {xi , yi}, determined by a
sampling plan (design of experiments, DOE).

In most of the models, the approximate function ŷ(x) ≈
y(x) (response surface, surrogate or metamodel) can be
given in the general form

ŷ(x) = wT ψ(x), (1)

where w represents weights to be determined and ψ(x) are
the associated basis functions.

Further details on formulation and different types of
metamodels (e.g. polynomial response surfaces (PRS),
radial basis functions (RBF), neural networks (NN), sup-
port vector regression (SVF), etc.) can be found in Forrester
et al. (2008), Fang et al. (2006) and in the references
therein. In the Appendix A it is presented the basic formu-
lation for kriging metamodel (KRG), that will be referenced
throughout this work.

The optimization process based on metamodels (i.e.,
metamodel based, response surface based or surrogate based
optimization) can be stated as a standard optimization
problem, by replacing the true objective function y = f (x)
and the nc constraints gi(x), that are difficult and costly to
compute, by their respective fast and cheap surrogates, i.e.,

xopt =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
x

ŷ(x)

s.t., ĝi (x) − gi
max ≤ 0, i = 1 . . . nc

xlb ≤ x ≤ xub

, (2)

where gi
max is the reference value (target) for i-th con-

straint2 and xlb and xub the bounds on the design space.
The optimum point xopt can be found by any available opti-
mization algorithm: gradient based, direct search, genetic
algorithm, etc. Refer to Queipo and et al (2005) or Forrester
and Keane (2009) for details.

2.2 Efficient global optimization (EGO)

As pointed out by Forrester and Keane (2009): “the
Holy Grail of global optimization is finding the correct
balance between exploitation and exploration”. Algorithms
that favor exploitation (search of the optimum), can be
quite slow to converge and in addition be trapped at a local
minimum point and not be able to reach the global opti-
mum. On the other hand, pure exploration (improvement of
the surrogate and search in the whole design space) may
lead to a waste of resources (function evaluations, simu-
lations). In this sense, efficient global optimization (EGO)
algorithms emerge as feasible tools to balance exploitation
and exploration of the design space.

Since the data set χ is arbitrary, the determination of ŷ(x)
can be stated as a realization of an stochastic process. In this
sense, the approximation can be modeled as Gaussian, i.e.,
normally distributed random variable Ŷ (x), with mean ŷ(x)
and variance ŝ2(x).

Efficient global optimization algorithms are centered
in the concept of maximum expected improvement. Let

2Only for notational convenience, without loss of generality, we will
assume that all equality constraints h(x) can be properly transformed
into inequality constraints g(x).
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ymin = min(y1, . . . , yn) be the best current value for the
function y(x) in the sampling data set. Then, as described
in Forrester et al. (2008), the probability of an improvement
I (x) = ymin − Y (x) of a point x with respect to ymin, can
be calculated as

P [I (x)] = 1

ŝ
√
2π

∫ 0

−∞
exp

(
− [I − ŷ

]2

2ŝ2

)

dI , (3)

by abbreviating the dependence of I , ŝ and ŷ on x.
On the other hand, the amount of improvement expected

can be obtained by taking the expectation E[·] of
max(ymin − Y (x), 0), which leads to

E[I (x)] = I (x)�
(

I (x)
ŝ(x)

)
+ ŝ(x)φ

(
I (x)
ŝ(x)

)
, (4)

for ŝ(x) > 0, and E[I (x)] = 0, otherwise. In this equa-
tion, I (x) ≡ (

ymin − ŷ(x)
)
, where ŷ is a realization of Y ,

and �(·) and φ(·) are respectively the normal cumulative
distribution and normal probability density functions.

Equation (4) is known as the expected improvement func-
tion of any point x in the design space, with respect to the
current best value ymin. For details on the derivation see
Forrester and Keane (2009) or the original publications of
Schonlau (1997) and Jones et al. (1998).

By means of (4), the EGO algorithm can be defined
for any metamodel ŷ(x), that provides an uncertainty
estimate ŝ(x). EGO was originally devised and is tradi-
tionally applied with KRG (see the basic formulation in
Appendix A), but other models like PRS, RBF and other
Gaussian models can be used as well. See for example
(Sóbester et al. 2004) in which RBF was applied.

2.3 The standard EGO algorithm

The standard EGO algorithm can be summarized in the
following steps:

i. Define a set χ of N sampling points and start the
optimization cycles (j ← 1);

ii. Evaluate the true response y(x) at all data sites in χ , at
the current cycle j , and set

ymin ← min(y1, · · · , yN);
iii. Generate the metamodel ŷ(x) and estimate E[I (x)]

with all the data points available in the sampling space
χ , at the current cycle j ;

iv. Find the next infill point xN+1 as the maximizer of
E[I (x)], χinf ill ← xN+1 = maxE [I (x)]; evaluate
the true function y (x) at xN+1 and add this new point
to the sampling space: χ ← χ ∪ χinf ill ;

v. If the stopping criteria is not met, set

ymin ← min(y1, · · · , yN+1),

set (N ← N + 1), update cycle counter (j ← j +
1), and return to step iii. Otherwise, finish the EGO
algorithm.

2.4 Extensions to the EGO algorithm

The EGO algorithm can be extended to handle constraints
in the optimization, by using the concept of probability of
improvement. The basis for this extension can be found
in Schonlau (1997) and with details and applications in
Forrester et al. (2008) and Han and Zhang (2012).

By following the derivation presented in Han and Zhang
(2012), the idea is to find the probability of satisfying the
constraints gi (x). In other words, when P [Gi(x) ≤ 0] →
1, the constraint is satisfied; otherwise, when P [Gi(x) ≤
0] → 0, the constraint is violated. Analogously to (3),
P [Gi(x) ≤ 0] can be calculated as

P [Gi(x) ≤ 0] = 1

ŝi
√
2π

∫ 0

−∞
exp

(

−
[
Gi − ĝi

]2

2ŝ2i

)

dGi

(5)

where Gi(x) is the random variable related to ĝi (x) and
ŝi (x) the respective constraint uncertainty estimate.

In this way, the step iv. of the EGO standard algorithm
presented at Section 2.3 can be modified as follows to
accommodate nc independent and uncorrelated constraints,
i.e.,

xN+j =

⎧
⎪⎪⎨

⎪⎪⎩

max
x

E[I (x)] ×
nc∏

i=1
P [Gi(x) ≤ 0]

s.t., xlb ≤ x ≤ xub

. (6)

The treatment of multiobjective optimization problems
can be also extended by using the concept of probability and
expected improvement. It requires a more elaborated deriva-
tion that is out of the scope of this text and the details can be
found in Forrester et al. (2008). In addition, Jurecka (2007)
has successfully extended and applied the EGO concept to
treat robust optimization problems as well.

These and other possible extensions of EGO-type algo-
rithms are of interest for research and practical applications
and we intend to explore this field in our future work.

3 LS ensemble of metamodels EGO (LSEGO)

3.1 Definitions

As we presented in Ferreira and Serpa (2016), the linear
ensemble of metamodels can be written as

ŷens = Ŷw (7)
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where y = [y1 · · · yN ]T , Ŷ = [
ŷ1 (xi ) · · · ŷM (xi )

]

and w = [w1 · · · wM ]T , for N sampling points and M

metamodels.
If the optimal weights w are estimated by least squares

methods (LS), as we discussed in detail in Ferreira and
Serpa (2016), then the resulting ensemble of metamodels
inherits the least squares variance estimate V

[
ŷens (x)

] ≡
ŝ2 (x), for the prediction at each point x, that can be written
as

ŝ2 (x) = σ̂ 2 [ŷ (x)
]T (ŶT Ŷ

)−1
ŷ (x) , (8)

with ŷ (x) = [
ŷ1 (x) ŷ2 (x) · · · ŷM (x)

]T , and

σ̂ 2 = ŷT
ens ŷens − ŵT Ŷŷens

N − nv

(9)

where ŷens = [ŷens (x1) ŷens (x2) · · · ŷens (xN)]T .
Therefore, if ŝ2 (x) is a good estimate for the uncertainty

of the LS ensemble of metamodel at the design space, then
it can be used to derive the expected improvement function
(4) in order to drive EGO algorithms, by using any kind of
metamodels ŷi (x) and not only kriging.

In this sense, we named this proposed approach as
LSEGO (least squares ensemble efficient global optimiza-
tion) and the intention in the present work is to verify and
demonstrate the efficiency of this heuristic method as an
alternative to drive EGO-type algorithms.

In fact, we cannot verify or prove a priori that ŝ2 (x) is
good or not for our purposes in the EGO context. Since it
is a well-established and accepted estimate for general least
squares regression, it will be applied in the present work
without any proof. The main assumption is that if the LS
ensemble of metamodel has reasonable prediction accuracy,
therefore the variance prediction ŝ2 (x) should be reason-
able as well. Our numerical experiments showed that ŝ2 (x)
works well for generating the EI function and the optimiza-
tion is convergent in several problems investigated. These
results and conclusions will be presented and discussed in
the next sections.

On the other hand, as mentioned by Viana et al.
(2013), although there can exist several measures of
quality for the variance estimate, it is possible to infer
the behavior by using the coefficient of linear correlation
ρ
(|e((x))|, ŝ((x))

)
, where e(((x))) = y((x))−ŷ((x)) is the

actual prediction error between the exact function and the
approximation, in this case a LS-a ensemble. We will use
the same approach here by means of a simple illustration
presented in Fig. 1.

In this case, for a coarse sampling plan the quality of
fit for LS-a is very poor as can be observed in Fig. 1. On
the other hand, the expected improvement function is able
to suggest infill points (max E[I ((x))]) where the vari-

ance is high for the approximation. The correlation in this
case is very good, i.e., ρ

(|e((x))|, ŝ((x))
) = 0.85 with

several points close to the 45 degrees line, and it is possi-
ble to observe that ŝ((x)) plays a good job estimating the
behavior of the actual prediction error e((x)) through the
design space.

As we observed in preliminary numerical experiments,
as the optimization cycles evolve the quality of fit for the
metamodel is naturally improved by the infill points added.
As consequence the quality of the estimation of ŝ((x))

also increases and the convergence for LSEGO process is
favored. In the next sections we will present and discuss the
behavior of LSEGO for different benchmark problems.

3.2 Illustrations: one infill point per cycle

Figure 2 illustrates the evolution of LSEGO for a one vari-
able function with one infill point per optimization cycle. At
each optimization cycle is presented the true function y((x))

versus the approximation by LS-a ensemble (left plot) and
the expected improvement function E[I ((x))] (right plot),
calculated by means of (4), with ŝ2 (x) as defined in (8).

At cycle 01 we have a very poor approximation with cor-
relation coefficient R2 = 0.258 and normalized root mean
squared error NRMSE = 31.9%. The E[I ((x))] presents
a clearly defined peak close to the true minimum (xexact

opt =
5.624). Note for this example in Fig. 2, at the first six opti-
mization cycles, the maximum of expected improvement
function works in the “exploitation mode” and prioritizes to
add infill points around the optimum.

At this stage (cycle 06) the optimum found xopt = 5.600
is quite close to the exact value (0.43% error), with a very
good quality approximation for the metamodel: R2 = 0.975
and NRMSE = 4.2%. After cycle 06, the LSEGO algo-
rithm automatically switches to the “exploration mode”
and the infill points are selected in order to improve the
quality of the approximation in the whole design space,
instead of improving the minimum value found. The
LSEGO algorithm was stopped at cycle 12 with xopt =
5.600, R2 = 0.999 and NRMSE = 0.5%.

This behavior of LSEGO in one dimension was observed
for other functions as well, with different levels of
nonlinearity and multimodality. Based on these preliminary
results we can conclude that LSEGO performed quite well
in terms of exploitation and exploration of the design space.

On the other hand, for higher dimensional problems we
noted a very slow convergence for the algorithm, associated
to a high concentration of infill points around the global
optimum, as observed in standard EGO algorithm as well.
See for instance in Figs. 3 and 4 the behavior for LSEGO
for Giunta-Watson function (see Appendix B, (20)) with two
variables and one infill point per optimization cycle. The
exact minimum is accurately found only at cycle 37 and all
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Fig. 1 Correlation between |e((x))| and ŝ((x)) for the sinc function
y(x) = sin(x)

x
. In (a), for a very coarse sampling plan the quality of

fit for LS-a is quite poor in the beginning of the LSEGO optimization
process. The expected improvement function E[I ((x))] in (b) is able
to suggest reasonable infill points (max E[I ((x))]), labeled as square

markers in (a). Observe in (e) that ŝ((x)) is playing a good job estimat-
ing |e((x))| in the design space, with correlation ρ

(|e((x))|, ŝ(x)
) =

0.85 and several points close to the 45 degrees line. Note in (c) and (d)
the similarity of |e((x))| and ŝ((x)). In (d) |e((x))| and ŝ((x)) were
normalized to remove the scale effects for a better visualization
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Fig. 2 Evolution of approximation y((x)) vs. ŷ((x)) and expected
improvement E[I ((x))] for y((x)) = 1

700 (−2x + 5x2 + 7x3) sin(2x)

with Np = 1 infill point per optimization cycle with the LSEGO

algorithm.The initial sampling points are atχ =[0, 2.25, 2.8, 3.75, 2π ]
and the LS-a ensemble is used with four metamodels: PRS (ID = 1),
KRG (ID = 2), RBNN (ID = 3) and SVR (ID = 4), see Table 1
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Fig. 3 Evolution of
approximation of Giunta-Watson
function (2 variables), with
LSEGO and Np = 1 infill point
per optimization cycle. The 15
initial sampling points were
generated with Latin Hypercube
Matlab function lhsdesign,
and the LS-a ensemble is used
with four metamodels: PRS
(ID = 1), KRG (ID = 2),
RBNN (ID = 3) and SVR
(ID = 4), see Table 1
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Fig. 4 Detail at Cycle 37 for the evolution of approximation of
Giunta-Watson function (2 variables), with LSEGO and Np = 1 infill
point per optimization cycle

the infill points are located at this neighborhood. As a con-
sequence, the quality of the approximation at cycle 37 is still
poor outside the optimum vicinity (note the difference on
the exact and approximate contours for the function).

It is well known that the expected improvement function
can be extremely multimodal (i.e., with multiple peaks that
lead to several locations with high probable improvement).
This behavior was observed in most of the optimization
cycles investigated for LSEGO as well (see for instance the
E[I ((x))] curves in Fig. 2).

This multimodal behavior of the expected improvement
function can be considered an advantage by selecting more
than one infill point per optimization cycle in order to
accelerate the whole optimization process, as discussed in
Sóbester et al. (2004), for example.

3.3 LSEGO with parallel infill points

As we discussed in the Introduction (Section 1) the aspect
of single versus multiple infill points per cycle is known
and has been discussed since the origins of EGO-type
algorithms (Schonlau 1997; Jones et al. 1998).

As presented in the review by Haftka et al. (2016),
different classes of algorithms or strategies can be defined
with the objective of balancing exploitation and exploration
of the design space during the optimization. It is still an open
question and active area of research to answer the question
of how to add multiple infill points simultaneously in an
efficient way.

Sóbester et al. (2004) used a multistart optimization algo-
rithm to find multiple maximum points for the expected
improvement function and take advantage of parallel pro-
cessing resources. Their results indicated accelerated con-
vergence for the optimization with significant reduction in
processing time.

In the last years we can observe an increasing research
interest in EGO approaches with multiple infill points per
cycle. Henkenjohann and Kukert (2007), Ponweiser et al.
(2008) and Ginsbourger et al. (2010), for instance, proposed
different implementations of parallel EGO approaches by
extending the concepts of generalized expected improve-
ment and m-step improvement proposed in the work by
Schonlau (1997).

Ginsbourger et al. (2010) proposed the multi-points or
(q-points) expected improvement (q-EI). They derived an
analytical expression for 2-EI and statistical estimates based
on Monte-Carlo methods for the general case. Since Monte-
Carlo methods can be computationally expensive, they
also proposed two classes of heuristic strategies to obtain
approximately q-EI-optimal infill points, i.e., the Kriging
Believer (KB) and the Constant Liar (CL). Based on numer-
ical experiments, they reported that CL appears to behave as
reasonable heuristic optimizer of the q-EI criterion.
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The use of probability of improvement (PI) to generate
multiple infill points was discussed by Jones (2001) as a
variant of EGO. In this case EGO uses PI beyond a given
target as selection criterion. Maximizing PI based on dif-
ferent targets is a way to balance local (exploitation) and
global (exploration) searches. Aggressive targets favor more
exploitation than exploration and it is not clear how to set
these targets properly.

Viana and Haftka (2010) proposed a multi-point algo-
rithm based on an approximation of PI as infill criterion.
Chaudhuri and Haftka (2012) proposed the algorithm EGO-
AT by exploring the concept of targets for selecting multiple
points (PI), discussed by Jones (2001). With EGO-AT (EGO
with adaptive target) it is possible to adapt the targets for
each optimization cycle based on the success of meeting
the target in the previous cycle and generate multiple infill
points.

In a different way, Viana et al. (2013) proposed the
MSEGO (multiple surrogates EGO). In this case, they used
multiple surrogates simultaneously at each cycle of EGO
algorithm. With at least one kriging model available, they
imported the uncertainty estimate for this model to the
other non-kriging models in the set. By means of differ-
ent uncertainty estimates, they generate different instances
of expected improvement functions to be maximized and to
provide multiple parallel infill points in each EGO cycle.

As discussed in Haftka et al. (2016), the seek of
theoretical convergence proofs and rates that quantify the
benefits of parallel computation constitutes important recent
developments in the field. In this sense, several publica-
tions that investigate the theoretical bounds and rates of
convergence and algorithm properties can be listed and it is
remarkable the work of Desautels et al. (2012) in machine
learning area. Although the relevant theoretical develop-
ments, these studies and proposed algorithms did not
provide yet superior performance against the other heuristic
approaches that do not have proof of convergence.

Finally, according to Haftka et al. (2016) the field of
parallel surrogate-assisted global optimization with expen-
sive models is a relatively new research field that is not
mature yet and it is not possible to conclude with respect
to the comparative efficiency of different approaches or
algorithms. Further research is needed in order to take full
advantage of additional improvements provided by paral-
lelized surrogate based global optimization approaches.

In the present work, we suggest an alternative heuristic
scheme to generate multiple infill points per cycle in the
LSEGO algorithm by taking advantage of multiple surro-
gates in a form of a LS ensemble, in a similar direction of
the multiple surrogates approach proposed by Viana et al.
(2013).

Since we have an arbitrary set of M distinct metamodels,
that are relatively fast to generate (as compared with the true

simulation model y (x)), it is possible to create and arbitrary
number of Np partial LS ensembles ŷk

ens(x), by generat-
ing permutations of M̄ < M metamodels. Therefore, by
means of the Np partial LS ensembles there are Np respec-
tive expected improvement functions Ek[I (x)] available to
generate up to Np infill points per cycle.

In this case, differently from Viana et al. (2013), it is not
required to have at least one kriging model in the set to gen-
erate the uncertainty estimates, since in LSEGO ŝ2k (x) are
generated directly from the least squares definition for the
partial ensembles.

Based on preliminary tests, we observed a good perfor-
mance of LSEGO for the purpose of multiple infill points
per cycle. The final LSEGO algorithm is summarized in
Section 3.4 and in Section 3.5 we illustrate the applica-
tion and behavior of LSEGO for one and two variables
examples.

3.4 LSEGO algorithm with parallel infill points

The LSEGO algorithm with parallel infill points can be
summarized in the following steps:

i. Define a set χ of N sampling points and start the
optimization cycles (j ← 1);

ii. Evaluate the true response y(x) at all data sites in χ , at
the current cycle j , and set

ymin ← min(y1, · · · , yN);
iii. Generate the M metamodels ŷi (x), the Np partial

LS ensembles ŷk
ens(x) and the respective expected

improvement functions Ek[I (x)], with all data avail-
able at the current cycle j ;

iv. Find the set of next distinct N∗
p ≤ Np infill points

χinf ill ←
[
xN+1, · · · , xN+1+N∗

p

]
as the respective

maximizers of Ek[I (x)]; evaluate the true function
y (x) at the N∗

p infill points and add them to the
sampling space: χ ← χ ∪ χinf ill ;

v. If the stopping criteria is not met, set

ymin ← min(y1, · · · , yN+N∗
p
),

set (N ← N + N∗
p), update cycle counter (j ← j +

1) and return to step iii. Otherwise, finish the LSEGO
algorithm.

3.5 Illustrations: multiple infill points per cycle

We will illustrate the behavior of LSEGO with multiple
infill points with functions of two variables. Figure 5 shows
the same setup used in the case of Fig. 3 for Giunta-Watson
function (2 variables), but now with Np = 8 infill points per
optimization cycle.
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Fig. 5 Evolution of
approximation of Giunta-
Watson function (2 variables),
with LSEGO-8: Np = 8 infill
points per optimization cycle
and the LS-a ensemble is used
with four metamodels: PRS
(ID = 1), KRG (ID = 2),
RBNN (ID = 3) and SVR
(ID = 4), see Table 1
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Note in Fig. 5 that, by allowing more infill points per
cycle, LSEGO converges very quickly to the exact opti-
mum at cycle 5 (as compared to cycle 37, for Np = 1 in
Fig. 3), with a reasonable correlation for the metamodel at
this point (R2 = 0.803 and NRMSE = 8.1%). In addi-
tion, if we let LSEGO to continue with the exploration, the
metamodel quality is continuously improved. Observe in
Fig. 6 the results at cycle 12 (R2 = 0.998 and NRMSE =
0.6%), that can be explained by the increased spread of infill
points (exploration), not only on the vicinity of the opti-
mum (exploitation), as in the case for one infill point per
cycle.

We observed the same performance of LSEGO for other
functions as well. See for instance the evolution for the
Branin-Hoo function (ref. Appendix B, (18)) in Figs. 7
and 8. In this case, LSEGO has found the tree optimum
points within high accuracy at cycle 05 (R2 = 0.999 and
NRMSE = 0.5%).

Based on these preliminary results with one and two
dimensional functions, we can conclude that LSEGO has
a good performance on driving EGO algorithm, with sin-
gle and multiple infill points per cycle. As more infill
points are added per cycle, the faster is the conver-
gence to the global optimum (exploitation) and also the
quality improvement (predictability) of the metamodel in
the whole design domain (exploration). In the Section 4
we will show the numerical experiments performed with
the objective to compare the performance of the proposed
algorithm LSEGO versus the traditional EGO.

4 Numerical experiments

In this work the main objective is to compare the per-
formance of the proposed algorithm LSEGO versus the
traditional EGO. The approach followed for analysis here
was based mainly on the work by Viana et al. (2013), with
specific changes in in the overall setup for the numerical
experiments. In addition we applied LSEGO in the opti-
mization constrained optimization of analytical benchmark
functions, with the approach outlined in Section 2.4, based
on (6).

4.1 Computer implementation

We used the Matlab3 SURROGATES Toolbox v2.0 ref.
Viana (2009), as platform for implementation and tests. See
Appendix C for details.

3Matlab is a well known and widely used numerical programing plat-
form and it is developed and distributed by The Mathworks Inc., see
www.mathworks.com.
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Fig. 6 Detail at Cycle 12 for the evolution of approximation of
Giunta-Watson function (2 variables), with LSEGO-8: Np = 8 infill
points per optimization cycle
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Fig. 7 Evolution of
approximation of Branin-Hoo
function (2 variables), with
LSEGO-8: Np = 8 infill points
per optimization cycle and the
LS-a ensemble is used with four
metamodels: PRS (ID = 1),
KRG (ID = 2), RBNN
(ID = 3) and SVR (ID = 4),
see Table 1
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Contour of Exact Function
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Fig. 8 Detail at Cycle 10 for the evolution in the approximation of
Branin-Hoo function (2 variables) with LSEGO-8: Np = 8 infill
points per optimization cycle

In our previous work, Ferreira and Serpa (2016), we
implemented routines for LS ensemble of metamodels.
In the present work we extended the implementations to
include the standard EGO and LSEGO algorithms as well,
as described respectively in Sections 2.3 and 3.4.

The numerical implementation has been performed with
Matlab v2009, on a computer Intel(R) Core(TM) i7-
3610QM, CPU 2.30GHz, 8Gb RAM, 64bits, and the Win-
dows 7 operating system.

4.2 Experimental setup

4.2.1 Analytical benchmark functions

We used three well known analytical functions with
different number of variables (nv) for testing the optimiza-
tion algorithms: Branin-Hoo (nv = 2), Hartman-3 (nv = 3)
and Hartman-6 (nv = 6). See Appendix B for the respective
equations.

For the constrained optimization experiments we
generated the constraints by following the approach used
in Forrester et al. (2008) to test the constrained expected
improvement formulation.

That is, for Branin-Hoo function, let x∗
1 = 3π and x∗

2 =
2.475 be the coordinates of one of the three local optima,
then we write the normalized constraint as follows

g(x1, x2) = x1x2

x∗
1x

∗
2

− 1 ≥ 0. (10)

In this way, by using this hyperbola function, at least
one local optimum is forced to lie exactly at the constraint
boundary.

The same idea was used for Hartman-3 and Hartman-
6 functions, with their respective global optima, listed in
Appendix B.

4.2.2 Ensembles of metamodels

The ensemble of metamodels were created with the aug-
mented least squares approach LS-a (ref. Ferreira and Serpa
2016), with ηaug ≈ 33% and nine distinct models of type
PRS, KRG, RBNN and SVR, by considering the setup pre-
sented in Table 1. Refer to SURROGATES Toolbox manual
(ref. Viana 2009) for details on the equations and tuning
parameters for each of these metamodeling methods.

The EGO algorithm was implemented with the KRG
model ID = 2 presented on Table 1. In case of LSEGO,
we used ten permutations of the nine models displayed on
Table 1 as follows. The first (full) ensemble used all the nine
metamodels. For the second partial ensemble we removed
the model with ID = 9 from the full ensemble. For the
third one, the model with ID = 8 was removed from the
full ensemble and we continue this way up to ten ensembles,
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Table 1 Basic metamodels setup for creating the ensembles

ID Type Details

1 PRS Full quadratic model

2 KRG Quadratic regression, exponential correlation, θ0 = 10 and 10−2 ≤ θi ≤ 200

3 RBNN Goal = (0.05ȳ)2, Spread = 2/5 and MN = N

4 SVR C = 100max(|ȳ + 3σy |, |ȳ − 3σy |) and ε = σy/
√

N

5 PRS Linear model

6 KRG Linear regression, Gaussian correlation, θ0 = 10 and 10−2 ≤ θi ≤ 200

7 RBNN Goal = (0.05ȳ)2, Spread = 1/3 and and MN = N/2

8 SVR C = 100max(|ȳ + 3σy |, |ȳ − 3σy |), ε = σy/
√

N , KernelOptions = 1/2 and Loss = Quadratic

9 KRG Constant regression, Gaussian correlation, θ0 = 10 and 10−2 ≤ θi ≤ 200

Obs.1: KRG: kriging; PRS: polynomial response surface; RBNN: radial basis neural network; SVR: support vector regression

Obs.2: All other parameters not mentioned are kept with default values

Obs.3: ȳ, σy and N are respectively: mean and standard deviation of y and number of sampling points

Obs.4: No attempt has been made in order to fine tune the surrogate’s shape parameters

i.e., one full LS ensemble (M = 9) and nine partial LS
ensembles (M̄ = 8).

4.2.3 Design of experiments

The quality of the approximation by metamodels and the
rate of convergence to the optimum is strongly dependent
on the number and distribution of the initial sampling points
defined in the design space (i.e., DOE). In the cases inves-
tigated, as a common practice in comparative studies of
metamodeling performance, we repeated each experiment
with 100 different DOE, in order to average out the influ-
ence of random data on the quality of fit. The detailed setup
for the initial DOE for each test problem is presented in
Table 2. We used the same number of initial points Ntr in
the DOE as used in Jones et al. (1998).

The 100 different initial DOE with N points (N =
Ntr + Nadd ) were created by using the Latin Hypercube
Matlab function lhsdesign, optimized with maximin
criterion set to 1000 iterations. At each cycle of LSEGO,
the augmenting points Nadd are chosen randomly for the

Table 2 Basic specifications for the initial DOE

Test Problem nv Ntr Nadd

Branin-Hoo 2 21 10

Hartman-3 3 33 16

Hartman-6 6 65 32

nv : number of variables, Ntr : training points and Nadd : augmenting
points for LS-a ensemble

full sampling set (N ) to generate the LS-a ensemble with
constant rate ηaug ≈ 33%.

4.2.4 Setup for EGO algorithms

In the optimization of each test problem (i.e., Branin-Hoo,
Hartman-3 and Hartman-6), we repeated EGO and LSEGO
Nrep = 100 times, in order to average out the effect of
different initial DOE on the convergence.

In case of EGO we used the standard case (Np = 1) infill
point per cycle. In case of LSEGO we used for Branin-Hoo
(Np = 2, 5 and 10) points per cycle and for Hartman func-
tions (Np = 10). The acronym LSEGO varies as function
of Np, e.g., LSEGO-1 stands for LSEGO with Np = 1 and
LSEGO-10 stands for LSEGO with Np = 10.

In order to compare the rate of convergence (ymin vs.
cycles), the total number of cycles allowed to run was set
5 for Branin-Hoo, 10 for Hartman-3 and 15 for Hartman-
6. For comparison of variability of ymin at each cycle, as
function of different DOE, we used boxplots.4

In order to compare the level of improvement (Limp)
versus number of function evaluations (feval), for all test
problems, it was considered f max

eval = 50, with Nrep = 25

4Boxplot is a common statistical graph used for visual comparison
of the distribution of different variables in a same plane. The box is
defined by lines at the lower quartile (25%), median (50%) and upper
quartile (75%) of the data. The lines extending above and upper each
box (named as whiskers) indicate the spread for the rest of the data out
of the quartiles definition. If existent, outliers are represented by plus
signs “+”, above/below the whiskers. We used the Matlab function
boxplot (with default parameters) to create the plots.
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repetitions. In this case Limp is calculated for each cycle k

as:

Limp = 100% ×
∣∣∣∣∣

yk
min − y0

min

yexact
min − y0

min

∣∣∣∣∣
, (11)

where y0
min is the minimum for the initial sample, yk

min is the
minimum value at cycle k and yexact

min is the exact minimum
value.

4.2.5 Maximization of the expected improvement functions

In case of standard EGO (with one point per cycle) we
used the Matlab built-in genetic algorithm optimizer ga
with both PopulationSize and Generations set to
100. The InitialPopulation was set with size 10nv

individuals, chosen by using the function lhsdesign,
optimized with maxmin criterion set to 1000 iterations.

In case of LSEGO with multiple infill points there are
many expected improvement functions to maximize per
cycle. The use of a genetic algorithm can be quite time
consuming in this case. Based on preliminary numerical
experiments, we found a good balance in accuracy and
computation time by using the Matlab pattern search algo-
rithm patternsearch, with 10nv initial points (X0),
chosen by using the function lhsdesign, optimized with
maxmin criterion set to 1000 iterations.

As discussed in Jones (2001) the EGO-type algorithms
tends to generate infill points quite close to each other in
several cycles. Sampling points too close can degenerate
the approximation of many metamodels, in special KRG
and RBF. In addition, infill points too close have low con-
tribution to the exploration of the design space, they can
be a waste of resources and in addition lead to a slower
convergence for the optimization. We verified this fact in
several preliminary numerical experiments (ref. for instance
the illustration example of Fig. 3).

In this case, in order to avoid approximation issues
during EGO and LSEGO cycles, we generated exceeding
infill points per cycle and selected distinct Np with highest
expected improvement value. In our tests we found a good
balance by generating 2Np candidate infill points and then
we used a clustering procedure to remove points too close,
or even equal to each other. After the clustering selection,
the Np distinct points are added to the sampling space for
the next optimization cycle.

In our first tests we used the Matlab function unique
to remove equal points from the sampling space, but
this procedure has shown to be not effective. Then we
implemented a clustering selection procedure by using the
Matlab function cluster with the distance criterion.
The cutoff was based on the maximum distance (dmax)
among points/clusters in the whole sampling space, by using

the Matlab linkage function. In preliminary numerical
tests we found that cutoff around to 10% of dmax is
effective to remove too close points.

5 Results and discussion

5.1 Comparative study: LSEGO versus EGO

The objective in this test set is to compare the performance
of the proposed algorithm LSEGO versus the traditional
EGO.

In Fig. 9 is presented the optimization results (median
over 100 runs starting with different experimental designs)
for the classical efficient global optimization algorithm
EGO (only with kriging and one infill point per cycle) and
LSEGO (with LS ensemble of surrogates/metamodels and
different number of points per cycle, Np).

For the three functions studied here, it was observed sig-
nificant improvement on the reduction of number of cycles
for convergence by adding more infill points per cycle. The
higher the number of points per cycle, faster the conver-
gence. In addition this effect of accelerated convergence per
cycle is more evident as the number of variables increases.

In case of Branin-Hoo function, we tested LSEGO for
Np = 2, 5 and 10. For Hartman-3 and Hartman-6 it is
presented only for Np = 10. In case of Hartman func-
tions we found a similar trend, as presented in Viana et al.
(2013), with little difference in convergence for Np = 5 and
Np = 10. In this way we removed Np < 10 from the scope
for these cases.

Figure 10 is the counterpart of Fig. 9, by plotting the
results versus function evaluations instead of optimization
cycles. The idea is to compare LSEGO and EGO in terms
of computational costs, measured by the number of simu-
lations (function evaluations) required for the same level of
improvement on the objective function at each optimization
cycle.

As showed in the curves of Fig. 10, we can observe that
for Branin-Hoo and Hartman-3 (low to mid dimensions)
at the beginning of the optimization cycles EGO-Kriging
has lower cost in terms of number of function evaluations
than LSEGO-10 for the same level of improvement, but at
some point (e.g., around 70% for Branin-Hoo) the situation
is more favorable to LSEGO-10, which is also observed of
Hartman-3. In case of the Hartman-6 function, the conver-
gence of EGO-Kriging is quite slow and LSEGO-10 always
outperforms EGO-Kriging in terms of function evaluations
for the same level of improvement.

These results confirm the fact that by using multiple infill
points per cycle with EGO algorithms is, in general, bene-
ficial in terms of delivering results in reasonable processing
time (when parallel computation is available), but on the
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Fig. 9 Comparison EGO-Kriging versus LSEGO variants for the
functions Branin-Hoo, Hartman-3 and Hartman-6. Median (over 100
different initial sampling, DOE) for the efficient global optimization
results as function of the number of cycles. The convergence to the
exact global minimum is accelerated by adding more points per cycle
with LSEGO in all the cases studied
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Fig. 10 Comparison EGO-Kriging versus LSEGO-10. Median (over
100 runs with different initial samples, DOE) for the number of func-
tion evaluations versus level of improvement. In case of Branin-Hoo
and Hartman-3, LSEGO required more function evaluations to achieve
the same level of improvement at the beginning of the optimization. In
case of Hartman-6 LSEGO required less function evaluations for the
same improvement in the whole the process
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Fig. 11 Comparison of the convergence of EGO-Kriging (left box-
plots) vs. LSEGO-10 (right boxplots), over 100 different initial DOE
in each case for the functions Branin-Hoo, Hartman-3 and Hartman-
6. The variability of the results is higher as the number of variables
increases and the convergence to the optimum is very slow with one

infill point and EGO-Kriging. In all the cases, the addition of multi-
ple infill points per optimization cycle with LSEGO-10 accelerates the
convergence and also reduce significantly the dispersion of the results
as the optimization cycles evolve
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other hand it is not guaranteed that the total computational
cost of the optimization process (by the total number of
parallel simulations) will be reduced at the end of the
day. The trend on the results indicate that this effect is
problem dependent on the number of variables and the level
of nonlinearity of the problem at hand.

Figure 11 presents boxplots of the optimization results
for 100 experimental designs for LSEGO vs. EGO. Note
that at the beginning of the optimization (cycle 1) the
minimum solution found has a high dispersion as function
on the initial DOE and this dispersion is rapidly decreasing
for LSEGO, what is observed in EGO at much lower rate.

Again, in the same direction as the results presented by
Viana et al. (2013), we found that by using LSEGO with
multiples points per cycle a significant reduction in the dis-
persion of the results (minimum of objective function) can
be achieved as long as the optimization cycles evolve. This
trend confirms that by using LSEGO with multiple points
per cycle reduces the variability and dependence of the opti-
mization results on the initial DOE, what is not assured by
using EGO with only one infill point per cycle.

In summary the main objective of the experiments
in this set, compiled in Figs. 8, 9 and 10, is to high-
light that even by paying more function evaluations per
cycle, the behavior of parallel EGO-type algorithms can be
more stable with higher chance of convergence and real
improvement of the objective function with few optimiza-
tion cycles/iterations. In other words, as we discussed in the
Introduction (Section 1), these results confirm that it can
be worthwhile to spend more evaluations in a controlled
way in order to improve the overall performance of the
optimization process.

Figure 12 presents a comparison among EGO-Kriging,
LSEGO-10 and MSEGO-10 for Hartman-3 and Hartman-6
functions. For both cases MSEGO-10 was faster in con-
vergence rate than LSEGO-10. The maximum difference
found for ymin at each optimization cycle for MSEGO ver-
sus LSEGO is around 4% for Hartman-3 and 14% for
Hartman-6.

Our first hypothesis to explain the superior behavior
of MSEGO against LSEGO is on the quality/accuracy of
the variance estimate for each of these methods. Since the
variance estimate of MSEGO is based on the Kriging meta-
model in the set, then we performed two more LSEGO
runs for Hartman-3 function. The first one with all Kriging
metamodels in the set and the other one with no Kriging
metamodel at all, for the same set of 100 DOE used to get
the results in Fig. 9. These new results are presented in
Fig. 12c.

As can be observed in Fig. 12c, surprisingly the best
LSEGO performance was for the case with no Kriging
metamodel, especially for the first five optimization cycles.
These new results indicate that the better performance of
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Fig. 12 Comparison among EGO-Kriging, LSEGO-10 and MSEGO-
10. Median (over 100 runs with different initial samples, DOE) for
the efficient global optimization results as function of the number
of cycles. For both cases MSEGO-10 was faster in convergence rate
than LSEGO-10. The maximum difference for ymin between MSEGO
and LSEGO at each optimization cycle is around 4% for Hartman-3
and 14% for Hartman-6. MSEGO-10 data gathered by digitizing the
respective figures from Viana et al. (2013)
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MSEGO is not due to Kriging variance estimate in MSEGO
(as our first assumption). Then, other factors are on the
source of this behavior. First of all, the 100 DOE used
for LSEGO and MSEGO were not the same. Although in
average (or median sense) we can compare both methods,
we are not comparing exactly in the same controlled exper-
iments or set of data and these results can vary in some
extent especially for different sampling points. In addi-
tion, LSEGO and MSEGO have other different aspects
in the implementation, e.g., the maximization of expected
improvement function (EI), that can contribute for these
differences in performance.

In order to answer accurately these differences in the
convergence rates we suggest for future work a more com-
prehensive comparative study involving LSEGO, MSEGO
and other similar parallel EGO approaches, in terms of accu-
racy, variance distribution/breakdown and computational
cost in a way to put some light on all these questions.

5.2 Results with constrained optimization

5.2.1 Braninh-Hoo

For the Branhin-Hoo function, the results of the constrained
optimization with LSEGO-10 are presented in Fig. 13. In
this case, with the constraint defined with (10), there is
only one global optimum in the feasible area, exactly at the
constraint boundary at

x∗
exact = (9.425, 2.475) .

Note that the algorithm added infill points at the whole
design space, but the density and uniformity of infill points
inside is higher than outside the feasible area.

The evolution of the objective function y(x) and the
normalized constraint g(x) during the optimization cycles
with LSEGO-10 for Branin-Hoo function are presented in
Fig. 14. Note that LSEGO-10 started very far from the
global minimum y∗ = 16.4266 and reached fast the neigh-
borhood of x∗

exact , at the second optimization cycle, with
y∗ = 0.5987, although no further improvement on y(x) was
observed until cycle 14. LSEGO-10 converged exactly to
the global optimum at cycle 15.

5.2.2 Hartman-3

In the same way, the results for Hartman-3 function is pre-
sented in Fig. 15. LSEGO-10 reached the neighborhood of
x∗
exact at cycle 5, with y∗ = −3.7899, i.e., 1.89% error from

y∗
exact .
The algorithm evolved in the cycles, by reducing the

value of value of g(x) and trying to reach the constraint
boundary (i.e., g(x) = 0). At cycle 15, it was found
y∗ = −3.8371, or 0.66% error from y∗

exact . At cycle 31, the
algorithm reached

x∗ = (0.1444, 0.5553, 0.8537) ,

with y∗ = −3.8621 or 0.02% error from y∗
exact , and no

further improvement in y(x) or g(x) was found up to 40
cycles.

Fig. 13 Optimization results for
the constrained Branin-Hoo
function. LSEGO-10 converged
exactly to the constrained
optimum at x∗ = (9.425, 2.475),
after 15 cycles. Note the higher
density and uniformity of infill
points inside than outside the
feasible area. The circles “o” are
the infill sampling points and
the initial DOE points are
labeled with asterisks “∗”. The
three unconstrained local optima
of Branin-Hoo are labeled as
“stars”
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Fig. 14 Evolution objective
function y(x) and the
normalized constraint g(x)
during the optimization cycles
with LSEGO-10 for Branin-Hoo
function. LSEGO-10 started
with y∗ = 16.4266 and reached
y∗ = 0.5987 at cycle 2.
LSEGO-10 converged the global
optimum with y∗ = 0.3979 at
cycle 15
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5.2.3 Hartman-6

In case of Hartman-6 function, see Fig. 16, the algorithm
converged at a slower rate to the neighborhood of x∗

exact . At
cycle 35, y∗ = −3.100329, or 6.68% error from y∗

exact . At
cycle 38, y∗ = −3.177094, or 4.37% error from y∗

exact . We

stopped the algorithm at cycle 50 with little improvement
with respect to cycle 38, i.e.,

x∗ = (0.2688, 0.1547, 0.4508, 0.2890, 0.3433, 0.6541) ,

and y∗ = −3.2082, or 3.44% error from y∗
exact .
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Fig. 15 Evolution of the
objective function y(x) and the
normalized constraint g(x),
during the optimization cycles
with LSEGO-10 for Hartman-3
function. LSEGO-10 found
y∗ = −3.7899, i.e., 1.89% error
from y∗

exact at cycle 5. The
algorithm converged at cycle 31
with y∗ = −3.8621 or 0.02%
error from y∗

exact
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We repeated these numerical experiments with the ana-
lytical benchmark functions and the convergence pattern
was nearly the same for different initial sampling points. It is
worth noting that in all the cases, the optimization algorithm
presented the convergence behavior in steps. Observe this
fact in Fig. 14 for Branin-Hoo and with more pronounced

effect in Fig. 15 for Hartman-3 and in Fig. 16 for Hartman-6
function.

As discussed in Forrester and Keane (2009), this stepwise
behavior can be understood as the algorithm “switching”
from the exploitation to exploration modes, during the opti-
mization cycles. In other words, after adding some infill
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Fig. 16 Evolution of the
objective function y(x) and the
normalized constraint g(x),
during the optimization cycles
with LSEGO-10 for Hartman-6
function. At cycle 35,
y∗ = −3.100329, or 6.68%
error from y∗

exact . The algorithm
was stopped at cycle 50 with
little improvement with respect
to cycle 38. At this point
y∗ = −3.2082, or 3.44% error
from y∗

exact
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points in the beginning cycles, the quality of fit of the meta-
models increase and the algorithm is able to find some
improvement in the objective function (exploitation mode).

In the sequence, the algorithm switches to the exploration
mode at some cycles, and the next “jump” downhill in direc-
tion to the optimum is only achieved after the quality of fit of

the metamodels of y(x) and g(x) is enough to promote the
next improvement. If we track the quality of fit of the objec-
tive function during the optimization cycles, this behavior
can be observed.

See for instance the stepwise evolution of the quality of
approximation of y(x) by means of NRMSE and R2, during
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the optimization cycles for Hartman-3 function in Fig. 17.
In this case, at the initial cycles, the quality of fit is erratic at
some extent, with jumps at each three or five steps (cycles
3, 5, 10, 15...).

Recall Fig. 15 and note that these jumps occur simulta-
neously as the ones at it is observed the main improvements
in objective function and for the constraint. When the accu-
racy of the metamodel reaches stable levels (i.e., R2 > 0.9

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

Optimization Cycles

N
R

M
S

E
 [%

]

Evolution of NRMSE for Hartman−3 with LSEGO−10

0 5 10 15 20 25 30 35 40
0.4

0.5

0.6

0.7

0.8

0.9

1
Evolution of R2 for Hartman−3 with LSEGO−10

Optimization Cycles

R
2

(a)

(b)

Fig. 17 Evolution of the quality of fit of y(x), by means of NRMSE
and R2, during the optimization cycles with LSEGO-10 for Hartman-3
function. The optimization algorithm switches from exploitation to the
exploration mode, during the cycles and the convergence is achieved in
steps. The“jumps” downhill in direction of the optimum occur in steps,
after the quality of fit of the metamodels of y(x) and g(x) is enough to
promote the improvement

andNRMSE < 2%, around cycle 20, the algorithm is quite
close to the global optimum and it converges at cycle 25,
when the quality of fit is very good (i.e., R2 ≈ 1).

In this sense, based on this observed behavior for the
algorithm, it is recommended in practical applications to
monitor the quality of fit for the metamodels, in paral-
lel to the evolution of the objective and constraint func-
tions, in order to avoid premature or false convergence at
suboptimal points. In practical situations, this balance
between quality of fit, improvement of objective function
and constraints versus total number of sampling points, must
be observed for each problem.

In addition, in several practical problems, improvements
in the objective or constraints in the order of 10% to 25% are
very hard to meet. In such situations, finding one or a set of
truly improved designs is much more important than finding
the “global” optimum for the problem, and the decision on
when to stop the optimization cycles must be taken based on
these considerations as well.

These results with the analytical benchmarks showed that
LSEGO algorithmworks to handle constrained optimization
problems as well. Also, it can be noted that the constraint
function is not active at the end of optimization for Hartman-
3 function (Fig. 15) and it is “fluctuating” for Hartman-6
function (Fig. 16), although in both cases the optimum result
found is close to the constraint boundary. We also observed
this behavior in fewothernumerical tests performed in Ferreira
(2016).

As discussed by Viana (2011) in constrained optimization
(with constraints being metamodels) or in reliability-based
optimization, it can happen that after running the optimization
the solution found should be infeasible due to metamodel
errors. In order to try to avoid this kind of “pathology”, the first
thing that can be done is the correct choice of constraints
to be included in the optimization, specially the redundant
ones and those that are unlikely to be active (at the constraint
boundary), as discussed by Forrester et al. (2008).

In these cases, some sort of penalization approaches can
be applied to the inactive or violated constraints to force
the optimum to the boundary or feasible region. In addi-
tion, other strategies by managing the samples to favor the
boundary or the feasible region can be applied, as remarked
by Forrester et al. (2008). Viana (2011) extended this discus-
sion and possible directions can be (i) use of conservative
constraints based on margin of safety parameters or tar-
gets to push the optimum to the feasible region or (ii) use
adaptive sampling methods to improve the prediction capa-
bility of the constraints in the boundary between feasible
and unfeasible domains.

In the present research we did not implement any kind
of strategy or control for constraint boundary prediction
improvement and feasibility assurance. Although it is still
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an open question, since it is a required feature for any opti-
mization algorithm it is strongly recommended to be studied
and implemented in future developments of LSEGO and
other metamodel based optimization algorithms.

In this sense, a deeper numerical investigation must
be performed, with different functions (number of vari-
ables, nonlinearity, multimodality, etc.) and increasing num-
ber of constraints, in order to understand in detail the
behavior, convergence properties, advantages and limita-
tions of LSEGO algorithm.

Finnaly, there is still some controversy regarding the
effectiveness of sequential sampling versus one-stage
approaches, see for instance Jin et al. (2002) and Viana et al.
(2010). The question is: “what is the advantage of sequential
sampling optimization? On the other hand, is it worthwhile
to start the optimization with a single shot of a dense DOE
with random sampling points in the design space (one-stage)
instead of adding few points per cycle?”. In order to try to
answer this question in Ferreira (2016) we developed some
tests and a brief description is presented in Appendix D.

6 Concluding remarks

In this work we presented LSEGO, an approach to drive
efficient global optimization (EGO), based on LS (least
squares) ensemble of metamodels. By means of LS ensem-
ble of metamodels it is possible to estimate the uncertainty
of the prediction by using any kind of metamodels (not only
kriging) and provide an estimate for the expected improve-
ment function. In this way, LSEGO is an alternative to find
multiple infill points at each cycle of EGO and improve
both convergence and prediction quality during the whole
optimization process.

At first, we demonstrated the performance of the pro-
posed LSEGO approach with one dimensional and two
dimensional analytical functions. The algorithm has been
tested with increasing number of infill points per optimiza-
tion cycle. As more infill points are added per cycle, the
faster is the convergence to the global optimum (exploita-
tion) and also the quality improvement (predictability) of
the metamodel in the whole design domain (exploration).

In a second test set, we compared the proposed LSEGO
approach with the traditional EGO (with kriging and a sin-
gle infill point per cycle). For this intent, we used well
known analytical benchmark functions to test optimization
algorithms, from two to six variables.

For the problems studied, the proposed LSEGO algo-
rithm was shown to be able to find the global optimum
with much less number of optimization cycles required by
the classical EGO approach. This accelerated convergence
was specially observed as the number of variables increased,

when the standard EGO can be quite slow to reach the global
optimum.

The results also showed that, by using multiple infill
points per optimization cycle, driven by LSEGO, the confi-
dence of metamodels prediction in the whole optimization
process is improved. It was observed in the boxplots for all
cases investigated a variability reduction with respect to the
initial sampling space (initial DOE), as more infill points
are added during the optimization cycles.

We also compared LSEGO versus standard EGO in terms
of the number of function evaluations, which translates
directly to computational cost (i.e., number of simula-
tions required). We can observe that for Branin-Hoo and
Hartman-3 (low to mid dimensions) at the beginning of the
optimization cycles EGO-Kriging has lower cost in terms of
number of function evaluations than LSEGO for the same
level of improvement, but as the optimization cycle evolve
the situation was more favorable to LSEGO, which is also
observed of Hartman-3. In case of the Hartman-6 func-
tion, the convergence of EGO-Kriging was quite slow and
LSEGO outperformed EGO-Kriging in terms of function
evaluations for the same level of improvement in the whole
optimization process.

In a comparison with one competitor (MSEGO, from
Viana et al. 2013), LSEGO-10 performed with lower
convergence rate than MSEGO-10 (about 4% lower for
Hartman-3 and 14% lower in case of Hartman-6 function.

In addition we observed that the LSEGO algorithmworks
well to handle constrained optimization problems, in a fea-
sible number of optimization cycles. In these constrained
problems investigated, LSEGO presented a stepwise conver-
gence pattern, which is common to EGO-type algorithms.
In this sense, it is recommended in practical applications to
monitor the quality of fit for the metamodels, in parallel to
the evolution of the objective and constraint functions, in
order to avoid premature or false convergence at suboptimal
points.

Although LSEGO converged quite well to the opti-
mum region in the constraint optimization of Hartman-3
and Hartman-6 functions, we observed some difficulty to
reach exactly the constraint boundary. In this work we did
not implement any kind of control method for constraint
boundary prediction improvement and feasibility assurance.
This is still an open question in the literature and there
is no “silver bullet” to solve this kind of issue that is
intrinsic to surrogate based constrained optimization. It is a
topic to be studied and implemented in future developments
of LSEGO. In this way, deeper numerical investigations
must be done, with different functions and increasing num-
ber of constraints, in order to understand in detail the
behavior, convergence properties, advantages and limita-
tions of LSEGO algorithm.
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The results achieved in the present work are in accor-
dance with previous work published in the related research
area. In this way, the LSEGO approach has shown to be
a feasible alternative to drive efficient global optimiza-
tion by using multiple or ensemble of metamodels, not
restricted to a kriging approximation or single infill point
per optimization cycles.

In summary we observed that the behavior of parallel
EGO-type algorithms can be more stable with higher chance
of convergence and real improvement of the objective func-
tion with few optimization cycles/iterations. In other words,
it can be worthwhile to spend more evaluations in a con-
trolled way and improve the overall performance of the
optimization process.

It is worth noting that EGO-type algorithms should be
extended to treat properly more general constrained, multi-
objective and also robust optimization problems. As future
research work, we intend to extend the application of
LSEGO approach presented here within the context of con-
strained and multidisciplinary optimization of a broader set
of analytical benchmarks and real world engineering appli-
cations. We are already working on this front with good
preliminary results, and our intention is to publish them soon.

At last but not least, there are some other open ques-
tions and trends for future research and applications of EGO
methods (specially with multiple metamodels) raised by the
anonymous reviewers, that are:

– How to treat problems with multi-fidelity surrogates
in the optimization or even metamodels defined in
different regions or clusters of the sampling space?

– Another consideration is that: should the weights
be input-space-dependent to deal with heteroskedastic
situations or data from different sources (e.g., physical
and numerical)?

– Finally, EGO methods are driven by the expected
improvement function the requires accurate
error/variance estimates to work properly. In this sense,
more detailed studies are required to help to understand
the key factors that affect the expected improvement
function and how to assure the error prediction quality
in a broader sense.
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Appendix A: The kriging metamodel

The Kriging model, originally proposed by Krige (1951), is
an interpolating metamodel in which the basis functions, as
stated in (1), are of the form

ψ(i) = ψ
(∥∥∥x(i) − x

∥∥∥
)

= exp

⎛

⎝−
k∑

j=1

θj

∣∣∣x(i) − xj

∣∣∣
pj

⎞

⎠ ,

(12)

with tuning parameters θj and pj normally determined by
maximum likelihood estimates.

With the parameters estimated, the final kriging predictor
is of the form

f̂ (x) = μ̂ + ψT �−1 (y − 1μ̂
)
, (13)

where y = [
y(1) . . . y(N)

]T
, 1 is a vector of ones, � =

ψ(r)(s) is the so calledN×N matrix of correlations between
the sample data, calculated by means of (12) as

� = ψ
(∥∥∥x(r) − x(s)

∥∥∥
)

(14)

and μ̂ is given by

μ̂ = 1T �−1y

1T �−11
. (15)

One of the key benefits of kriging models is the provision
of uncertainty estimate for the prediction (mean squared
error, MSE) at each point x, given by

ŝ2(x) = σ̂ 2

[

1 − ψT �−1ψ + 1 − 1T �−1y

1T �−11

]

, (16)

with variance estimated by

σ̂ 2 =
(
y − 1μ̂

)T
�−1

(
y − 1μ̂

)

N
. (17)

Refer to Forrester et al. (2008) or Fang et al. (2006) for
further details on metamodel formulation.

Appendix B: Analytical benchmark functions

These functions were chosen since they are widely used to
validate both metamodeling and optimization methods, as
for example in and Jones et al. (1998) and Viana et al. (2013).

Branin-Hoo

y (x) =
(

x2 + 5.1x2
1

4π2
+ 5x1

π
− 6

)2

+10

(
1 − 1

8π

)
cos (x1) + 10, (18)
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Table 3 Data for Hartman-3 function

i ci aij pij

j = 1 2 3 j = 1 2 3

1 1 3 10 30 0.3689 0.117 0.2673

2 1.2 0.1 10 35 0.4699 0.4387 0.747

3 3 3 10 30 0.1091 0.8732 0.5547

4 3.2 0.1 10 35 0.03815 0.5743 0.8828

for the region −5 ≤ x1 ≤ 10 and 0 ≤ x2 ≤
15. There are 3 minima in this region, i.e., x∗ ≈
(−π, 12.275) , (π, 2.275) , (3π, 2.475) with f (x∗) = 5

4π .

Hartman

y(x) = −
4∑

i=1

ci exp

⎡

⎣−
nv∑

j=1

aij

(
xj − pij

)2
⎤

⎦, (19)

where xi ∈ [0, 1]nv , with constants ci , aij and pij given in
Table 3, for the case nv = 3 (Hartman-3); and in Tables 4
and 5, for the case nv = 6 (Hartman-6).

In case of Hartman-3, there are four local minima,

xlocal ≈ (pi1, pi2, pi3) ,

with flocal ≈ −ci and the global minimum is located at

x∗ ≈ (0.114614, 0.555649, 0.852547) ,

with f (x∗) ≈ −3.862782.
In case of Hartman-6, there are four local minima,

xlocal ≈ (pi1, pi2, pi3, pi4, pi5, pi6) ,

with flocal ≈ −ci and the global minimum is located at

x∗ ≈ (0.201690, 0.150011, 0.476874,

0.275332, 0.3111652, 0.657301),

with f (x∗) ≈ −3.322368.

Giunta-Watson This is the “noise-free” version of the
function used by Giunta and Watson (1998)

y(x) =
nv∑

i=1

[
3

10
+ sin

(
16

15
xi − 1

)
+ sin2

(
16

15
xi − 1

)]
, (20)

Table 4 Data for Hartman-6 function, ci and aij

i ci aij

j = 1 2 3 4 5 6

1 1 10 3 1 3.5 1.7 8

2 1.2 0.05 10 17 0.1 8 14

3 3 3 3.5 1.7 10 17 8

4 3.2 17 8 0.05 10 0.1 14

Table 5 Data for Hartman-6 function, pij

i pij

j = 1 2 3 4 5 6

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 0.2348 0.1451 0.3522 0.2883 0.3047 0.665

4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

where x ∈ [−2, 4]nv .

Appendix C: SURROGATES Toolbox

The SURROGATES Toolbox (ref. Viana 2009) is a Matlab
based toolbox that aggregates and extends several open-
source tools previously developed in the literature for design
and analysis of computer experiments, i.e., metamodeling
and optimization. We used the version v2.0, but v3.0 already
includes EGO variants.5

The SURROGATES Toolbox uses the following col-
lection of third party software published: SVM by Gunn
(1997), DACE by Lophaven et al. (2002), GPML by
Rasmussen andWilliams (2006), RBF by Jekabsons (2009),
and SHEPPACK by Thacker et al. (2010). The compilation
in a single framework has been implemented and applied in
previous research by Viana and co-workers, as for example
Viana et al. (2009) and Viana (2011).

Appendix D: A note on sequential sampling
vs. one-stage approach

In Ferreira (2016) we investigated some examples with ana-
lytical engineering functions. We repeated the one-stage
optimization ten times, with different initial DOE, at a very
large rate of number of sampling points in terms of number
of variables,6 i.e., for f1(x) of Three-Bar Truss N = 120
(60nv); for Cantilever Beam N = 120 (60nv); for Helical
Spring N = 360 (120nv) and for Pressure Vessel N = 460
(120nv).

The results for this experiment are presented in Fig. 18.
For the cases investigated, the results showed that there is
no guarantee to achieve the exact optimum with a one-stage
approach, even starting the optimization with a high den-
sity of sampling points in the design space. Probably, the

5For further details and recent updates on SURROGATES Toolbox
refer to the website: https://sites.google.com/site/srgtstoolbox/.
6As a common practice for metamodel based optimization purposes,
the number of points in initial DOE is often in the range 5nv to 10nv .

https://sites.google.com/site/srgtstoolbox/
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Fig. 18 Boxplots with the converged results for analytical engineer-
ing functions with one-stage optimization. Each problem was repeated
10 times with different initial DOE, i.e., for f1(x) of Three-Bar Truss
N = 120 (60nv); for Cantilever Beam N = 120 (60nv); for Helical

Spring N = 360 (120nv) and for Pressure Vessel N = 460 (120nv).
Even with very dense number of initial sampling points, there is no
guarantee of achieving the exact optimum. For details refer to Ferreira
(2016)

majority of these points are working only for improving the
overall quality of the metamodels (exploration) and these
points are not being effective to help finding the exact mini-
mum (exploitation), what is clearly a waste of resources for
optimization objectives in mind.

These results confirm our beliefs that it is worthwhile to
apply sequential sampling approaches like EGO-type algo-
rithms, or some hybrid approach (allied to clustering, for
instance), in order to increase the number of points slowly
and “surgically” at regions of the design space, with real
chance or expectation of improvement in the objective and
constraint responses.

In this sense, we reinforce the comments of Forrester and
Keane (2009), that the metamodel based optimization must
always include some form of iterative search and repetitive

infill process to ensure the accuracy in the areas of interest
in the design space. In this direction, we agree on the recom-
mendations that a reasonable number of points for starting
the sequential sampling metamodel based optimization is
about one third (33%) of the available budget in terms of
true function/model evaluations (or processing time) to be
spent in the whole optimization cycle.
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