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Abstract In this paper, the attainment of uniform reaction forces
at the specific fixed boundary is investigated for topology opti-
mization of continuum structures. The variance of the reaction
forces at the boundary between the elastic solid and its founda-
tion is firstly introduced as the evaluation criterion of the unifor-
mity of the reaction forces. Then, the standard formulation of
optimal topology design is improved by introducing the variance
constraint of the reaction forces. Sensitivity analysis of the latter
is carried out based on the adjoint method. Numerical examples
are dealt with to reveal the effect of the variance constraint in
comparison with solutions of standard topology optimization.

Keywords Topology optimization - Reaction force - Variance
constraint - Sensitivity analysis

1 Introduction

In last decades, topology optimization of continuum structures is
recognized as a challenging research topic in engineering design
community. The standard formulation of compliance minimiza-
tion with applied mechanical loads was initially developed and
then extended to various complicated design problems for the
achievement of optimal material layout (Deaton and Grandhi

P4 Tong Gao
gaotong @nwpu.edu.cn

>4 Weihong Zhang
zhangwh @nwpu.edu.cn

State IJR Center of Aerospace Design and Additive Manufacturing,
Northwestern Polytechnical University, Xi’an 710072, China

Institute of Intelligence Material and Structure, Unmanned System
Technologies, Northwestern Polytechnical University, Xi’an 710072,
China

2014; Sigmund and Maute 2013; Zhu et al. 2015). To this end,
much effort was made to develop different formulations with
required definitions of objective functions and design constraints.

In static problems, the compliance or strain energy of the
whole structure is the most popular objective function and
usually minimized to obtain the stiffest structures subjected
to the volume constraint (Bendsee 1989). Recently, the sum-
mation of the strain energies of all finite elements within the
specific shape preserving zones were assigned as an additional
design constraint to control the local deformation (Zhu et al.
2016). Displacement of the given DOF (degree of freedom)
was also used (Kocvara 1997). In the case of a single concen-
trated force, the minimization of the displacement magnitude
at the applied node along the direction of the applied force is
equivalent to the minimization of the global structural compli-
ance. Stress constraint is another important design criterion
and deeply investigated (Cheng and Guo 1997; Duysinx and
Bendsee 1998). Besides, structural topology and support lo-
cations were simultaneously optimized (Buhl 2002).

In thermo-elastic problems, the structural compliance
(Rodrigues and Fernandes 1995) was also minimized for the
stiffest structure. However, it was found that the elastic strain
energy minimization and mean compliance minimization led to
different configurations (Zhang et al. 2014). Both optimization
formulations are equivalent only under pure mechanical loads.
Moreover, the minimization of the maximum von-Mises stress
was achieved by seeking the uniform energy density (Pedersen
and Pedersen 2012). Besides, the magnitudes of the reaction
forces at specific nodes were introduced as design constraints to
indirectly limit the thermal loading (Deaton and Grandhi 2013).

In dynamic problems, most researches were focused on
maximization of fundamental, high-order eigenfrequencies
or the gap between two consecutive eigenfrequencies (Diaz
and Kikuchi 1992; Hilding 2000). In case of the harmonic or
stationary random force excitation, the objective function was
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defined by the so-called dynamic compliance (Jog 2002; Ma
et al. 1995) or the displacement amplitude (Liu et al. 2015b;
Zhang et al. 2015b).

In stability problems, the buckling critical load con-
straint was introduced into the topology optimization
model (Neves et al. 1995).

Some other design criteria have been studied as well. For
multicomponent optimization problems, physical properties,
e.g., gravity centre (Zhu et al. 2009) and moment of inertia ofa
structure (Takezawa et al. 2006) were considered and well
recognized in aircraft and aerospace structure designs. In the
case of multiple materials, it has been demonstrated that the
mass constraint is more beneficial and physically more signif-
icant than the volume constraint (Gao and Zhang 2011), al-
though both kinds of constraints are identical when only one
single solid material phase is present.

The variance constraint of nodal forces at the interface be-
tween the main section and connection section was introduced
into the topology optimization formulation as the evaluation
criterion in the design of the connection section to transfer
concentrated external forces to its main section (Zhang et al.
2015a). In that work, the nodal forces are located at the inter-
face between two elastic solids.

This paper focuses on the design constraint on the reaction
forces at the specific fixed boundary, i.e., the reaction forces
between an elastic solid and its foundation. According to engi-
neering experience, uniform reaction forces, i.e., uniform stress
distribution in the connectors or welds, usually benefit the struc-
tural performance (Chang et al. 1999). Particularly, in the long-
term usage of high- or ultra-precision machines, an uniform
distribution of vertical reaction forces over the pedestal supports
greatly avoid non-uniform creep relaxation of the supports that
deteriorates the levelness of the bench surface and the machin-
ing accuracy (Liu et al. 2015a). The configuration and flexibility
of the machine frame remarkably affect the distribution of the
vertical loads at each support, which is usually uneven in prac-
tice but is treated as uniform forces (Kono et al. 2015).
However, the design of the machine frame to improve the reac-
tion forces distribution has not been a popular aspect of optimi-
zation design in spite of its significant effect on the long-term
performance of machine tools. Therefore, it is of great impor-
tance to investigate the appropriate evaluation criterion of the
uniformity of the reaction forces and the topology optimization
formulation for the machine frame at the early concept stage.
This is the motivation of the current work.

This paper is organized as follows. In Section 2, a basic
formulation of finite element analysis is firstly presented for
calculation of reaction forces. In Section 3, the variance of the
reaction forces is introduced as the evaluation criterion of the
uniformity of the reaction forces. In Section 4, topology opti-
mization problem subjected to the variance constraint of the
reaction forces is formulated. Sensitivity analysis is carried out
and detailed in the Appendix. The validity of the proposed
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formulation is illustrated with 2D and 3D numerical examples
in Section 5. Finally, conclusions are drawn out.

2 Finite element analysis

Fig. 1 illustrates a structural domain 2 with applied force F*
and homogeneous Dirichlet boundary condition. The static
linear analysis corresponds to the solution of finite element eq.

F = KU (1)

Herein, K denotes the global stiffness matrix. U and F are the
nodal displacement vector and nodal force vector, respectively.

By rewriting the finite element equilibrium equation with
the separation of the matrix and vectors, we have

Fa — KCC KCS UC (2)
R KL K|]|U
with
K K
K — CC CS 3
|: K—Crs KSS :| ( )

Herein, subscript s and ¢ represent DOFs with and without
imposed values, respectively. F* represents the applied load
vector and R is the nodal reaction force vector.

In this work, homogeneous Dirichlet boundary condition
refers to

U, =0 (4)

and (2) can be simplified as
F* _ K. K U, ( 5)
R[ |KL Ks|l0

where the following two parts can be used to solve U, and to
calculate R, respectively.

F'= K. U
R =K U, (6)

Fig. 1 Illustration of a structure with applied force and homogeneous
Dirichlet boundary condition
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3 Variance of the considered reaction forces

The purpose of this work is to seek the stiffest topology config-
uration under the applied forces and the constraint of distribution
uniformity of the reaction forces. A proper quantitative descrip-
tion of the uniformity of the reaction forces is necessary.
Theoretically, variance is defined as the expectation of
the squared deviation of a measurable variable from its
mean. It is often used to measure how far a set of variable
values are spread out from their mean. Here, the variance
of the reaction forces on the specific DOFs is introduced
as a measure of the uniformity of the reaction forces.
Assume that I'gy is the set of the specific DOFs on which the
reaction forces are expected to be uniformly distributed. Usually,
all reaction forces normal to the fixed boundary are included in
I'rv: And then, the variance of the reaction forces is calculated as

DR) =15, (R j—ﬁ)z or D(R) = - (R—E)T(Rfﬁ) jelry  (7)

ny Ny
where the mean of these reaction forces is expressed as

- 1
R = ;ZjRj jEFR\/ (8)

r

n, represents the member numbers of the set I'gy. R; is reaction
force at the jth specific DOF and R is the vector consisting of all
reaction forces at the specific DOFs.

Obviously, D(R) is always positive. A small value of D(R)
implies the attainment of a uniform distribution of the reaction
forces on the specific DOFs. If D(R) = 0, the reaction forces in
I'ry are absolutely the same and distributed uniformly.

4 Optimization formulation

Firstly, two formulations are studied comparatively for topol-
ogy optimization: one is the standard compliance minimiza-
tion; the other includes the variance of the reaction forces as an

additional constraint.

4.1 Formulation 1: minimization of the global compliance

find x={x} i=12,...,n

min C =U'KU

s.t F = KU )
YVixi<fy'V

0 <xp<x;<1

Herein, x denotes the set of design variables. x; represents
the presence (1) or absence (0) of the solid material in the i
finite element. To avoid the singularity of the structural stiff-
ness matrix in the finite element analysis, a lower bound of
x. = 107 is introduced for the design variables. In this formu-
lation, n, is the number of designable elements. The upper
bound of the volume fraction, f{;, is defined as the ratio of
the upper bound of the volume constraint (Vy) to the total
volume of all designable elements (V) with f; = Vi/V.

4.2 Formulation 2: minimization of the global compliance
subjected to the variance constraint of the reaction forces

Based on Formulation 1, a variance constraint of reaction
forces is introduced and the corresponding optimization prob-
lem is stated as

find x={x} i=12,..n
min C=U'KU

D(R)<Dy

ZViXiSfU'V

0 <xp<x;<1

Here, Dy, the upper bound of D(R), is usually determined
based on the variance of the specific reaction forces obtained
in topology optimization using Formulation 1. For example,
Dy can be 20% of D(R) in topology optimization using
Formulation 1.

Additionally, an optimization formulation to minimize the
variance of the reaction forces is also studied to identify the
extrema of D(R).

4.3 Formulation 3: minimization of the variance
constraint of the reaction forces

find x={x} i=12,..n

min D(R)

s.t F = KU (11)
2LVixisfuV
0 <xp<x;<1

SIMP (Solid Isotropic Material with Penalization) model is
used in this work and the penalized Young’s modulus is
expressed as

E; = x'E© (12)

in which the superscript (0) indicates the properties of
the solid material. The penalty factor p=3 is adopted
in this work.
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Fig. 2 Structure 1 (unit: mm)

Gradient-based optimizers are usually used to solve
topology optimization problems. Therefore, it is neces-
sary to carry out sensitivity analysis with respect to
design variables. The sensitivity of the global compli-
ance corresponds to

e OK;
a:—Ul.T o Ui (13)

By means of the adjoint method, the sensitivity of the var-
iance of the reaction forces could be derived by only one
additional finite element analysis.

oD(R) + OK! 1+ OKee
=A S U~A U, 14
6x,» Gx,- Gx,- ( )
In (13, 14), %'f;, a;i l and a;f;C can be easily derived at the

element level. The meanings of the artificial vector A and the
adjoint vector A, and details of the sensitivity analysis are
presented in the Appendix.
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Fig.4 Relation between the structural compliance and the variance of the
specific reaction forces in Test 1

5 Numerical tests

In this section, the proposed formulation is tested with several
numerical examples. It is assumed that Young’s modulus of
the solid material is 105GPa and the Poisson’s ratio is 0.34.
Filter methods, including the sensitivity filter (Sigmund 2001)
and the density filter (Bourdin 2001), are the most popular
regularization methods in the pseudo-density method. A sen-
sitivity filtering technique, whose underlying concepts was
rigorously derived from principles in contintum mechanics
and nonlocal elasticity (Sigmund and Maute 2012), is adopted
herein to yield checkerboard-free topology configuration ow-
ing to its ease of application. The ConLin (Convex
Linearization) (Fleury and Braibant 1986) is applied to solve
the topology optimization problem with the convergence cri-
terion that the relative variations of the objective function and
constraints between two consecutive iterations are all less than
0.5%.

Fig. 3 Topological
configurations in Test 1

() Formulation 1
(C=10.294x10*, D(R)=106.1)

(b) Formulation 2 with Dy=50
(C=0.310x10")

(¢) Formulation 2 with Dy=10
(C=0.354x10")
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(d) Formulation 2 with Dy=1
(C=0.414x10"%)
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Fig. 5 Distribution of the Y-axis 25
reaction forces in Test 1
20
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Reaction force (Y-Axis)

W
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—D[R)<10
—DR)=<1
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5.1 Test 1

Consider a plane structure with a non-designable domains (the
dark areas), as shown in Fig. 2. The structure is meshed into
120 x 60 four-node finite elements. Each element has a size of
2.5 mm. A vertical force (1000 N) is applied. The upper bound
of the volume fraction is f; = 0.3. The reaction forces along
vertical direction at all fixed nodes are considered.

Fig.3(a) shows the topology optimization result using
Formulation 1. The variance of the considered reaction forces
is D(R) = 106.1 for this configuration. In order to realize a
more uniform distribution of these reaction forces,
Formulation 2 is used with different values of Dy.
Optimized configurations are shown in Fig.3(b)-(d). It is
found that the constraint of the variance of reaction forces
makes the structure bifurcate, and that smaller values of Dy
produce more refined branches with the reduction of the stiff-
ness of the optimized structures, as shown in Fig.4. It should
be noted that in all three tests, the constraints of the material
volume and the variance of reaction forces involved in
Formulation 2 are both active.

0.00012 20

—Compliance

0.00010 | —DR)

0.00008

Compliance

0.00006

0.00004

0.00002 [ PAAAZ ‘ l
0 0 100 150 200
iteration
Fig. 6 Iteration histories of structural compliance and D(R) (Structure 1,
Dy=1)

50 100 150 200 250 300
Locations of the fixed nodes (X-Axis)

For all tests shown in Fig.3, reaction forces along the ver-
tical direction at all fixed nodes are compared in Fig.5.
Obviously, the constraint of the variance of reaction forces
makes the applied force be transferred to more fixed nodes
and thus reduces the maximum reaction forces greatly.

In the case of Dy = 1, the reaction forces at all nodes are
smoothed into a nearly uniform distribution. The iteration
processes of the compliance and D(R) are plotted in Fig.6.
For the considered optimization problem, it is very difficult
to find a feasible initial solution. In this paper, the initial values
for all design variables are set to be the upper bound of the
volume fraction. Clearly, the variance constraint of reaction
forces is violated at the beginning. In order to achieve the
feasible solutions, the ConLin algorithm combined with the
augmented Lagrangian method is utilized. When the iterative
solution reaches the upper bound of the variance constraint of
reaction forces, it is pushed back into the feasible space and
some oscillations occur in the iteration. Finally, both
iteration curves converge to the optimized solution.

toaoN

‘SOON

Fig. 7 Structure 2 (unit: mm)
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Fig. 8 Topological
configurations in Test 2

(a) Formulation 1
(C=0.124x107, D(R)=32318.9)

(¢) Formulation 2 with Dy=19000
(C=0.131x107)

(e) Formulation 2 with Dy=17000
(C =0.362x107%, D(R)=20430)

5.2 Test 2

A plane structure is clamped on both parts of the bottom and
two vertical forces are applied, as shown in Fig. 7. The size of

(b) Formulation 2 with Dy=20000

(C=0.129x10)

(d) Formulation 2 with Dy=18000

(C =0.136x10%)

(f) Formulation 3
(C =0.140x107, D(R)=17928)

four-node finite element is 2.5 mm and a mesh of 120 x 80
elements is used. The upper bound of the volume fraction is
fu = 0.3. The reaction forces along vertical direction at all
fixed nodes are considered.

Fig. 9 Relation between the 1.42E-04
strqctural compllange and thf.: 1.40E-04 |
variance of the specific reaction
forces in Test 2 1.38E-04

1.36E-04 -
1.34E-04 |
1.32E-04
1.30E-04
1.28E-04 |
1.26E-04
1.24E-04
1.22E-04

Structural compliance

®

(d)

Formulation 3

©)

Formulation 2

Formulation 1
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Fig. 10 Reaction force distributions of Structure 2

Topology optimization results are shown in Fig.8.
Formulation 1 leads to the stiffest configuration and the stiff-
ness of the optimized structures decreases with Dy if the vari-
ance of reaction forces is constrained. Note that the constraints
of the material volume and the variance of reaction forces are
both active in the tests using Formulation 2.

Here, the case of Dy = 17,000 should be highlighted. The
optimized configuration is quite different. Unfortunately, D(R)
cannot decrease below its upper bound Dy even after 300
iterations in this case. Besides, the structural compliance of
this test is clearly larger than others. Further investigation is
made here to clarify this case. Using Formulation 3, D(R)
=17,928 is found as the extrema of the variance of reaction
forces, as shown in Fig. 8(f). It means that it is impossible to
obtain absolutely uniform distribution of the reaction forces
under the prescribed loads and boundary conditions in this
test.

Fig.9 shows the relation between the structural compliance and
the variance of specific reaction forces. Around solution (f), the
global compliance decreases quickly while the uniformity of the
reaction forces increases slightly. Comparatively, around solution
(a), the global compliance decreases slowly while the variance of

Loads
Fig. 11 Structure 3 (Pedestal of a milling machine)

S
S

min C
——D(R)<20000
M ——D(R)<19000
80 ——D(R)<18000
=== min D(R)

3
S

70

60 [

—————————

Reaction force (Y-Axis)

50 |

40 : .
2925 295 2975 300

Locations of the fixed nodes (X-Axis)

the reaction forces quickly increases. The reaction forces in verti-
cal direction at all fixed nodes are shown in Fig. 10.

5.3 Test 3

The proposed method is now tested for a large-scale engineer-
ing problem. The pedestal of a milling machine is shown in
Fig.11. Assume that the dark areas are non-designable. The
structure is fixed on the six areas of the bottom and undergoes
pressures on several plane surfaces. The whole structure is
meshed into 120,558 solid elements. The mass of the whole
structures should be less than 1500 kg. The reaction forces
along Z-axis at all fixed nodes are considered.

In the design of the pedestal of a milling machine, the stift-
ness of the whole structure is one of the most important require-
ments. Therefore, Formulation 1 is firstly utilized to obtain the
configuration involving the maximum stiffness and
Formulation 2 is then adopted to improve the uniformity of
the reaction forces. Fig.12 illustrates that obvious differences
exist between the topology optimization results due to the pres-
ence of the variance constraint of the reaction forces. The addi-
tional variance constraint reduces the max value and the

Fixtures
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Fig. 12 Topological
configurations in Test 3

T

whole structure

designable domain

(a) Formulation 1 (C=0.127)

B>

whole structure

variance of the reaction forces along Z-axis on the supports, as
shown in Fig. 13.

6 Conclusions

In topology optimization, the exploration and development of
new optimization formulations constructed for various design
criterions are of significant engineering importance. In this pa-
per, variance constraint of reaction forces is introduced into
structural topology optimization to meet the engineering design
needs. The variance of the reaction forces is introduced as the
quantitative description of uniformity of these reaction forces

Fig. 13 Reaction force
distributions in Test 3

designable domain

(b) Formulation 2 with Dy=500 (C=0.402)

on the fixed nodes. Based on the traditional formulation of the
compliance minimization subject to the volume constraint, the
variance constraint of the specific reaction forces is added. Its
upper bound is determined by a relaxation of the variance value
obtained in traditional optimization formulation. Besides, an
optimization formulation to minimize the variance of the reac-
tion forces is also studied to identify its extrema. By means of
the adjoint method, the sensitivities of the variance of the reac-
tion forces are derived by one additional finite element analysis.

Numerical tests indicate that variance constraint of reaction
forces could reduce the maximum value and improve the uni-
formity of the reaction forces, to some extent. An extrema exists
for the variance of reaction forces if the support positions are

- A -

| 4 i

o 20 40 60 8
(a) Formulation 1
(Rmax=127.9, D(R)=735.7)
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(b) Formulation 2 with Dy=500
(Rmax =100.6, D(R)=498.6)
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prescribed. Therefore, if the upper bound of the variance con-
straint of reaction forces is smaller than its extrema, the opti-
mization process might fail to find the optimal solution. In
order to further improve the distribution uniformity of the re-
action forces, support positions could be included in the opti-
mization formulation as constraints or design variables in fu-
ture work.
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Appendix: Sensitivity analysis

The sensitivity analysis of the global compliance and the var-
iance of reaction forces with respect to design variables is
detailed as follow.

Sensitivity analysis of the global compliance

Based on the definition of the global compliance, the sensitiv-
ity of the latter then corresponds to
oC OF oK oF* 0K

— =T —-u"T—=vu=2U"
Ox; Ox; Ox; ¢ Ox; i 8

(A.1)

In this work, the applied forces are supposed to be design-
independent. This implies that
oF?
axi

=0 (A2)

The sensitivity of the global compliance is then re-
written as
oC T K;
6x, boox;

U, (A3)

Sensitivity analysis of the variance of reaction forces

Based on the definition in Section 3, the sensitivity of the
variance of the specific reaction forces corresponds to

oD(R) _ OR; OR
Ly o) (- )

where the partial derivative of the mean reaction force is
expressed as

(A4)

OR 1 _ OR;
P n—r& 2, (A.5)

Thus, we have

oD(R) OR, OR;
Ox; —an/:Z( )<8x, nrzg:@xi>

2 _ R, 1_ 0
:n—rzj(RjR)<(l )8)61 nzoﬁfai;) (A.6)

This expression can be rewritten as

DR) _ R (A7)

ox i ox i

in which A is a vector

4
A= 4 (A.8)
A,
with each term being calculated by
2 1\ 1 _ ,
A= { ((R ) (‘7,)7,&4# (R(R)) FERe(AL9)
0 JElRy

To calculate ( ) , the partial derivative of the reaction

force vector R is necessary. According to (6), we have

oR _ 0K T+ 0U,

U.+K A.10
6x, ox; ¢ * R ox; ( )
and
oU, [ OF* 0K

=K_ |—- U Al
ax,- ce < 6x,- 8x,~ ¢ ( )
Under the assumption of design-independent force (i.e., UF
= 0), the above relation can be simplified as
oU, 1 0K
-K! A.12
6x, © ox; o, U ( )
The substitution of (A.12) into (A.10) yields
oR aKZS K- Kee
— = K U, A.13
Gx,- 8x, c cc a ( )

Now, the sensitivity of the variance of the considered reac-
tion forces can be derived as

OD(R) _ 7 OKL

oK
cs U A TI( I(fl cc
ax,- ax,

cC a

U, (A.14)
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in which the adjoint method is applied to calculate the
second term.

Suppose
ATKIK! = AT (A.15)
The adjoint vector A can then be obtained by
KA = KA (A.16)
or
o)=Y (817

Here, R, is the reaction forces in the additional analysis
related to (A.17). Obviously, only one additional finite ele-
ment analysis needs to be carried out under the same boundary
conditions as the original structural analysis in (2) no matter
what the adjoint load is.

Thus, by virtue of the adjoint method, ag}(:z) is established as
oD(R) + OK! T 0K
=A SUAA U A.18
Gx,- 6x,~ ¢ 6x,~ ¢ ( )

oKL E
o and

gf“ can be easily derived at the

In this expression,
element level.

A particular case should be mentioned herein. If the applied
force is constant during optimization and the variance con-
straint is applied to all fixed nodes, the mean reaction force R

is constant as well. As a result, the derivative of the mean
reaction force with respect to all design variables in (A.5) is
zero and the sensitivity of the variance of specific reaction
forces in (A.4) could be simplified as

oD(R) 1 —\ OR;
_ 2(R<*R)—j A19
Ox; n; %l 4 Ox; ( )
Thus, the artificial vector A is simplified as
Ly 2(R-R) jer
A= L 22 (ReR) el (A.20)

0 j$FRV
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