
Struct Multidisc Optim (2017) 56:1555–1570
DOI 10.1007/s00158-017-1733-1

INDUSTRIAL APPLICATION

Surrogate based multidisciplinary design optimization
of lithium-ion battery thermal management system
in electric vehicles

XiaobangWang1,2 ·Mao Li2,3 ·Yuanzhi Liu2 ·Wei Sun1 ·Xueguan Song1 · Jie Zhang2

Received: 9 February 2017 / Revised: 24 May 2017 / Accepted: 30 May 2017 / Published online: 20 June 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract A battery thermal management system (BTMS)
is a complex system that uses various heat removal and
temperature control strategies to keep battery packs at opti-
mal thermal conditions, thereby improving the lifetime
and safety of lithium-ion battery packs in electric vehi-
cles (EVs). However, an optimal design of BTMS is still
challenging, due to its large number of sub-systems and/or
disciplines involved. To address this challenge, an air-based
BTMS is hierarchically decoupled into four sub-systems
and/or sub-disciplines in this paper, including the battery
thermodynamics, fluid dynamics, structure, and lifetime
model. A high-fidelity computational fluid dynamics (CFD)
model is first developed to analyze the effects of key design
variables (i.e., heat flux, mass flow rate, and passage spac-
ing size) on the performance of BTMS. Aiming to perform
the multidisciplinary design optimization (MDO) of BTMS
based on the high-fidelity CFD model, surrogate models
are developed using an automatic model selection method,
the Concurrent Surrogate Model Selection (COSMOS). The
surrogate models represent the BTMS performance metrics
(i.e., the pressure difference between air inlet and outlet, the
maximum temperature difference among battery cells, and
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the average temperature of the battery pack) as functions
of key design parameters. The objectives are to maximize
the battery lifetime and to minimize the battery volume, the
fan’s power, and the temperature difference among differ-
ent cells. The MDO results show that the lifetime of the
battery module is significantly improved by reducing the
temperature difference and battery volume.

Keywords Battery thermal management system ·
Multidisciplinary design optimization · Concurrent
surrogate model selection · System decomposition

1 Introduction

Currently, the lithium-ion battery is widely used in the elec-
tric vehicles (EVs), due to its advantages such as high
voltage, high energy density, long cycle-life, no memory
effect, and quick charging. However, there still exist a num-
ber of challenges in the design of lithium-ion battery and
its associated systems in EVs, considering their multidis-
ciplinary and system coupling characteristics. The battery
usually experiences irregular jolts and large temperature
variation, which makes its working conditions even harsher.
In addition, the high heat generation and narrow space make
the battery pack easily accumulate heat during the working
process, which may cause volume expansion or even explo-
sion of the battery. Due to the narrow range of the optimal
operating temperature, the battery safety becomes one of the
major concerns in EVs. Although the battery performance
can be improved through structure optimization, the risks
caused by the overcharge, over discharge, and excess tem-
perature still cannot be fully avoided. Aiming to improve
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the thermal performance of batteries, battery thermal man-
agement systems (BTMS) have been widely used in EVs,
which utilize various heat removal and temperature control
strategies to maintain the cells and battery packs at optimal
thermal conditions (Ponchaut et al. 2014).

Different types of BTMS have been developed in the lit-
erature to enhance the battery performance, such as the air-
based, liquid-based, phase change material-based, heat-pipe
based, and hybrid systems. A review of some of these types
of BTMS has been provided and discussed by Ling et al.
(2014). Greco et al. (2014) developed a one-dimensional
(1D) transient computational model of a prismatic lithium-
ion battery with the heat pipe-based BTMS, which was
tested and verified by an analytical model with time-
dependent boundary conditions and a 3D numerical model.
Huo et al. (2015) designed a mini-channel cold plate-based
BTMS for a rectangular lithium-ion battery, based on which
a 3D thermal model of the cooling system was established
and simulated. It showed that the maximum temperature of
the battery decreases with increasing the number of chan-
nels and inlet mass flow rate, and the cooling performance
increases with increasing inlet mass flow rate. Somasun-
daram et al. (2012) proposed a 2D transient mathematical
model to study a passive BTMS with and without phase
change material (PCM) at various galvanostatic discharge
rates.

The air-based BTMS has been widely applied in EVs
due to its low cost, simple structure, and light weight. Choi
and Kang (2014) modeled the thermal behavior of an air-
based lithium-ion BTMS based on the battery’s electrical
and mechanical properties for determining the appropriate
cooling capacity. Giuliano et al. (2012) developed an air-
based BTMS employing metal-foam based heat exchanger
plates, which was tested by an experiment using Altairnano
50 Ah cells. Fan et al. (2013) analyzed the 3D transient ther-
modynamics of an air-cooled BTMS using computational
fluid dynamics (CFD), finding that the temperature uni-
formity could be improved by moderating the gap spacing
size. Sun and Dixon (2014) developed a correlated 3D ther-
mal model and an analytical design of experiments (DoE)
approach to verify the “Z-type” flow battery pack with an
air-based BTMS. It is found that the geometries of inlet and
outlet significantly affected the lumped cell temperature,
lumped cell temperature difference, and total pressure drop
of the pack. Mohammadian et al. (2015) compared differ-
ent strategies by inserting four different types of aluminum
foam into the the flow channels of the air-cooled lithium-
ion battery module, and found the desirable temperature
uniformity and maximum temperature when two-third of
the entire air flow channel was filled with aluminum metal
foam.

To further improve the performance of BTMS, optimiza-
tion methods have also been used in the BTMS designs. For

example, Khan et al. (2014) proposed a techno-economic
optimization model to investigate the feasibility of BTMS
in different applications. Severino et al. (2014) used a
Multi-Objective Particle Swarm Optimization (MOPSO)
algorithm to optimize the BTMS design. Bahiraei et al.
(2016) used a pseudo 3D coupled thermal-electrochemical
model to optimize the weight of PCM required in the
BTMS, considering the module size and battery cell spac-
ing. The results showed that the use of PCM significantly
reduced the battery temperature rise and kept a desirable
temperature uniformity across the module. Hu et al. (2014)
used support vector regression (SVR) with a double-loop
search optimization process to estimate the state-of-charge
(SOC) of the air-cooled battery pack in EVs. Ye et al.
(2015) developed a numerical model to optimize the thermal
performance of a heat pipe-based BTMS, and the BTMS
performance was improved during fast charging. Padovani
et al. (2013) optimized an energy management strategy for
battery and BTMS in EVs using Pontryagin Minimum Prin-
ciple. Javani et al. (2014b) optimized a newly-established
PCM-based BTMS using the genetic algorithm (GA) to
find the optimal exergy efficiency and total cost rate of the
system. Park (2013) designed an air-based BTMS by con-
ducting numerical calculations, and found that the required
cooling performance by employing the tapered manifold
and pressure relief ventilation without changing the lay-
out/design of the existing battery system.

Though the mechanism and performance of BTMS have
been well studied, most of the previous work only dealt with
a single discipline or sub-system of the BTMS. However,
the performance of battery is affected by a number of dif-
ferent components and disciplines involved in the battery
system. For example, a typical air-based BTMS consists of
an air supply system and battery cells. The battery cells sup-
ply the power to the vehicle motor as well as the air supply
system, accompanied with heat generation. The air supply
system provides the air to take away the heat and to cool the
battery cells within the battery module. A better understand-
ing of the interactions between different disciplines and/or
sub-systems would help design and optimize the whole
BTMS system. To this end, a multidisciplinary design opti-
mization (MDO) framework of the BTMS is developed in
this paper, with the aim of optimizing the design of different
BTMS sub-systems simultaneously. The multidisciplinary
modeling aims to help (i) understand the coupling effects
among different disciplines and sub-systems, and (ii) formu-
late the system objectives and constraints for both the whole
BTMS and sub-systems.

The remaining of the paper is organized as follows.
Section 2 discusses the system analysis of an air-based
BTMS and the overall MDO framework. Section 3 devel-
ops a high-fidelity CFD model and corresponding surrogate
models to be used in the MDO of BTMS. Section 4 analyzes
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the detailed configurations of four major disciplines/sub-
systems, including the air supply system, battery thermo-
dynamics, lifetime model, and structure. In Sections 5,
the optimization results obtained by using the Multi-
Disciplinary Feasible (MDF) method are obtained and dis-
cussed. Section 6 provides the concluding remarks and
future work.

2 BTMS analysis

2.1 System decoupling of BTMS

As a highly integrated system, the major components of
BTMS are densely assembled in a limited space. When the
battery is working, every part of BTMS should work har-
monically and steadily to maintain an efficient and safe
running environment. So it is essential to first conduct a
system analysis from a global view before performing the
MDO study on BTMS. Figure 1 shows the physical system
of an air-based BTMS, which contains a number of dis-
ciplines, such as the thermodynamics, fluid dynamics, and
structure. By using a decomposition method of a hierarchi-
cal model, the BTMS can be decomposed into three main
sub-systems, namely the air supply system, the battery cell,
and the battery module, as shown in Fig. 2. Each sub-system
can be further decomposed into secondary sub-systems that
are categorized into different disciplines, e.g., the battery
module can be categorized into the thermodynamics, fluid
dynamics, and structure.

Besides the three major sub-systems, the battery life-
time/cost model should also be considered as a visional
sub-system in the MDO of BTMS. This is because the
battery lifetime/cost is an important performance index to
assess the battery quality in the BTMS design or practical
engineering.

BTMS

Air supply system

Fluid Dynamics

Control

Battery cell

Thermodynamics

Structure

Battery module

Thermodynamics

Structure

Fluid Dynamics

Cost/Lifetime
Management/

Statistics

Fig. 2 A hierarchical decomposition of BTMS

2.2 Extended design structure matrix (XDSM)

Due to the complexity of a MDO process, it is helpful
to initially design a sketchy framework to illustrate the
whole optimization process. For the BTMS design, a typical
framework should include: (i) all the main sub-systems (or
sub-disciplines), (ii) the coupling relationship of the design
variables among different sub-disciplines, and (iii) the data
flow between different sub-systems. The XDSM frame-
work (Lambe and Martins 2012) is adopted in this paper to
illustrate the MDO for BTMS. Figure 3 shows an sketchy
XDSM framework of BTMS: (i) the boxes along the diago-
nal line represent the different sub-systems; (ii) the straight
lines on the upper right of the diagonal line represent the
flow direction of data input and output between different
sub-systems; (iii) the boxes on the intersection points of
the straight lines represent the design data being transmitted
from an upstream sub-system to a downstream one; and (iv)
the straight lines on the lower left of the diagonal line rep-
resent the data backflow, which contains the optimization

Fig. 1 A typical air-based
BTMS scheme (GArtés 2012)
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Fig. 3 XDSM framework for the MDO of BTMS

results of the sub-systems and relevant constraints. The run-
ning process starts from the upper right to the lower right,
and then from the lower left to the upper left. The optimiza-
tion process repeats until the design variables satisfy all the
constraints.

It is observed from Fig. 3 that, the System Optimizer dis-
tributes the design variables and some important initial param-
eters into the corresponding sub-systems, such as the struc-
tural design variables being distributed into the sub-system
of BTMS Structure, and the Battery Status parameters being
distributed into the sub-system of Battery Thermodynam-
ics. After the sub-systems complete their own disciplinary
analysis, the sub-systems generate corresponding intermediate
state variables and distribute these state variables downstream,
such as the Battery Thermodynamics distributing the heat
into the BTMS Structure, the Fluid Dynamics, and Lifetime.
Then the sub-systems return the disciplinary objectives to
the System Optimizer and complete a single circle. Impor-
tantly, a high-efficient parallel optimization strategy can be
adopted to facilitate the whole optimization process.

Based on the sketchy MDO framework in Fig. 3, a
targeted analysis of the corresponding disciplines can be
conducted accordingly. The finally implemented framework
could be appropriately modified based on the specific MDO
algorithm/architecture. The final XDSM framework in the
paper is provided in Section 5.

3 BTMS modeling

The BTMS is a complex engineering system that consists
of a number of sub-models under different disciplines. For
example, the layout of the battery cells affects the heat trans-
fer; the air supply system consumes battery power besides

the cooling function. To successfully and effectively
optimize the BTMS, a multidisciplinary design optimization
(MDO) model of BTMS is developed.

A high-fidelity CFD model of an air-based BTMS is first
developed to simulate the BTMS performance. This high-
fidelity CFD model is accurate for simulation. However, it
is challenging to perform the BTMS optimization directly
based on the high-fidelity CFD model due to its expensive
computational time. To this end, surrogate models are devel-
oped to represent the key BTMS performance metrics as
functions of the design variables. The developed surrogate
models are then integrated into the MDO architecture.

3.1 Air-based BTMS scheme

Figure 4 shows an air-based BTMS scheme with a lithium-
ion battery module, which contains an air supply system and
36 lithium-ion prismatic cells. The dimension of a single
cell is 65 mm × 151 mm × 16 mm. The battery cells are
positioned vertically inside the module with evenly spaced
cooling passages between neighboring cells. A cooling fan
positioned on the side of the module is used to provide the
cooling air to improve the thermal environment of the bat-
tery module. The cells are numbered 1 to 36 in sequence
while the passages are numbered 1 to 37, with 1 denoting
the cell or the passage closest to the fan. The air steam flows
into the inlet manifold that is at the bottom of the battery
module, and passes through the 37 passages. After cooling
the battery cells, the air converges in the outlet manifold and
flows out to the atmosphere. The height of the manifold is
20 mm. Note that, the inlet and outlet are on the same side
of the battery module.

In the BTMS system, the fan is powered by the battery
module. The ideal fan power (PF ) can be calculated by the
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Fig. 4 A typical air-based BTMS scheme

volume flow rate (V̇ ) and the pressure difference between
the air inlet and outlet (�p), which is described by (1).

PF = �pV̇ /ε (1)

where ε is the efficiency of the fan. The equation shows that,
for a given power value, high pressure air by the fan means
a low volume flow rate. The heat generated by a battery cell
can be calculated by (2).

q = I (Uo − Uc) = I 2Ri (2)

where q is the heat generated by battery cell; I is the cur-
rent flowing through the battery cell; Uo is the open circuit
voltage; Uc is the cell voltage; and Ri is the direct current
internal resistance of the battery cell. Equation (2) shows
that if the power of the fan increases, the heat generated by
the battery cell also increases. In this study, the heat is con-
verted to the heat flux on the battery cell surface, as shown
in (3).

q̇ = q/S (3)

where q̇ is the heat flux; S is the heat exchange area between
the air and battery cell. The heat is taken away by the cool-
ing air. When the battery cell is at a heat balance, the heat
can also be described by (4).

q = ρV̇ cp(Tout − Tin) (4)

where ρ is the density of air, and ρV̇ represents the mass
flow rate of the air; cp is a specific heat capacity; Tout and
Tin are the air temperatures at the passage inlet and outlet,
respectively. The heat exchange between the battery cell and
the air is calculated by (5)

q = h(Tcell − Tair ) (5)

where h is the heat transfer coefficient; Tcell is the battery
cell temperature; Tair is the cooling air temperature. It is

seen from (4) and (5) that, the heat transfer significantly
depends on the mass flow rate of the cooling air.

3.2 CFD model

In order to better optimize the performance of the battery
in EVs with a high reliability, the temperature of the cool-
ing air pumped into the BTMS by the fan is set to be 40 ◦C
(e.g., a hot summer day). For the heat generated by battery
cell, q (W ), it is assumed that the heat only generates on
the battery cell surface with a uniform heat flux, q̇ (W/m2).
Based on the thermodynamics and fluid dynamics, three key
parameters are selected as the inputs of surrogate models:
the passage spacing size b (mm), the heat flux from the
battery cell to the air, q̇ (W/m2), and the mass flow rate
of the cooling air, ṁ (kg/s). Three performance indexes
are selected as the outputs, including the pressure drop, �p

(Pa), the maximum temperature difference, �T (◦C), and
average temperature, TA (◦C). Section 4 will further explain
why these parameters and metrics are selected.

In this study, the commercial software ANSYS 17.0 is
utilized. The realistic κ − ε turbulence model and the SIM-
PLEC method are used to solve the simulations based on the
steady and pressure-based solver. The second order upwind
is used to disperse the pressure, density, and momentum
equations. The thermal radiation transfer is assumed to be
negligible in the work. The air inlet is specified as the mass
flow rate boundary condition, whereas the outlet is set as
the pressure outlet boundary condition. The surface of the
battery cell is set as the heat flux condition. The adiabatic
and no-slip wall boundary condition is applied to the walls
of the battery module. Typical distributions of the total pres-
sure and total temperature are shown in Fig. 5a and b, where
ṁ = 0.0281 kg/s, q̇ = 204.38 W/m2, and b = 2.60 mm. It
is observed that the mass flow rates in different passages are
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Fig. 5 Distributions of the total pressure and the total temperature for a typical case

different, which results in the temperature difference among
battery cells. Due to the different air temperatures at the
passage inlet and outlet, the temperature distribution on the
battery cell is uneven as well.

3.3 Surrogate models

When conducting a MDO for complex systems, one of the
most significant challenges is how to successfully realize
the data exchange and data fusion between the sub-system
analysis modules and the system analysis module. In gen-
eral, the sub-system analysis modules generate exchang-
ing data between different disciplines through expensive
simulations or experiments. To use these computationally
expensive simulations or experiments in the MDO process,
surrogate modeling provides a tractable and inexpensive
approximation. Surrogate modeling consists of three major
components: design of experiments (DoE), surrogate model
construction, and accuracy evaluation. A variety of DoE
sampling methods have been available in the literature, such
as the Latin Hypercube Sampling (LHS) (McKay et al.
2000), Sobol sequence (Sobol’ 1967), Orthogonal Array
Design (OAD) (Rao 1947), Uniform Design (UD) (Fang
et al. 2000), Full-factorial Design (FFD), and Central Com-
posite Design (Box 1954). There also exist a number of
methods for constructing surrogate models, such as the
Response Surface Method (RSM), Kriging Model (Stein
2012), Radial Basis Function (RBF) (Buhmann 2003),

and Support Vector Regression (SVR) (Vapnik and Vapnik
1998).

The Sobol sequence is one of the most widely used DoE
methods in surrogate modeling, which has been adopted in
this study to generate 40 training points. Compared with
other DoE methods, Sobol sequence provides a better uni-
formity, especially for high-dimensional problems (Zhang
et al. 2013). The Sobol samples selection and distribution
are shown in Fig. 6. The Concurrent Surrogate Model Selec-
tion (COSMOS) method proposed by Chowdhury et al.
(2014) is adopted to select and construct the surrogate
models.

3.4 Concurrent surrogate model selection (COSMOS)
in the MDO of BMTS

As mentioned in Section 3.3, there are many model types
that can be chosen to construct the surrogate model, some
of which are listed in Table 1. Besides the model types, dif-
ferent types of kernel functions and hyper-parameters (as
listed in Table 1) also significantly affect the accuracy of
surrogate modeling. The combination of these three levels
(model types, kernel functions, and hyper-parameters) can
produce a variety of characteristically different surrogate
models. For example, 4 kinds of kernel functions for the
Kriging model are listed in Table 1. Each kernel function has
its own hyper-parameters. More importantly, when using
surrogate models during the MDO process, engineers/users
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Fig. 6 Distribution of the DoE samples in the MDO of BTMS

usually cannot fully master all the disciplines and perfectly
configure each discipline with a suitable surrogate model.
So the selection of surrogate model types and configura-
tions for any given training data is often far from intuitive
(Chowdhury et al. 2014), and an effective model selection
approach is desired to address this challenge.

In this paper, the COSMOS method proposed by
Chowdhury et al. (2014) is adopted to automatically deter-
mine the specific configurations (such as optimal model
type, kernel function, and hyper-parameters) of surrogate
models for MDO. This approach can achieve a reasonable
allocation at all the three levels from a pool of diverse
model candidates, including the RBF, Kriging, SVR, etc..
The COSMOS uses the Predictive Estimation of Model
Fidelity (PEMF) (Mehmani et al. 2015) to evaluate the

criterion and find the best configuration for surrogate mod-
eling concurrently and automatically. The PEMF, a robust
implementation of sequential k-fold cross-validation, estab-
lishes intermediate surrogates at each iteration and predicts
the error distributions by using the estimated median and
the maximum errors. Then the estimated modes of the error
distributions are used to predict the expected median and
maximum errors in the final surrogate model. In the COS-
MOS framework, there are five different error criterions
predicted by PEMF serving as the candidates for selection,
such as the modal values and the variance values of the
median/maximum errors. In this study, the modal values of
the median and the maximum errors in the surrogate model
are used as the two selection criteria to conduct the auto-
matic selection for surrogate models. The Cascaded tech-
nique and the One-Step technique are two major approaches
to implement COSMOS (Chowdhury et al. 2014). In the
One-Step technique, the global pool of model-kernel can-
didates is divided into three smaller pools of model-kernel
candidates (φn, n = 1, 2, 3) based on the number of con-
stituent hyper-parameters (n) involved (Chowdhury et al.
2014). By using the PEMF as error predication, the opti-
mization seeks to minimize the surrogate model error. Then
the optimal configuration selection can be performed sepa-
rately (in parallel) for each candidate pool. After obtaining
the Pareto optimal configurations of each pool, the Pareto
optimal configurations of all the global pool can be obtained
by a Pareto filter. Finally, the optimal configuration of the
surrogate model can be selected in accordance with spe-
cific conditions of the optimization problem. In this paper,
the PEMF toolbox is adopted to establish the COSMOS
framework (Mehmani et al. 2015). The One-Step tech-
nique using the Non-Dominated Sorting Genetic Algorithm
II (NSGA-II) (Deb et al. 2002) is implemented in the
COSMOS framework to perform the optimization, and both

Table 1 The configurations of
surrogate models Model type Kernel function Expression Hyper-Parameter

RBF Linear r None

Cubic r3 None

Gaussian e−r2/2σ Shape parameter (σ )

Multiquadric (r2 + σ 2)0.5 Shape parameter (σ )

Kriging Linear max(1 − θr, 1) Correlation parameter (θ )

Exponential e−θr Correlation parameter (θ )

Gaussian e(−θr)2
Correlation parameter (θ )

Spherical 1 − 3ξ2 + 2ξ3 Correlation parameter (θ )

ξ = max(1 − θr, 1)

SVR Linear (xT
i , xj ) Penalty parameter (C)

Gaussian e−γ ‖xi−xj ‖, γ > 0 Penalty parameter (C)

Kernel parameter (γ )

Sigmoid tanh(γ xT
i xj + r) Penalty parameter (C)

Kernel parameter (γ )
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the sample size and the generation number are set to be
100.

4 Configurations of BTMS sub-systems

4.1 Battery thermodynamics

During charge and discharge, lithium-ion cells generate a
mass of heat from various chemical and electrochemical
reactions. All the generated heat is assumed to be spa-
tially uniform and attributed to the internal Ohmic resistance
(Javani et al. 2014a). The accumulation of generated heat
can increase the battery temperature; the uneven distribu-
tion of the generated heat can lead to an uneven temperature
distribution in the battery pack among different cells and
modules. Thus, two main problems can be triggered (Rao
and Wang 2011): i) the high temperature during charge and
discharge may make the battery temperature exceed permis-
sible levels and decrease the battery performance. ii) the
uneven temperature distribution in the battery pack may lead
to a localized deterioration. In order to obtain a better vehi-
cle performance, reliability, and safety, the battery average
temperature TA (◦C) and the maximum temperature differ-
ence �T (◦C) among different cells are chosen to be the two
performance metrics of the thermodynamics in the air-based
BTMS.

In this paper, two surrogate models are established to
represent the performance metrics of the thermodynam-
ics as functions of design parameters. As mentioned in
Section 3.4, the COSMOS is used to select the most appro-
priate surrogate models. By using the NSGA-II, the final
Pareto optimal solutions of TA and �T marked by red cir-
cles are shown in Fig. 7a and b, respectively, where φi

denotes the ith hyper-parameter class classified based on
the number of hyper-parameters. By considering both of
the maximum error and median error, the selected best

configuration of the surrogate model of the average battery
temperature TA is: the RBF model with a Multiquadric basis
function and a shape parameter, σ=0.2819. The median
error and maximum error of the established RBF of TA are
0.0184 and 0.0236, respectively. For the surrogate model of
the maximum temperature difference �T , the RBF model
with a Cubic basis function is selected, and the median
error and maximum error are 0.0114 and 0.0439, respec-
tively. Figure 8a and b show the approximated models of TA

and �T , and the surrogate models are denoted by (6) and
(7).

TA = fs(ṁ, q̇, b) (6)

�T = fs(ṁ, q̇, b) (7)

4.2 Fluid dynamics (air)

In the air-based BTMS, the cooling air is pumped by a
fan, flowing through the passages between different cells
and flowing out of the battery module through the outlet,
as shown in Fig. 4. There is pressure drop occuring due
to the frictional resistance in the pipes/ducts, the expan-
sion and contraction losses at the and the outlet of the
module (Park and Jung 2013). The pressure drop has a
great effect on the required pump size, which influences
the energy consumption and vehicle integration by requir-
ing mechanically stronger cooling plates to withstand the
higher pressure forces, leading to higher costs (Smith et al.
2014). So the pressure drop �p (Pa) is taken as a per-
formance metric of the fluid dynamics for the air-based
BTMS.

The surrogate model of the pressure drop �p is built
to represent the performance metric of the fluid dynamics
as a function of design parameters. By adopting the COS-
MOS method, the final Pareto optimal solutions marked
by red circles are shown in Fig. 9, where φi denotes the
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ith hyper-parameter class classified based on the number
of hyper-parameters. By considering both of the maxi-
mum error and median error, the selected best configuration
of the surrogate model of the pressure drop (�p) is: the
RBF model with a Multiquadric basis function and a shape
parameter, σ=0.2776. The median error and maximum error
of the RBF model the pressure drop �p are 0.0207 and
0.0503, respectively. Figure 10 shows the surrogate model
of �p.

�p = fs(ṁ, q̇, b) (8)

4.3 Lifetime model analysis

The semi-empirical lifetime model of the lithium-ion bat-
tery proposed by Wang et al. (2014) is adopted in this paper.
This lifetime model is obtained through a well-designed
experiment by using three important correlation parameters
collected from a large cycle-test matrix, i.e., the time, the
temperature, and the discharge rate (Wang et al. 2016). As
defined by Wang et al. (2014), this lifetime model takes both
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the calendar loss and capacity loss into account, described
as follows:

Qloss = QCalendar
loss + Q

Cycle
loss (9)

QCalendar
loss = f e−Ea/R(T +273)t0.5 (10)

Q
Cycle
loss = B1 · eB2·IrateAh (11)

B1 = a(T + 273)2 + b(T + 273) + c (12)

B2 = d(T + 273) + c (13)

Where QCalendar
loss denotes the calendar loss (%); Q

Cycle
loss

denotes the capacity loss (%); t denotes the time (day);
T denotes the battery temperature (◦C); Irate denotes the
charge/discharge rate expressed as a C-rate; B1 denotes
the pre-exponential factor; B2 denotes the exponential fac-
tor; Ah denotes the Ah-throughput (Ah) that is function of
time t . The remaining relevant parameters are explained in
Table 2 and all the values are specific to the lithium-ion
battery.
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Table 2 The parameters used in the lifetime model of the lithium ion
battery (Wang et al. 2014)

Parameter (unit) Meaning Value

Ea (J/mol) Activation energy 2.45 × 104

R (J/(mol · K) Gas constant 8.314

a (Ah−1K−2) Coefficient 8.61 × 10−6

b (Ah−1K−1) Coefficient −5.13 × 10−3

c (Ah−1) Coefficient 0.763

d (1/K−(C − rate)) Coefficient −6.7 × 10−3

e (C − rate−1) Coefficient 2.35

f (day−0.5) Pre-exponential factor 14,876

By assuming that the EV is driven two hours per day
(e.g., 1-hour driving distance between home and work-
place), the EV should be charged once every four days. The
C-rate is set to be 3.5 C in this paper. Then the relation-
ship between the battery lifetime and key battery design
parameters can be explored. Usually, the battery lifetime is
defined as the period from the initial starting time to the
time when the battery loses 20-30% of its original stor-
age capacity (Wang et al. 2016). In this paper, the critical
capacity loss of lithium-ion battery is set to be 30%. The
effects of the battery used time and battery temperature on
the battery capacity loss are shown in Fig. 11. In Fig. 11a,
the red semitransparent plane is the critical level of 30%
battery capacity loss and the red intersection curve denotes
the critical line of the battery life. Only the points on the
response surface below the semitransparent critical plane
mean the battery is working within the span of lifetime.
It is observed that the battery capacity loss increases with
the increasing used time and battery temperature. More sig-
nificantly, the capacity loss rate of the lithium-ion battery
rises more drastically with the increasing battery temper-
ature. Figure 11b shows the battery lifetime affected by

the battery temperature in the range of 40 ◦C to 65 ◦C in
more detail. It is observed from Fig. 11b that, if the bat-
tery temperature works at 40 ◦C, the battery lifetime is
more than ten years. With the increasing battery temper-
ature, the battery life experiences a quick decrease with
a diminishing acceleration corresponding to equal temper-
ature decrease. So, if the battery temperature is reduced
by even a small amplitude in the sensitive range approxi-
mately from 40 ◦C to 55 ◦C, the battery lifetime will have
a significant rise. Thus, this paper aims to reduce the batt-
ery’s working temperature by improving the performance of
BTMS.

4.4 Structure analysis

The battery miniaturization (with high energy density) has
become a trend in the EV industry. By realizing the minia-
turization, the inner space of the EV can be saved and the
restrictions of the automotive chassis and suspension sys-
tem will be reduced. In this paper, the battery volume is also
taken into account in the MDO process. The battery vol-
ume can be divided into two parts, including the volume
of the battery module (Vc) and the volume of the fan (VF ).
The volume of the battery module (Vc) can be estimated by
the volume of a cuboid abstracted from the battery module.
Generally, the fan’s volume increases with the increasing
fan power. Thus the fan’s volume can be described as a func-
tion of the fan’s output power. The volume of the battery can
be described as follows:

V = Vc + VF (14)

Vc = wc · hc · lc (15)

VF = κ · PF (16)
Where, wc, hc, and lc are the width, the height, and

the length of the battery module, respectively; κ is the
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proportionality coefficient, and κ = 5 × 10−5m3/W in this
paper.

5 MDO of BTMS

5.1 MDO establishment

As mentioned in Section 3.2, the temperature of the cooling
air pumped into the BTMS is set to be 40 ◦C to ensure the
reliability of the MDO in this paper. According to the BTMS
disciplinary analysis in Section 4, three design variables
are selected as shown in (17), including the mass flow rate
ṁ (kg/s), the heat flux q̇ (W/m2), and the passage spacing
size b (mm).

X = [ṁ, q̇, b] (17)

Based on the physical characteristics and performance
requirement of the lithium-ion battery used in EVs, the
upper and lower bounds of the three design variables are
defined in Table 3.

There are four objectives in the BTMS optimization: (i)
the battery lifetime t (year) is maximized; (ii) the maxi-
mum temperature difference �T (◦C) among battery cells
is minimized; (iii) the power consumed by fan PF (W) is
restrained within a reasonable range so as to save more
power for the EV running and to minimize the size of the
fan; (iv) the volume of the battery V (m3) is minimized. This
multi-objective optimization problem can be transformed
into a single-objective optimization problem by distributing
different weights to each objective. So the final objective
function is described as:

f =
(

1

t

)λ1

�T λ2 · P
λ3
F · V λ4 (18)

where λi’s are the weights. In this paper, large weights
are assigned to the battery lifetime and battery temperature
difference, λ1 = 0.6, λ2 = 0.2, λ3 = 0.1, and λ4 = 0.1.

The objectives and constraints can mutually transform
between each other in the MDO process; optimization
objectives in one sub-system may be used as constraints
in another sub-system (Sun et al. 2016). According to
the requirement of the physical structure and performance
associated with different disciplines, including the fluid

Table 3 Upper and lower bounds of design variables

Design parameter (unit) Lower bound Upper bound

ṁ (kg/s) 0.01 0.03

q̇ (W/m2) 200.00 340.00

b (mm) 1.00 4.00

dynamics, thermodynamics, and structure, the constraints in
this study are summarized in (19):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g1 = PF − 4
g2 = −�p + 100
g3 = �p − 300
g4 = TA − 50
g5 = V − 0.012
g6 = q̇ − 300

(19)

It should also be noted that the battery simultaneously
provides power for both the cooling fan and the vehicle. So
the heat generation of all the battery cells can be divided
into two parts, as illustrated in (20):

q̇ = ξ
�pṁ

36Aρη
+ q̇v (20)

where ξ is the coefficient of heat production; η is the scale
coefficient of the heat generation of the fan; A (m2) is the
surface area of the battery cell; ρ (kg/m3) is the air density;
q̇v (W/m2) is the heat generation due to vehicle operations
or battery charging.

The overall MDO model of the BTMS is formulated as:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

find X
min f = ( 1

t
)λ1�T λ2 · P

λ3
F · V λ4

s.t. gi ≤ 0(i = 1, 2, 3, 4, 5, 6)

�p = f (ṁ, q̇, b)

q̇ = ξ
�pṁ

36Aρη
+ q̇v

(21)

5.2 MDO architecture

To overcome the computational challenge and find efficient
optimization algorithms, a number of MDO architectures
have been proposed in the literature (Perez et al. 2004).
MDO architectures can be divided into two main cate-
gories: single-level formulations (e.g., All-At-Once (AAO)
(McAllister et al. 2005), Multi-Disciplinary Feasible (MDF)

Discipline1

Discipline2

Discipline3

Optimizer

Design 

variables

Objectives

Constraints

Multidisciplinary Design Analysis

Fig. 12 A typical Multi-Disciplinary Feasible (MDF) architecture
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(Cramer et al. 1994), Individual Discipline Feasible (IDF)
(Dennis and Lewis 1994) and multi-level formulations (e.g.,
Collaborative Optimization (CO) (Gage and lan Sobieski
1996), Concurrent Subspace Optimization (CSSO) (Sellar
et al. 1996), and Bi-Level Integrated Synthesis System
(BLISS) (Sobieszczanski-Sobieski et al. 2000)). By con-
sidering the state variables, objective functions, constraints,
and the number of design variables, the MDF architec-
ture is chosen to conduct the MDO of BTMS in this
paper. As shown in Fig. 12, the system optimizer distributes
the design variables into the multiple disciplinary analysis
(MDA) module that is an indispensable analyzer to realize
the interdisciplinary consistency. In the MDA module, each
individual discipline receives the system design variables
from the system optimizer and the coupled design variables
from other disciplines. The MDA analyzer transfers the state
variables to the system optimizer to evaluate the constraints
and objectives.

The XDSM, a new diagram for visualizing the MDO
process is built to explain the MDF architecture of the
BTMS optimization, as illustrated in Fig. 13. The param-
eters xi’s are the three design variables and yi’s are the
two coupling state variables in the MDF process. In this
paper, the BTMS is decoupled into four sub-disciplines,
namely the battery thermodynamics, the fluid dynamics
(air), the structure, and the battery lifetime. Each of the
sub-discipline has its own model however with different
parameters coupled with each other. As shown in Fig. 13,
the parameter coupling analysis between different disci-
plines needs to be performed first by the MDA module.

Then the MDF process sequentially runs from Step 1 to
Step 7. After iterative computations, the optimal results can
be obtained.

5.3 MDO results

The initial values of mass flow rate (m0) and passage spac-
ing size (b0) are set as 0.02 kg/s and 3.00 mm, respectively.
The parameter of q̇0 is a state design variable coupled with
the pressure drop �p, which can be obtained in every iter-
ation during the MDO process. The initial pressure drop
�p and heat flux q̇0 are set as 180.00 Pa and 260.00
W/m2, respectively, and q̇v is set to be 250.00 W/m2.
The optimization histories of the objectives are shown in
Fig. 14, where the convergence curves approach to the opti-
mal solutions at the 67th iteration after some remarkable
fluctuations, with the objective value of 0.49. As illustrated
from Fig. 14b-e, the optimal temperature difference �T is
20.50 ◦C, the optimal volume of the battery is 0.0099 m3,
the optimal fan power is 3.36 W , and the optimal lifetime of
the lithium-ion battery is 5.16 year .

Table 4 shows the performance improvement of the
BTMS after the optimization. For the design variables, the
mass flow rate ṁ decreases from 0.0200 kg/s to 0.0182
kg/s by 9.00 %, the heat flux q̇ increases from 251.08
W/m2 to 251.17 W/m2 by 0.04 %, and the passage spac-
ing size b decreases from 3.00 mm to 1.70 mm by 43.33 %.
For the constraints, the average temperature is reduced from
55.44 ◦C to 49.56 ◦C by 10.58 %, and the pressure drop �p

is increased from 120.08 Pa to 142.90 Pa by 19.01%. For

Fig. 13 XDSM framework of MDF for the BTMS
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Fig. 14 The optimization
history of MDO using MDF
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Table 4 BTMS optimization
results Parameter Initial value Range Optimal value Improvement

Design ṁ (kg/s) 2.00×10−2 [0.01, 0.03] 1.82×10−2 −9.00%

variables q̇ (W/m2) 251.08 [100.00, 340.00] 251.17 +0.04%

b (mm) 3.00 [1.00, 4.00] 1.70 −43.33%

Constraints TA (◦C) 55.44 [0, 50.00] 49.56 −10.58%

�p (Pa) 120.08 [0, 320.00] 142.90 +19.01%

Objectives PF (W ) 3.10 min 3.36 +8.48%

�T (◦C) 48.45 min 20.50 −57.70%

V (m3) 1.05×10−2 min 0.98×10−2 −6.67%

t (year) 3.62 min 5.16 +42.37%

Note: the “+” sign means increase, and the “-” sign means decrease.

the objectives, the temperature difference decreases signifi-
cantly by 57.70 % from 48.45 ◦C to 20.50 ◦C. According to
the surrogate models of TA and �T in Fig. 8, the decrease
of the passage spacing size b and the mass flow rate ṁ

enables the reduction of the battery average temperature and
temperature difference. The power consumed by the fan is
increased from 3.10 W to 3.36 W by 8.48 %. This increase
of fan power is mainly because of the increase of the pres-
sure drop �p from 120.08 Pa to 142.90 Pa, to better cool
the battery temperature down. Also the volume of battery
is reduced by 6.67 % from 0.0105 m3 to 0.0098 m3. Finally,
the optimal lifetime of the lithium-ion battery is 5.16 year

compared to the initial value of 3.62 year . As discussed
in Section 4.3, the battery temperature has a direct effect
on the battery lifetime. Figure 15 shows the relationship
between the battery lifetime and the battery temperature
during the optimization iteration. It shows that the decrease
of the battery temperature from the 1st iteration to 67th
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Fig. 15 The iteration history of the lifetime related to the battery
temperature

iteration drives the battery lifetime to increase significantly
by 42.37 %.

6 Conclusion

A surrogate-based multidisciplinary design optimization
(MDO) of the air-based battery thermal management system
(BTMS) was developed in this paper. By using a decomposi-
tion method of a hierarchical model, the BTMS was decou-
pled into four disciplines, including the fluid dynamics,
the thermodynamics, the structure, and the battery lifetime.
The corresponding disciplinary analysis was conducted as
well. To perform the MDO based on the high-fidelity CFD
models, three surrogate models, selected automatically by
Concurrent Surrogate Model Selection (COSMOS) method,
were built to represent the corresponding sub-system per-
formance metrics. Design parameters of the mass flow rate,
heat flux, and passage spacing size were optimized by a
MDF architecture, and the MDO objectives were to max-
imize the battery lifetime and minimize the battery cells
temperature difference, fan power, and battery volume. The
optimization results showed that the lifetime of the bat-
tery module was significantly improved by reducing the
temperature difference and battery volume.

In this paper, the lithium-ion battery pack with the air-
based BTMS is assumed to have the same battery spacing
size. However, different spacing sizes could be used at dif-
ferent passages to improve the thermal performance, which
could be a significant extension for the battery optimization
in the future work. Besides, the sizes of the inlet, outlet,
and the passageway could also be taken into account in the
MDO.
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