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Abstract Uncertainty quantification accuracy of system per-
formance has an important influence on the results of
reliability-based design optimization (RBDO). A new uncer-
tain identification and quantificationmethodology is proposed
considering the strong statistical variables, sparse variables,
and interval variables simultaneously. Maximum likelihood
function and Akaike information criterion (AIC) methods
are used to identify the best-fitted distribution types and dis-
tribution parameters of sparse variables. The interval variables
are represented with evidence theory. Finally, a unified uncer-
tainty quantification framework considering the three types of
uncertain design variables is put forward, and then the failure
probability of system performance is quantified with belief
and plausibility measures. The Kriging metamodel and ran-
dom sampling method are used to reduce the computational
complexity. Three examples are illustrated to verify the effec-
tiveness of the proposed methodology.

Keywords Insufficient data . Uncertainty quantification .

Distribution parameter analysis . Interval uncertainty . Akaike
information criterion

1 Introduction

Reliability analysis is concerned with the assessment of sys-
tem performance in the presence of uncertainty. Reliability-
based design optimization (RBDO) approach attempts to find
the optimum structure such that the failure probability of sys-
tem performance is satisfied (Zhu and Du 2016), and has been
researched and applied widely by industry, government, and
academia (Cho et al. 2016; Matsumura and Haftka 2013;
Paulson and Starkey 2013; Suryawanshi and Ghosh 2015).

Uncertainties in the RBDO include input variable uncertain-
ty and model uncertainty. The uncertain input variables can be
divided into strong statistical variables, sparse variables, and
interval variables according to the available amounts of input
experimental data (Oberkampf et al. 2004). Strong statistical
variables are aleatory uncertain variables, which are inherent
and irreducible variation associated with the physical system
(Mullins et al. 2016). Sparse variables and interval variables are
epistemic uncertain variables, which derive from some levels of
ignorance or incomplete information about the physical system
or environment (Du 2006). Model uncertainty is also epistemic
uncertainty, which is due to uncertainty in model parameters,
numerical solution errors, andmodel form errors (Nannapaneni
et al. 2016). Model uncertainty has an important influence on
the reliability calculation, and has been researched widely
(Arendt et al. 2012) (Jiang et al. 2016) (Hu et al. 2017). The
paper focuses on the quantification of input variable uncertain-
ty, so model uncertainty is not considered, and the design mod-
el is assumed to be deterministic.

Representation and management of input variable un-
certainty are important in RBDO. Strong statistical vari-
ables are treated commonly as random variables with
known probability distributions, such as Normal distri-
bution, Gamma distribution, Beta distribution. Interval
variables are represented using non-probabilistic
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approaches, such as evidence theory, fuzzy theory, con-
vex model theory, interval method (Bae et al. 2004; Beer
et al. 2013; Simoen et al. 2015). The uncertainties of
sparse variables are complicated because their distribu-
tion types and distribution parameters are uncertain.
Though maximum likelihood estimation method
(Sankararaman and Mahadevan 2011), Bayesian method
(Xi et al. 2014), stochastic inverse method (Choi and
Yoo 2016), nonparametric minimum power method
(Chee 2017) have been presented, the accuracy of results
is influenced by the distribution types. If the selected
distribution types are not proper, the accuracy is very
low. Then, Kang et al. (2016) proposed a sequential
statistical modeling method to select appropriate candi-
date distribution types, but the method can accurately
identify distribution types only if sufficient data are
available. To solve this problem, a selection criterion
of distribution types is proposed for the uncertainty rep-
resentation of sparse variables in this paper.

The three types of input variable uncertainties are prop-
agated to the uncertainty of system performance, so large
amounts of methods have been proposed to integrate these
uncertainties and quantify the influence on the system per-
formance. The uncertainties of performance function con-
sidering the influences of both strong statistical variables
and interval variables are quantified using belief and plau-
sibility measures (Du 2008), probabilistic approach
(Zaman et al. 2011), sampling-based worst case method
(Yoo and Lee 2013), unified uncertain analysis method
(Li et al. 2016), and probability box model (Liu et al.
2017). The performance uncertainty under sparse variables
are calculated using Bayesian model averaging method and
Bayesian hypothesis testing method (Sankararaman and
Mahadevan 2013), possibility theory (Ren et al. 2015),
and single-loop sampling approach (Nannapaneni et al.
2016). Although many methods have been proposed for
uncertainty quantification, there is not a unified framework
of uncertainty quantification considering these three types
of input uncertain variables, simultaneously.

Bayesian theory is an attractive framework in uncer-
tainty representation and management, and has been
widely applied, such as identification of material param-
eters in high strength steel (Wang et al. 2015), construc-
tion of surrogate dictionary in elasticity problems
(Contreras et al. 2016), representation of model uncer-
tainty (Gal and Ghahramani 2016), construction of anal-
ysis model in credit scoring (Xia et al. 2017). Therefore,
through using Bayesian theory, we proposed a unified
uncertainty identification and quantification methodology
considering these three types of uncertain variables due
to insufficient input data. The construction of the work is

as follows: In Section 2, the three types of uncertainties
are analyzed and represented using different presentation
functions. The distribution types, distribution parameters
and weight ratios of sparse variables are identified and
represented in Section 3. In Section 4, the interval vari-
ables are represented using evidence theory. The unified
uncertainty quantification framework is proposed, and the
calculation flowrate is shown in Section 5 followed by
three examples in Section 6.

2 Analysis of different types of uncertain input
variables

There are three types of uncertain input variables, includ-
ing strong statistical variables X, sparse variables Y, and
interval variables Z (Oberkampf et al. 2004). The three
types of uncertain input variables are represented using
different presentation forms.

(1) Strong statistical variables X

The random distribution types can be acquired easily or a
large amount of experimental data is available, the uncertain
variablesX are sufficient to derive an accurate statistical mod-
el. So,X are specified by a probability distribution type θwith
precise distribution parameters ξ.

X∼θ ξð Þ: ð1Þ

The distribution type θ may be Normal distribution,
Gamma distribution, Exponential distribution, etc. If θ is
Normal distribution type, ξ are mean ξ1 and standard de-
viation ξ2.

(2) Sparse variables Y

Only a small number of experimental input point or interval
data can be acquired, it is time-consuming and computational
complex to acquire more input data, so the uncertain variables
Y are insufficient. A single distribution type may not fit the
available input data, so the sum of multiple distribution types
θi is used to fit Y.

Y∼∑wiθi ξ
i� �
; ð2Þ

where the subscript i represents the i-th distribution type. The
distribution type θi, weight ratiowi and distribution parameters
ξi will be identified and represented in Section 3.

(3) Interval variables Z
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Interval variables Z are also epistemic uncertain variables.
Experimental input data are missing, so the interval variable
zi ∈Z is specified using evidence theory. The details will be
explained in Section 4.1.

3 Parameter identification and representation
of sparse variables

3.1 Distribution parameter estimation under candidate
distribution type

The probability density function of sparse variables Y cannot
be acquired directly, it is difficult to fit Yusing arbitrary fixed
distribution type. So, the eight candidate distribution types are
used, which are shown in Table 1.

Assuming the insufficient data ofY containsm point data

ai(i = 1, ⋯ , m) and n interval data bj; bj

h i
j ¼ 1;⋯; nð Þ.

Let fy(y|ξ, θk) denote the probability density function
(PDF) under candidate distribution type θk(k = 1, ⋯ , 8)
and distribution parameters ξ. Firstly, for every candidate
distribution type θk, the likelihood estimation function

(Sankararaman and Mahadevan 2011) L(ξ, θk) using the
prescribed point data and interval data is constructed.

L ξ; θkð Þ∼ ∏
m

i¼1
f y y ¼ ai ξ; θkjð Þ

� �
∏
n

j¼1
∫b j

b j

f y y ξ; θkjð Þdy
" #

: ð3Þ

The maximum likelihood estimations of ξ under distribu-
tion type θk are acquired by maximizing L(ξ, θk). Further, the
uncertainty of distribution parameters ξ is calculated using
Bayes’ theorem. The probability density function fξ(ξ|θk) of
the distribution parameters ξ is expressed as

f ξ ξ θkjð Þ ¼ L ξ; θkð Þ
∫L ξ; θkð Þdξ : ð4Þ

3.2 Distribution type identification based on Akaike
information criterion

The estimated distribution parameters under different distribu-
tion type are different based on the same insufficient input
data. Therefore, Akaike information criterion (AIC) method
is employed to estimate the best-fitted distribution types and
corresponding weight ratios.

Table 1 The candidate
distribution type Distribution type Probability density function Parameters

θ1: Normal
f yð Þ ¼ 1ffiffiffiffiffiffiffi

2πξ22
p exp − y−ξ1ð Þ2

2ξ22

� � ξ1: location;

ξ2: scale

θ2: F

f yð Þ ¼ Γ
ξ1þξ2

2ð Þ
Γ

ξ1
2ð ÞΓ ξ2

2ð Þ
ξ1
ξ2

� �ξ1
2 y

ξ1−2
2

1þξ1
ξ2
y

h iξ1þξ2
2

ξ1: numerator degree

ξ2: denominator degree

θ3: Gamma
f yð Þ ¼ ξ

ξ1
2

Γ ξ1ð Þ y
ξ1−1e−ξ2y

ξ1: scale

ξ2: rate

θ4: Weibull

f yð Þ ¼ ξ2
ξ1

y
ξ1

� �ξ2−1
exp − y

ξ1

� �ξ2
	 
 ξ1: scale

ξ2: shape

θ5: Extreme value
f yð Þ ¼ 1

ξ2
exp y−ξ1

ξ2

� �
exp −exp y−ξ1

ξ2

� �� � ξ1: location

ξ2: scale

θ6: Uniform

f yð Þ ¼
1

ξ2‐ξ1
ξ1≤y≤ξ2

0 otherwise

8<
:

ξ1: lower endpoint

ξ2: upper endpoint

θ7: Exponential f(y) = ξ1 exp(−ξ1y) ξ1: scale

θ8: Log normal
f yð Þ ¼ 1

y
ffiffiffiffiffiffiffi
2πξ22

p exp − lny−ξ1ð Þ2
2ξ22

� �
; y > 0

ξ1: log mean;

ξ2: log standard deviation

Table 2 Intervals and BPAs of z
Interval [2, 2.15] [2.15, 2.3] [2.3, 2.5] [2.5, 2.6] [2.6, 2.85] [2.85, 3]

BPA 0.1 0.25 0.25 0.15 0.2 0.05
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AIC is the relative quality measure of statistical models for
a given set of data, which can compute the fitting degree of the
candidate distributions. (Gelman et al. 2013) The AIC value of
the candidate distribution type θk is defined in (5)

AICk ¼ 2numk−2ln Lmax ξ; θkð Þð Þ; ð5Þ

where, numk is the amount of estimated distribution parame-
ters in the candidate distribution type θk, Lmax(ξ, θk) is the
maximum value of the likelihood function L(ξ, θk) under dis-
tribution type θk, the subscript k(k = 1, ⋯ , 8) presents the
eight candidate distribution type defined in Section 3.1.

The AIC values of the eight candidate distribution types are
calculated and denoted byAIC1 , AIC2 , ⋯ , AIC8, respective-
ly. Let AICmin be the minimum of these values. Then, the
probability Pθ_kthat the k-th model minimizes the estimated
information loss can be interpreted in (6).

Pθ k ¼ exp AICmin−AICkð Þ=2ð Þ: ð6Þ

The distribution types withPθ_k ≥ 0.1 (Taguri et al. 2014) are
selected to represent the sparse variables Y. The weight ratios
wk of these selected distribution types are proportional to the
probability Pθ_k, and the summation of these weight ratios is 1.

wk ¼ Pθ k

∑Pθ k
: ð7Þ

As an example, suppose that the AIC values are 100,
102, 104, 106, 108, 110, 112 and 114, respectively. Then
the probabilities of these distribution types Pθ are 1,
0.368, 0.135, 0.05, 0.02, 0.01, 0.0025 and 0.0009, respec-
tively. Therefore, the distribution type 1 (Normal distribu-
tion), distribution type 2 (F distribution) and distribution
type 3 (Gamma distribution) are used, and the weight
ratios are 0.665, 0.245, and 0.090, respectively.

3.3 Distribution parameters estimation using mixed
distribution types

After determining the distribution types and correspond-
ing weight ratios, the distribution parameters are deter-
mined using the Bayesian model averaging method
(Nannapaneni et al. 2016).

The probability density function under multiple distribu-
tion types is calculated using (8).

f y y ξjð Þ ¼ ∑wk f y y ξ; θkjð Þ; ð8Þ

where θk is the selected distribution type,wk is the correspond-
ing weight ratio, and fy(y|ξ, θk) is the probability density func-
tion under distribution type θk,

The combined likelihood function for insufficient input
point data and interval data is constructed as follows.

L ξð Þ ¼ ∏
m

i¼1
f y y ¼ ai ξjð Þ

� �
∏
n

j¼1
∫b j

b j

f y y ξjð Þdy
" #

: ð9Þ

The optimum distribution parameters ξ∗ of the selected
distribution types are calculated through maximizing L(ξ).
Further, the uncertainty of the distribution parameters ξ is
calculated using Bayes’ theorem. The probability density
function fξ(ξ) is expressed in (10).

f ξ ξð Þ ¼ L ξð Þ
∫L ξð Þdξ : ð10Þ

Table 3 Optimum distribution parameters under candidate distribution
type

Distribution type Parameter ξ1 Parameter ξ2 AIC Value

Normal distribution 4.4 0.8 22.62

F distribution 50 1.7 46.84

Gamma distribution 44.3 0.1 22.19

Weibull distribution 4.8 6.1 23.19

Extreme value distribution 4.8 0.8 24.01

Uniform distribution 3.7 5.6 18.35

Exponential distribution 4.5 — 36.54

Log normal distribution 1.6 0.3 25.81

Fig. 1 Input experimental data of design variables
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3.4 Discrete representation of uncertain distribution
parameters

To reduce the computational difficulty in the representation of
sparse variables, the continuous uncertain distribution parameters
ξ are dispersed in the neighborhood of optimum distribution
parameters ξ∗. For example, there are mm parameters ξ1 , ξ2 ,

⋯ , ξmm in ξ, and the optimum parameters are ξ*1; ξ
*
2;⋯; ξ*mm,

respectively. In the dispersion of ξi, ξ1 , ⋯ , ξi − 1 , ξi + 1 ,

⋯ , ξmm are fixed to be ξ*1;⋯; ξ*i−1; ξ
*
i−1;⋯; ξ*mm, respectively.

The step to step flowrate to disperse ξi is shown as follows.

Step 1: The lower and upper bound of distribution parameter
ξi are determined through analyzing the probability

density function fξ(ξ) in (10). In theory, the uncertain
design space of ξi is (−∞, +∞), it is impossible to
obtain the bounds. So, the 99% confidence interval
is used, the lower bound is set to be

ξmin
i ¼ Γ−1

ξi
0:005ð Þ, and the upper bound is set to

be ξmax
i ¼ Γ−1

ξi
0:995ð Þ, where Γ−1

ξi
pð Þ is the inverse

cumulative distribution function of ξi.
Step 2: The interval ξmini ; ξmaxi

� �
is decomposed according to

the inverse cumulative distribution function. ξ ji ¼ Γ−1
ξi

0:1 jð Þ; j ¼ 1;⋯; 9 are calculated, and then the design
space of ξi is decomposed to ten Bayesian evidence

intervals, ξmini ; ξ1i
� �

, ξ ji ; ξ
jþ1
i

h i
j ¼ 1;⋯; 8ð Þ and

ξ9i ; ξ
max
i

� �
, which have the same BPA m = 0.1.

Step 3: The long interval is decomposed. If the interval length

ξ jþ1
i ‐ξ ji > 0:2 ξmaxi −ξmini

� �
, the interval is decomposed

to ξ ji ; ξ ji þ ξ jþ1
i

� �
=2

h i
and ξ ji þ ξ jþ1

i

� �
=2; ξ jþ1

i

h i
,

and the corresponding BPA are calculated using the
cumulative distribution function of ξi.

Step 4: If the length of the decomposed sub-interval

exceeds 0:2 ξmax
i −ξmin

i

� �
, Step 3 is implemented

again.
Step 5: After executing Step 4, the uncertain distribution

parameters ξ are decomposed into nm sub-interval

ξ j−1i ; ξ ji
h i

j ¼ 1;⋯; nmð Þ, where ξ0i ¼ ξmin
i and

ξnmi ¼ ξmax
i . Then ξi is represented using discrete

points ξ j−1i þ ξ ji
� �

=2 j ¼ 1;⋯; nmð Þ with the BPA

of interval ξ j−1i ; ξ ji

h i
.

Fig. 2 Probability density function under candidate distribution types

Fig. 3 Probability density function of distribution parameters
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4 Representation of interval variables based
on evidence theory

4.1 Evidence theory

Evidence theory, also referred to as Dempster-Shafer
(DS) theory, is presented by Shafer (Shafer 1976). It

combines evidence from different incomplete knowledge
situations and arrives at a degree of belief that considers
all available evidences. In evidence theory, the basic
probability assignment (BPA) represents the uncertain
distribution. There are three formations of BPAs, includ-
ing general, Bayesian and consonant BPA, respectively
(Tao et al. 2016).

Fig. 4 Sampling points and BPAs of uncertain distribution parameters

Fig. 5 Belief and plausibility
function of performance functionG
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There are no experimental input data, and the BPAs are
acquired from the expert knowledge, so the Bayesian BPA
structure is used to represent interval variables Z. Let Ψ de-
note the set of all possible values for the interval variable Zi,
and γ is the subset ofΨ. The BPA sZi γð Þ satisfies the follow-
ing axioms (Du 2008).

sZi γð Þ ≥ 0 if γ∈Ψ
sZi γð Þ ¼ 0 if γ∉Ψ
∑
γ∈Ψ

sZi γð Þ ¼ 1

8><
>: : ð11Þ

While there are multiple interval variables, the multi-
ple BPA structures can be aggregated using the rules of
combination, which is similar to a joint probability in
probability theory. For example, there are interval vari-
ables Z1 and Z2, the joint BPA sZ(γZ) can be calculated
using (12).

sZ γZð Þ ¼ sZ1 γ1ð ÞsZ2 γ2ð Þ when γZ ¼ γ1 � γ2
0 otherwise


: ð12Þ

4.2 Uncertain measure of interval variables

In the reliability analysis problem only considering inter-
val variables Z = {Z1, Z2, ⋯ , Zq}, the system perfor-
mance function is expressed by G = g(Z), and the failure
model F is defined as F = {Z|g(Z) ≤ c}, where c is a limit
state. mZ(γ) is the joint BPA over the interval space
Z = {Z1, Z2, ⋯ , Zq}, the failure likelihood of the system
performance function is quantified by belief measure
Bel(F) and plausibility measure Pl(F).

The belief measureBel(F) is the lower bound of failure
probability, which reflects the degree of belief that the failure
event F would occur. It is calculated by adding the BPAs of
subset γ entirely within the failure region F = {Z|g(Z) ≤ c},
which is shown in (13)

Bel Fð Þ ¼ ∑
γ∈F

sZ γð Þ: ð13Þ

The plausibility measure Pl(F) is the upper bound of failure
probability, which is calculated by adding the BPAs of the
subsets γ that are in the failure region and the BPAs of the
subsets γ which intersect with the failure region. So Pl(F) is
defined as follows.

Pl Fð Þ ¼ ∑
γ∩F∉φ

sZ γð Þ: ð14Þ

Then the true failure probability pF is bounded in the inter-
val between Bel(F) and Pl(F), namely.

Bel Fð Þ≤pF ≤Pl Fð Þ: ð15Þ

5 Uncertainty quantification considering multiple
types of uncertain input variables

5.1 Reliability calculation considering mixture
uncertainties

The system performance function considering three types
of uncertainties can be expressed as G = g(X, Y(ξ), Z).

Table 4 Uncertainty quantification results of mathematical example

Proposed method Monto Carlo method

Belief value 0.8960 0.8881

Plausibility value 0.9830 0.9816

Evaluation number 103 6 × 107

Fig. 6 A crank-slider mechanism

Table 5 Strong statistical variables X

Variables Mean Standard deviation Distribution types

x1 100 mm 0.01 mm Normal

x2 400 mm 0.01 mm Normal

x3 250 kN 25 kN Normal

Table 6 Interval
variables Z Interval variables Intervals BPA

z1 [100120]

[120140]

[140150]

0.2

0.4

0.4

z2 [0.15 0.18]

[0.18 0.23]

[0.23 0.25]

0.3

0.3

0.4

Unified uncertainty representation 1311



The strong statistical variables X are expressed using
probability distribution function with determinate distri-
bution parameters. The sparse variables Y are determined
with multiple distribution types, and the distribution pa-
rameters ξ are represented using discrete sampling points

with their BPAs. The interval variables Z are quantified
using intervals with their BPAs.

The uncertain distribution parameters ξ are represented
using discrete sampling points (ξi − 1 + ξi)/2(i = 1, ⋯ , nm)
with the BPA of interval [ξi − 1, ξi], and the uncertain interval

Fig. 7 Probability density function of distribution paramters

Fig. 8 Belief and plausibility
measure of performance function
G
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variables Z are represented using intervals [ηj,ηj + 1](j = 1,
⋯ , nn) with their BPAs.

According to the theorem of total probability, the total fail-
ure probability pF can be computed by

pF ¼ Pr g X;Y ξð Þ;Zð Þ≤cf g
¼ ∑

nm

i¼1
∑
nn

j¼1
Pr g X;Y ξð Þ;Zð Þ≤c ξ∈ ξi−1;ξi� �

;Z∈ η j;η jþ1

� ���� �
Pr ξ∈ ξi−1;ξi� �� �

Pr Z∈ η j;η jþ1

� �� �
≈ ∑

nm

i¼1
∑
nn

j¼1
Pr g X;Y

ξi−1 þ ξi

2

	 

;Z

	 

≤c Z∈ η j;η jþ1

� ��� �
Pr ξ∈ ξi−1;ξi

� �� �
Pr Z∈ η j;η jþ1

� �� �
¼ ∑

nm

i¼1
∑
nn

j¼1
pF ijPr ξ∈ ξi−1;ξi� �� �

Pr Z∈ η j;η jþ1

� �� �
:

ð16Þ

where

pF ij ¼ Pr g X;Y
ξi−1 þ ξi

2

	 

;Z

	 

≤c Z∈ η j;η jþ1

� ��� �
: ð17Þ

The minimum and maximum of pF_ij are defined to be pLF ij
and pUF ij, respectively. The Kriging model and random sam-

pling method are used to calculate pLF ij and pUF ij. Optimal

Latin Hypercube technique is used to obtain the sample points,
and then the Kriging metamodel G of system performance
function G is constructed using MATLAB Kriging Toolbox

DACE (Søren et al. 2017). In the sub-interval ξ ∈ [ξi − 1, ξi]
and Z ∈ [ηj, ηj + 1], The ξm random samplings of ξ ∈ [ξi −
1, ξi] and zn random samplings of Z ∈ [ηj,ηj + 1] are obtained,
and then the system performance under these sample points are
calculated using the Kriging metamodel G. The minimum and
maximum ofG under every samples ofZ can be calculated and
named as Minij − q and Maxij − q, respectively, where q ∈ [1,
⋯ , zn]. Then pLf ij and pUf ij are the failure probability of Minij
− q and Maxij − q, and calculated in (18) and (19).

pLF ij ¼
NUM Minij−q < c

� �
zn

; ð18Þ

pUF ij ¼
NUM Maxij−q < c

� �
zn

: ð19Þ

Fig. 9 The construction of heat exchanger

Fig. 10 The separating fin structure of hot stream

Table 7 Strong statistical variables for example 3

Variable Mean Standard
deviation

Distribution

x1: Fin height of hot stream (mm) 9.5 0.06 Normal

x2: Fin height of cold stream (mm) 6.5 0.05 Normal

Unified uncertainty representation 1313



After the calculation of pLF ij and pUF ij, the belief and plau-

sibility of pF are calculated in (20) and (21), respectively.

Bel Gð Þ ¼ PL
F ¼ ∑

nm

i¼1
∑
nn

j¼1
pLF ijPr ξ∈ ξi−1;ξi� �� �

Pr Z∈ η j;η jþ1

� �� �
; ð20Þ

Pl Gð Þ ¼ PU
F ¼ ∑

nm

i¼1
∑
nn

j¼1
pUF ijPr ξ∈ ξi−1;ξi� �� �

Pr Z∈ η j;η jþ1

� �� �
: ð21Þ

5.2 Calculation procedure of the proposed algorithm

The uncertainty identification and quantification of sys-
tem failure probability are implemented using mixture of
three types of uncertainties based on insufficient input
data. The procedure of the proposed algorithm is summa-
rized as follows.

(1) The uncertain variables are decomposed to strong statis-
tical variables X, sparse variables Y, and intervals vari-
ables Z according to the available amount of input ex-
perimental data.

(2) The strong statistical variables X are represented using
probability distribution function with determinate distri-
bution parameters.

(3) The interval variables Z are represented by sub-intervals
with basic probability assignment.

(4) For sparse variables Y, the distribution parameters
under multiple distribution types are calculated
through maximum of L(ξ, θk) based on sparse input
point and interval data. Then, the best-fitting distri-
bution types θ and corresponding weight ratios w
are calculated using AIC method, the distribution
parameters ξ and their probability density function

fξ(ξ) are determined using the Bayesian model av-
eraging method.

(5) The continuous uncertain distribution parameters ξ are
decomposed to reduce computation complexity. ξ are
represented using discrete points (ξi − 1 + ξi)/2(i = 1,
⋯ , nm) with the BPA of interval [ξi − 1, ξi].

(6) The kriging model G of the system performance
functionG = g(X,Y(ξ),Z) is constructed using Optimal
Latin Hypercube technique. In the ij-th sub-interval
where ξ ∈ [ξi − 1, ξi] andZ ∈ [ηj, ηj + 1], the minimum
value Minij − q and maximum value Maxij − q of G are
calculated using the random sampling method, and then
pLf ij and pUf ij are calculated.

(7) The belief Bel(G) and plausibility Pl(G) of pf are calcu-
lated using (20) and (21).

6 Numerical examples

6.1 Example 1-mathematical problem

A mathematical example is considered to demonstrate the
effectiveness of the proposed method. The system perfor-
mance function is G = (x + y)z, where x is strong statistical
variable, y is sparse variable, and z is interval variable.

The strong statistical variable x is assumed to be Normal
distribution with mean 6 and standard deviation 0.5, then x ~
N(6, 0.52). The available data of ycontain sparse points {3.8,
4.1, 5.6} and intervals [3.5, 4], [3.9, 4.1], [5, 6]. The intervals
and their BPAs of z are shown in Table 2. The input data of
these three variables are shown in Fig. 1.

The eight candidate distribution types θ in Table 1 are used
to identify distribution parameters ξ of y. The optimum distri-
bution parameters under these distribution types are calculated
through maximizing L(ξ, θk) in (3), and the results are listed in
Table 3. The probability density function of y with optimum
distribution parameters under these candidate distribution
types are shown in Fig. 2.

The best-fitted distribution types are selected using AIC
method. The AIC values of these eight distribution types are
also listed in Table 3, so the distribution type with minimum
AIC value is uniform distribution, and the relative probability
pθ_k of these eight distribution types are 0.1182, 6.5155 ×
10−7, 0.1464, 0.0890, 0.0591, 1, 1.1240 × 10−7, and 0.024,
respectivley. According to the algorithm in Section 3.2, the
best-fitted distribution types are Uniform distribution, Normal
distribution, and Gamma distribution. Their weigh ratiosw are
0.7908, 0.0935, and 0.1157, respectively. So, the uncertainty
of distribution parameters are calculted using (10), and the
results are shown in Fig. 3.

To reduce the computional complexity, the uncertain
distribution parameters are dispersed to discrete points

Table 8 Interval
variable for example 3 Variable Intervals BPA

z1: fin space (mm) [1.5, 1.9] 0.2

[1.9, 2.1] 0.6

[2.1, 2.5] 0.2

Table 9 Sparse variables for example 3

Variable Sparse points Sparse intervals

y1: Input temperature of
hot stream (K)

(356, 360, 362) [357361], [362363]

y2: Input velocity of
hot stream (m/s)

(7.8, 8, 8.1,8.3) [7.5 7.9], [8.1, 8.4]

y3: Input temperature of
cold stream (K)

(310, 315, 317) [312316], [318320]

y4: Input velocity of cold
stream (m/s)

(0.09, 0.1) [0.095 0.11]
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with theirs BPAs, the dispersed results of the six distri-
bution parameters are shown in Fig. 4. The Kriging mod-
el of performance function G is constructed based on 103

samples generated using Optimal Latin Hypercube meth-
od, and the root model square error (RMSE) of the con-
structed Kriging model is less than 0.0258. The uncer-
tainty of system performance function G is estimated
using the proposed unified quantification framework con-
sidering three types of input uncertainties, and Monto
Carlo method, respectively. The belief and plausibility
measures under different reliability limit values c are cal-
culated and shown in Fig. 5a. The comparison of belief
and plausibility results in the moderate reliability
(0.90 < Reliabil i ty < 0.99) and high reliabil i ty
(Reliability > 0.99) levels are shown in Fig. 5b and
Fig. 5c, respectively. The uncertainty of performance
function G under limit state c = 1000 are listed in
Table 4. The proposed framework can obtain the accurate
uncertainty quantification results of performance func-
tion, and the calculation number of system performance
function decreases from 6 × 107 to 103, the computational
complexity decreases seriously.

6.2 Example 2-crank slider mechanism

The example of a crank-slider mechanism in Ref. (Du 2008) is
used to demonstrate the effectiveness and application of the
proposed method. The mechanism is shown in Fig. 6. The
length of the crank x1, the length of the coupler x2 and the

external force x3 are strong statistical variables. The distribu-
tions of the strong statistical variables are given in Table 5.
Difference from Ref. (Du 2008), the material Young’s modu-
lus y1 and the yield strength y2 of the coupler are assumed to
be sparse variables. The available data of y1 are points {195,
200, 204}(GPa) and intervals [180, 197], [199, 209], [210,
212](GPa). The available data of y2 are points {280, 290,
298}(MPa) and intervals [270, 282], [288, 292], [299,
313](MPa). The friction coefficient z1 and the offset z2 are
interval variables, their sub-intervals and BPAs are shown in
Table 6. The internal diameter d1 and external diameter d2 of
coupler are 25 mm and 60 mm, respectively.

The system performance function is defined by the differ-
ence between the critical load and the axial load, which is
written in (22).

G ¼ G X;Y;Zð Þ ¼ π3y1 d42−d
4
1

� �
64x22

−
x3 x2−x1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2−x1ð Þ2−z22
q

−z1z2
ð22Þ

Through comparing the AIC values of the eight candidate
distribution types, the uncertainty of the yield strength y1 is
represented using weight sum of Normal distribution, Gamma
distribution,Weibull distribution, and Extreme distribution with
weight ratios of 0.352, 0.091, 0.284, and 0.273, respectively.
The uncertainties of distribution parameters are shown in Fig. 7.

The failure event is defined by F = {X,Y,Z|G(X,Y,Z) <
c}, where c is the limit state. The Kriging model is constructed
based on 2 × 103 samples, and the RMSE of the Kriging
model is less than 0.0321. The belief and plausibility measures
under different reliability limit values c are calculated using
the proposed method and Monto Carlo method, and there are
9 × 104 samples under every limit value c in MCS method.
The results are shown in Fig. 8. In the range of limit state
180 ≤ c ≤ 250, the belief and plausibility value of the proposed
method are much the same as that of MCS method, which
shows that the unified uncertainty quantification method pre-
sented in the paper is effective and practical.

6.3 Example 3-heat exchanger

A practical heat exchanger structure shown in Fig. 9 is
considered, which consists of inlet header, fin channels

Fig. 11 Temperature distribution
in the heat exchanger

Table 10 Identification results of sparse variables y1 ~ y4

Variables Distribution type Weight ratio Distribution parameters

y1 Normal 0.3713 360 2

Extreme 0.6287 361 2

y2 Normal 0.2680 8 1

Weibull 0.5674 8.1 10

Extreme 0.1646 8.1 1

y3 Normal 0.4612 315 3

Weibull 0.0585 315.5 50

Extreme 0.4803 316.5 3

y4 Normal 0.4707 0.097 0.005

Extreme 0.5293 0.098 0.004
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and outlet header. The hot streams and cold streams flow
from inlet header to parallel fin channels, and then flow
out in the outlet header. The fin channels, which has
dimensions of 1000 × 480 × 380 mm (length × width
× height), are the important heat transfer region of hot
and cold streams, and the heat transfer rate between hot
streams (air) and cold streams (water) through separating
fins (Fig. 10) is an important index to evaluate its per-
formance. The fin height of hot stream x1 and cold
stream x2 are strong statistical variables because of
manufacturing error, and their distributions are listed in
Table 7. The fin space z1 of hot stream and cold stream
is fabricated in the predetermined length intervals, so z1
is interval variable, its sub-intervals and BPA are listed
in Table 8. Only sparse sampling point and interval data
can be acquired using data acquisition machine for the
input temperature and velocity of hot and cold streams
y1 ~ y4, so y1 ~ y4 are sparse variables, and their sampling
values are listed in Table 9.

The heat transfer rate is the most important index for
heat exchanger, so the limit state function can be de-
fined in (23).

G ¼ Q x1; x2; y1; y2; y3; y4; z1ð Þ > Qm ð23Þ

Where Q is the heat transfer rate, which can be calcu-
lated after simulating the temperature distribution in the
fin channel using finite element analysis (FEA) method,
and Qm = 500kW is the allowable minimum heat transfer
rate. In the FEA, the simulation model is constructed
and meshed using hexahedral elements in Gambit, the
inlets of streams are set to be velocity inlet, and the

outlets are set to be outflow. The interface of flow re-
gions and fin regions are set to be coupled to calculate
the heat transfer rate. The meshed structures are ana-
lyzed in Fluent, and then the temperature and pressure
distributions in the heat exchange are calculated. The
simulation results of temperature distributions in the
hot streams are plotted in Fig. 11.

The distribution types and distribution parameters of sparse
variables y1 ~ y4 are identified using the rules in Section 3, the
results are shown in Table 10. The Kriging model is construct-
ed based on the FEA results of 2 × 103 samples, which is
shown in Fig. 12. Then the presented unified uncertainty
quantification method and the conventional MCS method
are applied to solve the problem. The total number of the
function calls by the proposed algorithm is 5 × 103, and the
calculation can be finished in 2 h; while the total number of
performance function evaluation is 7.2 × 108 in MCS method,
and the calculation will be finished in 3d. The belief and
plausibility value of the proposed method and MCS method
are listed in Table 11. The differences between the two results
are less than 1.7%, which shows that the presented method in
the paper is effective and practical.

7 Conclusions

A unified uncertainty quantification method considering
strong statistical variables, sparse variables and interval vari-
ables simultaneously is proposed. To increase accuracy and
decrease computational difficulty in the representation of
sparse variables, mixed distribution types are identified and
the calculated continuous uncertain distribution parameters
are dispersed based on their probability density function.
Then, a unified uncertainty quantification framework is con-
structed, the strong variables and sparse variables are repre-
sented through random samplings of distribution functions,
and the interval variables are represented using evidence the-
ory. The belief and plausibility of system performance func-
tion are calculated, and the kriging model of the performance
function is used to increase computational efficiency. The

Fig. 12 The Kriging model of
example 3

Table 11 Belief and plausibility measure for example 3

Proposed method Monto Carlo method

Belief value 0.7510 0.7469

Plausibility value 0.9541 0.9385

Evaluation number 5 × 103 7.2 × 108
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proposed method and MCS method are used to calculate the
failure probability of three examples. The exact solutions and
the results solved by the presented method are almost the
same.Moreover, the required sample numbers of the proposed
method is fewer than that in conventional method.
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