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Abstract Simultaneously optimizing the thickness of the ba-
se structure and the location of piezoelectric sensors/actuators
as well as control gains is investigated for minimizing the
sound radiation from the vibrating curved shell integratedwith
sensors/actuators under harmonic excitation. The finite ele-
ment formulation of the piezoelectric curved shell structure
is described. The piezoelectric element is coupled into the
base shell element using nodal displacement constraint equa-
tions. The active control of structural vibration-acoustic radi-
ation is formulated using the velocity feedback algorithm.
Based on both passive and active control measures, an inte-
grated optimization model of the vibro-acoustic problem is
proposed, in which the sound power is taken as the objective
function. The thickness of the base shell elements and the
parameters of control system, including the location of
sensors/actuators and control gains, are chosen as the design
variables. In order to restrict the complexity of the control
system, the number of sensors/actuators is considered as a
constraint. A simulated annealing algorithm is extended to
handle the vibro-acoustic optimization problem with the con-
tinuous and discrete variables co-existing. Numerical exam-
ples demonstrate the effectiveness of the optimization scheme
and the correctness of the computation program.
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1 Introduction

Curved shell structures are widely used in engineering appli-
cations such as aerospace, submarine and automobile indus-
tries. As more and more stringent performance requirements
are imposed in these advanced engineering applications, con-
siderable attention should be paid to the control of structural
vibration and acoustic radiation of curved shell structures.

One way to reduce vibration and acoustic radiation is to
perform passive design with the help of systematic optimiza-
tion methods. Passive control can be achieved by means of
these measures such as using damping materials, tailoring
structural material, changing structural thickness or geometry,
modifying the boundary conditions and adding auxiliary
structures masses, ribs or other stiffeners to the structure.
These measures can be applied during the design phase of
structural components. Many works have been focused on
those measures for minimal sound radiation. Zhang and
Kang (2013) implemented the topology design of damping
layers to reduce sound radiation of shell structures based on
the sensitivity analysis of sound pressure. Yang and Du
(2013), Xu et al. (2011) respectively dealt with topology op-
timization problems of the periodic microstructure and the
composite material plate with respect to minimization of the
sound power radiation. Belegundu et al. (1994) optimized the
thickness of the baffled plate to minimize the radiated acoustic
power using gradient-based optimization algorithm. Yuksel
et al. (2012) employed differential evolution to find the opti-
mum thickness of the vibrating panels to reduce interior noise.
Kaneda et al. (2002) optimized the geometry curvature of a
plate to reduce the sound power based on a genetic algorithm.
Jeon and Okuma (2004) fulfilled the noise reduction using
bending optimization based on the particle swarm algorithm.
Cheng et al. (2011) studied the structural shape optimization
for minimizing the sound radiation. Denli and Sun (2008)
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minimized the sound radiation by designing boundary sup-
ports of the structures. Joshi et al. (2010) and Kaneda et al.
(2003) respectively optimized the placements of the curvilin-
ear stiffeners and masses to reduce the sound radiation.

Unlike passive control, active control can be implemented
to reduce the sound radiation without major structural modifi-
cation. Active noise control (ANC) and active structural acous-
tic control (ASAC) are considered as two main strategies and
have been widely studied (Fuller and Von Flotow 1995; Kuo
and Morgan 1999). In ANC system, amplifiers are used to
generate the signal out of phase with respect to original noise
signal, hence leading to its local reduction. ASAC is different
from ANC, since ASAC applies control force inputs to struc-
ture itself directly rather than exciting the acoustic medium
with loudspeakers. It is a very promising method for reducing
the structural radiated sound. The applications of ASAC have
been reported (Belanger et al. 2009; Sors and Elliott 2002;
Zhang et al. 2011). Many factors affect the performance of
ASAC including the number, size, location of the piezoelectric
sensors and actuators as well as the control gain, and thus
efforts to optimize these parameters are essential to improve
the performance of the ASAC system (Kim and Ko 1998). So
far there are a limited number of literatures devoted to optimiz-
ing some parameters for minimizing the sound radiation.
Ruckman and Fuller (1995) optimized the location of actuators
to reduce the total radiated power using subset selection. Oude
Nijhuis and Ad (2003) used a genetic algorithm to find the
optimal actuator and sensor locations for theminimum radiated
sound power over a broad-band frequency range. Li et al.
(2004) employed genetic algorithms to optimize the locations
of PZT actuators in an ASAC system comprising a cylindrical
shell with an internal floor partition. Choi (2006) optimized the
placement of the piezoelectric actuators for minimal radiated
sound power. Zhang et al. (2014) developed a topological de-
sign method to find the optimal layout of electrode coverage of
piezoelectric sensors/actuators. However, these efforts were
focused on the placement optimization of actuators without
considering other parameters that affect the control effect. In
the work of Wang et al. (1994), although the optimal actuator
locations and the optimal control voltages were investigated
for reducing the sound radiation, the optimal control voltages
were computed using the linear quadratic optimal control the-
ory (LQOCT) separately from solving the optimization prob-
lem of actuator configuration. Hence, it remains a challenging
problem to simultaneously optimize multiple parameters af-
fecting the control effect of the sound radiation.

The aforesaid design optimizations were carried out based
on one of the passive and active measures, and have made
certain achievement in the reduction of sound radiation.
However, few studies have been done on the minimization
of sound radiation simultaneously based on both measures.
If such a design issue is explored, it may reduce the sound
radiation more.

In many applications, it is usually not practical to apply a
full-coverage piezoelectric actuator/sensor layer treatment,
which may consume a lot of piezoelectric materials, compli-
cate the circuit of the control system and may not achieve the
best control effect. It is thus highly desired to find the optimal
distribution of piezoelectric actuators/sensors within the al-
lowable number to improve this situation. In addition, pure
active control for reducing the sound radiation may require
more control power, in order to maximally reduce the struc-
tural sound radiation and save control power, the thickness
distribution of the base structure should be considered in the
design phase. Therefore, it would be ideal to find a way to
minimize the sound radiation.

To address this issue, an acoustic radiation control design
problem considering the structural mass constraint and the
limitation on number of actuators is formulated as a design
optimization of structural thickness and control system. The
piezoelectric layers are bonded on both sides of the base shell
acting as sensors and actuators and they share the same distri-
bution. Using the velocity feedback algorithm, the sensor and
actuator are combined to form the closed-loop control system.
The curved shell structure is modeled with the finite element
method for the structural dynamic analysis. The sound radia-
tion analysis is approximated by the Rayleigh integral. In the
optimization model, the sound power is taken as the objective
function, the thickness of the base shell elements and the lo-
cation of sensors/actuators as well as control gains are chosen
as the design variables. Because the continuous variables
(thicknesses, control gains) and discrete variables (locations)
coexist, the optimization problem is solved by the simulated
annealing algorithm.

The remainder of this paper is organized as follows. In
Section 2, a finite element formulation of the piezoelectric
structure excited by external harmonic load is presented, and
the sound radiation analysis is treated by the Rayleigh integral.
A eight-node curved shell element is used. The base shell
element and the piezoelectric shell element are directly
coupled by nodal displacement constraint equations.
Section 3 proposes the integrated optimization model and
the optimization approach. In Section 4, numerical examples
are given to demonstrate the validity of the proposed scheme.
Finally, Section 5 contains some concluding remarks.

2 Vibration and sound radiation analysis
under piezoelectric active control

2.1 Coupling curved shell element

2.1.1 Curved shell element

The curved shell element with eight nodes is shown in Fig. 1.
The element can be described by the natural coordinate system
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ξ − η − ζ (ξ, η, ζ ∈ [−1, 1]), where the curvilinear coordi-
nates (ξ − η)are in the shell mid-surface while ζ is the linear
coordinate in the thickness direction. The displacement field
of an arbitrary point in the shell element are derived by Cook
et al. (1989)
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where {ui vi wi αi βi}
T is the generalized displacement of

ith node. ti is the element thickness. {lji,mji, nji}
T( j = 1, 2, 3)

is the thickness-direction cosine vector. The shape functions
Ni(ξ, η) in (1) are given as follows
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Strains of the element can be expressed in terms of dis-
placement derivatives
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where J−1is the inverse of Jacobian matrix J. Let
ε = {εx εy εz γxy γyz γzx}

T and dei ¼ ui vi wi αi βif g T ,
from (1) and (3) the relationship between strain and displace-
ment can be obtained as

ε ¼ ∑
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The complete strain-displacement matrix isB = [B1 B2⋯
B8]. Combining the material property matrix D, the stiffness
matrix of a curved shell element can be derived as

Ke ¼ ∫1−1∫
1
−1∫

1
−1B

TDB Jj jdξdηdζ ð7Þ

2.1.2 Piezoelectric curved shell element

The electric potential φ at any point within the element is
related to the corresponding node values φi(ζ) by

φ ¼ ∑
n

i¼1
Ni ξ; ηð Þφi ζð Þ. Therefore, the electric field vector E

related to the electric potential φ can be expressed in terms
of nodal variables as:

E ¼ −∇φ ¼ −Bφφe ð8Þ

where φe = {φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8}
T is the

electric potential vector, Bφ = ∇N in which ∇ is the gradient
operator and N = [N1 N2 N3 N4 N5 N6 N7 N8] is the shape
function matrix.

Fig. 1 Schematic of a curved shell element
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Considering the electrical-mechanical coupled effects of
the piezoelectric element, the coupling stiffness matrix can
be written as

Ke
dφ ¼ ∫ΩeB

TeTBφdΩ ð9Þ

where e is the piezoelectric constant matrix.

2.1.3 Linkage of the piezoelectric shell and base shell
elements

The piezoelectric layers are attached to both sides of the base
shell structure. In order to reduce the computing scale and
improve the computational efficiency, the nodal degrees of
freedom of the piezoelectric shell elements are merged into
the base shell element. It is assumed that the piezoelectric shell
and base shell structure are linked directly, as shown in Fig. 2.
According to the nodal displacement constraint equations
(Wang et al. 2009), the nodes of the piezoelectric elements
and base structure elements can be coupled in the local coor-
dinate system.

The generalized displacements of nodes in the base shell
element and piezoelectric shell element can be respectively
depicted in local coordinates as follows:
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To illustrate the relationship between the piezoelectric ele-
ments and base shell element, we take node 1 of the base shell
element and node 1′ (1u’ and 1l’) of the piezoelectric shell ele-
ments as example (see Fig. 2). The generalized displacements of

two nodes satisfy the following constraint equation in the local
coordinate system.
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where c is the nodal constraint matrix in the local coordinate
system. The sign '±' represents the location of the piezoelectric
layer, beneath or over the base shell. tp and tb are the thick-
nesses of the piezoelectric element and base shell element
respectively. Considering that the other nodes of two elements
also satisfy (11), the constraint equation for all nodes of two
elements can be obtained in the global coordinate system.

d
0
p ¼ Cd

0
b ð13Þ

where C is the element constraint matrix in the global coordi-

nates. Based on the matrix C, the stiffness of the piezoelectric
shell element is added to the stiffness of the base shell element
as the additional stiffness of the base structure.

K
e

p ¼ C
T
Ke

pC ð14Þ

where Ke
p is the stiffness matrix of the piezoelectric shell ele-

ment. Combining with the stiffness Ke
b of the base shell ele-

ment, the stiffnessKe
c of the coupled structure can be obtained:

Ke
c ¼ Ke

b þK
e

pu
þK

e

pl
ð15Þ

2.2 Governing equations for active control of piezoelectric
curved shells

Besides the mechanical displacement degrees of the freedom,
every coupling curved shell element has two additional elec-
tric degrees of freedom. The piezoelectric structure is modeled
by the coupling curved shell elements. Using Hamilton's prin-
ciple and assembling all the elements, the governing equations
of the piezoelectric system are (Liew et al. 2004)

M€dþ Cud
˙ þKdþKdφφ ¼ F ð16Þ

Kφdd−Kφφ φ ¼ Q ð17ÞFig. 2 Schematic of the connection between the base shell element and
piezoelectric shell elements
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where M, Cu and K are the structural mass, damping and
stiffness matrices respectively, Kdφ represents the electrical-

mechanical coupling matrix, KT
φd ¼ Kdφ ¼ ∑

e¼1

Ne

Ke
dφ, Kφφ ¼

∑
e¼1

Ne

∫ΩeB
T
φξBφdΩ is the dielectric stiffness matrix of piezoelec-

tric layer in which ξ is the dielectric coefficient matrix and Ne

is the number of piezoelectric elements, F is the mechanical
force vector and Q is the electrical charge vector.

For the sensor layer, the applied charge Qs is the zero vec-
tor in which subscript ‘s’ denotes the sensors. The distribution
of electric potential on the sensor surface is obtained in terms
of the mechanical displacement coordinates through
electrical-mechanical coupling Ks

φd from (17) as follows:

φs ¼ Ks
φφ

−1Ks
φdd ð18Þ

Substituting (18) into (16) results in a dynamic equation for
the sensor layer,

M€dþ Cud
˙ þKd ¼ F ð19Þ

with

K ¼ K þKs
dφK

s
φφ

−1Ks
φd ð20Þ

For the actuator layer, the converse piezoelectric is applied.
The electric potential vector on the actuator surface is the
known input and appears as the external force through
electrical-mechanical couplingKa

dφ in which subscript ‘a’ de-

notes the actuator. Thus, the control force term Ka
dφφa on the

left side of (16) is moved to the right side as

M€dþ Cud
˙ þKd ¼ F−Ka

dφφa ð21Þ

For the overall system, the governing equation can be
expressed as

M€dþ Cud
˙ þKd ¼ F−Ka

dφφa ð22Þ

As a closed loop control system, the sensor output voltage
can be fed back through an amplifier to the actuator. Thus,

φa ¼ Gφ˙ s ¼ GKs
φφ

−1Ks
φdd

˙ ð23Þ

Fig. 3 Flow chart of the SA optimization procedure

Table 1 Comparison of results: natural frequencies (Hz) of a clamped
cylindrical shell

Mode no. Numerical results

Petyt
(1971)

Cheung et al.
(1989)

Liew et al.
(2000)

Yang and Shen
(2003)

Present

1 870 874 872.4 871.6 872.6

2 958 963 960.3 961.1 960.5

3 1288 1298 1292.5 1279.6 1296.5

4 1363 1369 1364.8 1367.2 1363.5

5 1440 - 1443.0 1446.3 1442.3

6 1756 - 1761.1 1763.2 1762.8

Fig. 4 Radiated sound power versus frequency
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where G ¼ diag G1 G2 … GNef g is the feedback gain.
Use of (23) in (22) introduces an equivalent velocity feedback
in the system as follows:

M€dþ Cu þ CAð Þd˙ þKd ¼ F ð24Þ

with

CA ¼ Ka
dφGKs

φφ
−1Ks

φd ð25Þ

whereCA is the active damping matrix produced by piezoelec-
tric actuators. Assume the structural vibration is excited by a
time-harmonic mechanical loading vector F = feiωt with the
frequency ω and amplitude vector f. (24) can be described as

−ω2Mþ i ω Cu þ CAð Þ þK
h i

u ¼ f ð26Þ

where u is the complex amplitude of the displacement re-
sponse d.

2.3 Sound radiation analysis

For systems having simple near-planar geometry, a Rayleigh
integral approximation yields a good approximation (Holland
and Fahy 1997; Kaneda et al. 2003). The acoustic pressure at
any field point from harmonically vibrating small-curvature
plate embedded in infinite baffle is given by

p Pð Þ≈iωρ∫Se−ikrvn Qð Þ=2πRdS Qð Þ ð27Þ

Here, p(P)is the acoustic pressure at the arbitrary field point
P, vn(Q) is the normal velocity at a point Q on the surface of
radiating structure, k = ω/c denotes the wave number, c is the
sound speed, R = |Q − P| represents the distance between the
field point P and source point Q. The sound power radiated
from the structure surface can be obtained by

W ¼ 1

2
∫SRe p Pð Þv*n Pð Þ� 	

dS Pð Þ ð28Þ

where v*n Pð Þ is the complex conjugate of vn(P), respectively;
Re[ ] represents the real part of a complex number.
Substituting (27) into (28) yields

W ¼ ωρ
4π

∫S ∫Svn Qð Þ sinkR
R

v*n Pð ÞdS Qð ÞdS Pð Þ ð29Þ

A discretized form for this expression in terms of finite
element degrees of freedom can bewritten in elemental form as

W ¼ ωρ
4π

∑
r¼1

Ne

∑
s¼1

Ne

J r J svHnr
sinkR
R

vns ð30Þ

where Ne is the number of elements, Jr and Js are the values
of the Jacobian matrix, and superscript H denotes

Fig. 5 Schematic of the structural
geometry (a) and the element
mesh (b, c) of a piezoelectric
cylindrical shell

Fig. 6 Iteration histories of the objective functions
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conjugation transpose. Assembling vln and the sound power
can be written as

W ¼ 1

2
vHn Zvn ð31Þ

where vn is a global vector of node normal velocity, Z is a
global impedance matrix and a symmetric, positive definite
matrix, and it is assembled from element matrices as

z ¼ ωρ
2π

J r J s
sinkR
R

1 … 1
⋮ ⋱ ⋮
1 ⋯ 1

0
@

1
A ð32Þ

here, the rows of matrix z correspond to the node numbers of
the receiver element while the columns correspond to those of
the source element.

The global normal velocity vector vn in (31) is related to the
structural velocity vector by the transformation matrix T

vn ¼ Tv ¼ iωTu ð33Þ

3 Design optimization modeling and solution
algorithm

3.1 Problem formulation

The aim of the considered optimization problem is to simulta-
neously find the optimal structural thickness and the optimal
distribution of actuators/sensors as well as the optimal control

Fig. 7 Comparison of the
optimized results for the
distribution of the sensors/
actuators (a, c) and structural
thickness (b, d) obtained by two
kinds of discrete mesh

Table 2 The initial and
optimized design parameters of
the cylindrical shell modeled by
two kinds of mesh

Parameters Initial value Upper bound Lower bound Optimized result

8×10 mesh 12×15 mesh

G1 0.100 0.200 0.010 0.200 0200

G2 0.100 0.200 0.010 0.200 0.200

G3 0.100 0.200 0.010 0.178 0.172

G4 0.100 0.200 0.010 0.116 0.108

G5 0.100 0.200 0.010 0.195 0.196

Mass of the base shell (kg) 2.068 2.068 - 2.068 2.068

Number of sensors/actuators 80 38 - 38

180 86 - 86

Sound power level (dB) 80.07 61.40

79.45 61.24
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gains while minimizing the sound power with the limitation on
number of actuators. The optimization problem can be stated as

Find G ¼ diag G1;G2;⋯;GNef g
t ¼ t1; t2;⋯; tNeð ÞT
X ¼ X 1;X 2;⋯;XNeð ÞT

min f X;G; tð Þ ¼ W

s:t: M ≤M N ≤N
X e ¼ 1 or 0

G≤Ge≤G
t ≤ te≤ t e ¼ 1; 2;⋯Ne

ð34Þ

whereM andM are the total mass of the base structure and its

upper limit. N and N are the number of sensors/actuators and
the allowable number. X is the placement vector of piezoelec-
tric sensors and actuators, Xe = 1 denotes the presence of the
eth piezoelectric sensor and actuator, whereas Xe = 0 means

the absence.G and G are the lower and the upper limits of the
control gain. t represents the thickness vector of the base
structure. te is the thickness of the eth base shell element. t

and t are the lower and upper limits of the thickness of the
base structure.

This optimization problem involves the topological design
of the piezoelectric actuators/sensors. Up to now, many topo-
logical methods have been proposed and successfully applied
to various fields. For details, the reader is referred to the re-
view papers by Sigmund and Maute (2013), Deaton and
Grandhi (2014), and the studies by Baumann and Kost
(2005), and Zhu et al. (2016), and a large number of papers
cited therein. Besides, the optimization problem in this paper
encompasses the structural size design and control parameter
design. This is an optimization problem with mixed design
variables. Gradient-based algorithms were used to solve the
mixed-variable optimization problems in papers (Zhu et al.
2009; Zhu and Zhang 2010). These algorithms are efficient
in computation but may have the risk of misleading, with local
optima being found. As an alternative, stochastic methods are
believed to be applicable to the optimization problem with
irregular constraint and a larger number of local minima
(Kane and Schoenauer 1996; Shim and Manoochehri 1997).

Fig. 9 Iteration history about the
number of sensors/actuators and a
series of selected intermediate
designs for the optimization
model with 8×10 mesh

Fig. 8 Actuator voltage
amplitude distribution for the
optimized designs obtained by
two kinds of discrete mesh
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In this paper a simple and efficient simulated annealing algo-
rithm is adopted for problem-solving.

3.2 Optimization algorithm

The simulated annealing algorithm is a stochastic search opti-
mization technique derived from statistical mechanics. This
algorithm cannot guarantee convergence to the global optima
(Sigmund 2011). However, it does provide reasonable mecha-
nisms of stochastic search in the entire solution space, and has
the ability to jump out of local optimum solutions, thereby
improving the probability and ability of finding the global
optima. One advantage of this algorithm is that it can provide
a clear design because finite elements are explicitly defined as
existent or absent. Other advantage is that it does not require

the computation of sensitivities. In addition, it can easily han-
dle the optimization problems with mixed variables (Chen and
Su 2002). Its applications in various engineering design have
been reported, such as Zhang and Wang (1993), Tinnsten et al.
(2002), Hasançebi and Erbatur (2002). The simulated anneal-
ing algorithm is only applicable to deal with the unconstrained
optimization problems. Therefore, penalty function method is
used to transform the constrained optimization problem into an
unconstrained optimization problem. All constraints can be
expressed by gi(X,G, t) ≤ 0. The transformed optimization
problem of (34) can be expressed as follows:

Min: L X;G; tð Þ ¼ f X;G; tð Þ

þ 1þ α⌢ f X;G; tð Þj jÞ⋅ ∑
m

i¼1
max

�
0; gi X;G; tð Þ

�


 



� ��

ð35Þ

Fig. 10 Optimized results for the
distribution of the structural
thickness (a, c) and sensors/
actuators (b, d): a Case 1; b Case
2; c Case 3; d Case 3

Table 3 Summary of design
parameters of three cases for the
initial and optimized designs

Parameters Initial
value

Upper
bound

Lower
bound

Optimized result

Case 1 Case 2 Case 3

G1 0.100 0.200 0.010 0.100 removed removed

G2 0.100 0.200 0.010 0.100 0.010 removed

G3 0.100 0.200 0.010 0.100 0.010 0.200

G4 0.100 0.200 0.010 0.100 0.200 0.200

G5 0.100 0.200 0.010 0.100 0.200 0.200

Mass of the base shell (kg) 2.068 2.068 - 2.068 2.068 2.068

Number of
sensors/actuators

80 38 - 80 38 38

Sound power level (dB) 103.45 75.49 83.14 73.62

Integrated optimization of structural size and control system 1295



where α⌢ is the penalty factor, m is the number of all
constraints.

In the simulated annealing algorithm, the idea of multi-
objectives programming is used to solve the discrete variables.
Based on the discrete variable X ¼ X 1;⋯;X e;⋯XNeð Þ T

with Xe ∈ (0 or 1) , the cont inuous var iable Y ¼
Y 1;⋯; Ye;⋯YNeð Þ T with Ye ∈ (0, 1) for e ∈ {1, 2,⋯Ne} is
introduced where Ye represents the volume density of the eth
piezoelectric sensor and actuator. We can rewrite the mass
matrix M, the stiffness matrix K and the active damping ma-
trix CA in above equations as

M ¼ ∑
e¼1

Ne

Me
b þ ∑

e¼1

Ne

Y e M
e

s þM
e

a

� �

K ¼ ∑
e¼1

Ne

Ke
b þ ∑

e¼1

Ne

Y e K
e

s þK
e

a

� �

CA ¼ ∑
e¼1

Ne

Y eC
e
A

ð36Þ

where Me
b represents the elemental mass matrix of the base

shell structure.M
e
s andM

e
a are the additional mass matrices

from the piezoelectric sensor and actuator. K
e
s and K

e
a are

the additional stiffness matrices from the piezoelectric

sensor and actuator. Ce
A is the active damping matrix of

the eth element calculated with the piezoelectric constants
of the fully solid material.

The solution of design variable Ye in the kth iteration is
generated by

Yk
e ¼ Y

k

e þΔYk
e ð37Þ

where Y
k
e is the initial value of the eth variable; ΔYk

e is the
offset which is dependent on the current temperature and ran-
dom quantities distributed in [−1,1] as well as the upper and
lower bounds of the eth variable in the kth iteration.

The variable Yk ¼ Yk
1;⋯; Yk

e ;⋯Yk
Ne

� �
T is correspond-

ing to the variable Xk ¼ X k
1;⋯;X k

e ;⋯X k
Ne

� �
T by the map-

ping function X k
e ¼ round Yk

e

� �
, which denotes the integer

discrete value nearest to Yk
e .

Assume that Lc and Ld are the values of the penalty func-
tions L(Y,G, t) and L(X,G, t) respectively. In order to judge
whether the design state is accepted in the optimization itera-

tion, the weight value L is defined as

L ¼ 0:1⋅Lc þ 0:9⋅Ld ð38Þ

Table 4 Summary of design
parameters for the initial and
optimized designs at different
excitation frequencies

Parameters Initial
value

Upper
bound

Lower
bound

Optimized result

40 Hz 122 Hz 153 Hz 180 Hz

G1 0.100 0.200 0.010 removed 0.032 0.200 0.200

G2 0.100 0.200 0.010 removed removed 0.200 0.022

G3 0.100 0.200 0.010 0.200 0.010 0.178 0.021

G4 0.100 0.200 0.010 0.194 0.075 0.116 0.199

G5 0.100 0.200 0.010 0.200 0.200 0.195 removed

Mass of the base
shell (kg)

2.068 2.068 - 2.068 2.068 2.068 2.068

Number of
sensors/actuators

80 38 - 38 38 38 38

Sound power
level (dB)

61.36 57.29

73.66 53.10

80.07 61.40

74.10 70.55

Fig. 11 Amplitude distribution
of the actuation voltage after
optimization in the three cases: a
Case 1; b Case 2; c Case 3
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I f min 1; exp − Lk−Lk−1
� ���

=KTkÞ� ≥ random 0; 1ð Þ i n

which K is the adaptive factor, accept Lkd , the current value
of the variable Yk and the values of variables Gk and tk are
taken as new solutions for the next iteration. Meanwhile, the
values of the variables Xk composed of 0 and 1 as well as the

values of variables Gk and tk are output as current optimal
solutions. Figure 3 gives the flow chart of solution strategy
based on the SA optimization procedure. For ease of descrip-
tion, the vector x in Fig. 3 is used to represent the design
variables in the optimization problem.

Fig. 12 Optimized results for the
distribution of sensors/actuators at
different excitation frequencies: a
f = 40 Hz; b f = 122 Hz; c
f = 153 Hz; d f = 180 Hz

Fig. 13 Optimized results for the
structural thickness distribution at
different excitation frequencies: a
f = 40 Hz; b f = 122 Hz; c
f = 153 Hz; d f = 180 Hz
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4 Numerical examples

The integrated optimization procedure is implemented using
MATLAB procedure. Two curved shell structures are simulated
to illustrate the validity and applicability of the proposed inte-
grated optimization approach. Here, it is stated that the following
optimization examples have not considered gradient control.

4.1 Comparison studies

Example 1: To validate the finite element formulation present-
ed in section 2, in Table 1, the first six natural frequencies of a
cylindrical shell panel (18 × 14mesh) with clamped edges are
computed and compared to those published in Refs (Cheung
et al. 1989; Liew et al. 2000; Petyt 1971; Yang and Shen 2003).
The computation data are: L = 0.0762 m, ac = 0.1016 m,R =
0.762 m, E = 68.948 Gpa, ν = 0.33, ρs = 2657.3kg/m

3, where
ac is the arc length. Good agreement is observed.

Example 2: To verify sound power calculation, The radiat-
ed sound power level (dB, re: 10−12 W) of a rectangular plate
in air is compared with that obtained by (Li and Zhao (2004)),
as shown in Fig. 4. The dimensions of the simply supported
plate are a = 0.455m , b = 0.379m , tb = 0.003m respective-
ly. The material properties of the base plate are E = 210 Gpa,
ν = 0.3, ρs = 7850kg/m3. A force with amplitude F = 1 N ap-
plies at the point located at (0.11375 m, 0.09475 m). Clearly,
the comparison shows good agreement.

4.2 Example 3: integrated optimization for the clamped
piezoelectric cylindrical shell

4.2.1 Optimal solution

Firstly, we consider the integration optimization of the struc-
tural thickness and the placement of actuator as well as control
gain for a clamped piezoelectric cylindrical shell, as shown in

Fig. 14 Displacement responses
of the initial design (a, b) and
final design (c, d) under
frequencies 40 Hz and 180 Hz: a
and c f = 40 Hz; b and d
f = 180 Hz

Table 5 Summary of design
parameters for the initial and
optimized designs under the
excitation frequency band

Parameters Initial value Upper bound Lower bound Optimized result

G1 0.100 0.200 0.010 0.121

G2 0.100 0.200 0.010 0.147

G3 0.100 0.200 0.010 0.200

G4 0.100 0.200 0.010 0.200

G5 0.100 0.200 0.010 0.011

Mass of the base shell (kg) 2.068 2.068 - 2.068

Number of sensors/actuators 80 38 - 38

Average sound power level (dB) 73.77 67.50
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Fig. 5a. The curvature radius, central angle and thickness of
the base shell are 0.5 m, 45 degrees and 3 × 10−3 m re-
spectively. The structural damping is ignored. The Young’s
modulus, Poisson’s ratio and mass density of the base material
are E = 69 Gpa, ν = 0.33 and ρ = 2700 kg/m3, while those of
the piezoelectric material are Ep = 71 Gpa, νp = 0.3 and ρp =
7600kg/m3. The electrical properties of the piezoelectric ma-
terial are e31 = e32 = − 5.20C/m2, e33 = 15.08C/m2, ξ11 =
13.05nF/m, ξ22 = 13.054nF/m and ξ33 = 11.505nF/m respec-
tively. Each piezoelectric layer is 1 × 10−4 m thick. A
time-harmonic external force with amplitude F = 1 N is ap-
plied at the center point of the structural free end and the
excitation frequency is fixed as 153 Hz.. The mass density
and sound velocity of the acoustic medium (air) are ρ0 =
1.21 kg/m3 and c0 = 343 m/s.

The structure is discretized by a 8×10 mesh and a 12×15
mesh respectively, as shown in Fig. 5b and c. Then the piezo-
electric sensor/actuator layer is also discretized into 8×10 and
12×15 sensor/actuator pairs respectively. The sensor outputs

are converted to feedback control voltages via five control
gain channels and the control gains are grouped as shown in
Fig. 5b and c. From the iteration histories of objective func-
tions shown in Fig. 6, a similar decreasing trend of the objec-
tive functions obtained by 8×10 mesh and 12×15 mesh can be
observed. The initial and optimized design values obtained by
two kinds of meshes are listed in Table 2. The initial sound
powers obtained by two kinds of meshes are very close and
this proves that the model of 8×10 mesh can achieve the high
computational precision. Additionally, the values of control
gains and the sound powers of the optimized designs obtained
by two kinds of meshes are consistent. The optimized designs
for the actuators/sensors and structural thicknesses obtained
by two kinds of meshes are shown in Fig. 7. we can find the
similarity of optimal solutions obtained by two kinds of
meshes. It is also seen from the optimized designs of the two
mesh-sizes that the placements of the actuators are substan-
tially consistent with the structural thickness distributions.
Figure 8 shows the actuation voltage amplitude distribution
in the optimal design. It can be seen that the actuation voltages
obtained by the coarsemesh are consistent with those obtained

Fig. 15 Optimized results for the
distribution of the sensors/
actuators (a) and structural
thickness (b) under the excitation
frequency band 114–172 Hz

Fig. 16 Radiated sound power level for the optimized design and initial
design without/with control

Table 6 Parameters for the initial and optimized designs of the model
with structural damping

Parameters Initial
value

Upper
bound

Lower
bound

Optimized
result

G1 0.100 0.200 0.010 0.200

G2 0.100 0.200 0.010 0.200

G3 0.100 0.200 0.010 0.200

G4 0.100 0.200 0.010 0.200

G5 0.100 0.200 0.010 0.199

Mass of the base
shell (kg)

2.068 2.068 - 2.068

Number of
sensors/actuators

80 38 - 38

Sound power
level (dB)

71.54 60.05
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by the finer mesh. But the highest voltage amplitude obtained
by the finer mesh is larger than that obtained by the coarse
mesh, One reason is that at the position of the actuator with the
highest voltage amplitude, the corresponding nodal velocities
of the optimized design obtained by the finer mesh are larger
than that of the optimized design obtained by the coarse mesh,
resulting from the differences between the optimized designs
of the two meshes. Another reason is that the coupling matrix
and dielectric stiffness matrix of the sensor change with the
refinement of mesh. For the model of 8×10 mesh, the iteration
history about the number of actuators/sensors and a series of
selected intermediate designs of actuators/sensors are shown
in Fig. 9. Considering the complexity of the control system
and the efficiency of design optimization, the model of 8×10
mesh has been used in the optimization examples.

4.2.2 Comparison of optimal solutions between thickness
optimization, control system optimization and integrated
optimization

The optimized designs under excitation frequency 64 Hz are
obtained by the following three cases:(a) Case 1: the thick-
nesses of base shell elements are design variables, and the
mass of the base structure is constrained; (b) Case 2: the loca-
tions of sensors/actuators and the control gains (G1-G5) are
design variables, and only the number of sensors/actuators is
constrained; (c) Case 3: the locations of sensors/actuators,

control gains (G1-G5) and thicknesses of base shell elements
are design variables, the number of sensors/actuators and the
mass of the base structure are constraints.

The optimization parameters for three cases are listed in
Table 3. As shown in the table, the sound power levels de-
crease from 103.45 dB in initial design to 75.49 dB in optimal
design of Case 1, 83.14 dB in Case 2 and 73.62 dB in Case 3,
for about 27.96 dB, 20.31 dB and 29.83 dB respectively,
which indicates a significant reduction of sound radiation.
Additionally, the constraints of the base structure mass and
the number of sensors/actuators for these three cases are all
satisfied. The sound power in Case 1 is smaller than that in
Case 2. But the number of sensors/actuators in Case 1 is great-
er than that in Case 2. So Case 1 cannot simplify the complex-
ity of control system. In short, Case 1and Case 2 have their
own advantages and disadvantages. Additionally, the sound
power in Case 3 decreases more than that in Case 1, and the
number of sensors/actuators in Case 3 is the same as that in
Case 2, reaching the upper limit. The above conclusions show
that the integrated optimization (Case 3) achieves the best
objective value in these three cases and simplifies the com-
plexity of control system. The thicknesses of the base shell
elements and the optimized locations of sensors/actuators for
three cases are shown in Fig. 10. Clearly, the thickness distri-
bution of base shell elements in Case 1 neither agrees with the
thickness distribution obtained in Case 3 nor with the place-
ments of sensors/actuators in Case 2 and Case 3. Because the

Fig. 17 Optimized results for the
distribution of the sensors/
actuators (a) and structural
thickness (b) obtained with the
structural damping

Fig. 18 Schematic of the
structural geometry (a) and
element mesh (b) of a
piezoelectric spherical shell
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structural resonance frequency is reduced from 64Hz to 58Hz
in Case 1, but the structural resonance frequency is increased
from 64 Hz to 68 Hz in Case 2 and from 64 Hz to 72 Hz in
Case 3. Control voltages applied to the actuators after optimi-
zation of three cases are given in Fig. 11. It is clear that the
amplitude of control voltage in Case 3 is smallest.

4.2.3 Optimal solution for excitation frequency

The integrated optimization model under the influence of
different excitation frequencies is studied. Here, four dif-
ferent excitation frequencies f=40, 122, 153 and 180 Hz
are considered.

The initial and optimized values of design parameters are
given in Table 4. It is shown that the decrease of the sound
power levels is 4.07 dB for 40 Hz, 20.56 dB for 122 Hz and
18.67 dB for 153 Hz, 3.55 dB for 180 Hz respectively. It is
also clear that the constraints of the structural mass and the
number of sensors/actuators are all satisfied. The optimized
placement of sensors/actuators and the optimized thickness
distribution of base shell elements are shown in Figs. 12 and

13, respectively. It is observed that the placement of sensors/
actuators is agreement with the thickness distribution of the
base shell elements at the same excitation frequency. The op-
timization solutions shown in Figs. 12 and 13 are depended on
the structural mechanical property and the effect of active
control. For example, the optimization solutions under fre-
quency 40 Hz are mainly determined by increasing the first
structural resonant frequency from 64 Hz to 70 Hz. In other
words, retaining the piezoelectric sensors/actuators near the
clamped end and moving the base materials to the clamped
end make excitation frequency away from the structural reso-
nant frequency so that the sound radiation is reduced. The
optimization solutions under excitation frequency 180 Hz
are consistent with the layout of the relatively large displace-
ment response, which indicates that the sound radiation is
reduced by controlling the structural displacement. The dis-
placement responses of the initial and optimal designs under
frequencies 40 Hz and 180 Hz are shown in Fig. 14.

4.2.4 Optimal solution for a specified excitation frequency
band

The optimization problem is to minimize the radiated sound
power in the given frequency band 114–172 Hz. The average
sound power level of the frequency band 114–172 Hz is cho-
sen as the objective function.

The summary of design parameters for the initial and opti-
mal designs under the frequency band 114–172 Hz is given in
Table 5, from which we can find that the decrease of the aver-
age sound power is 6.27 dB. Moreover, constraints including
the masses of base shell and the number of sensors/actuators
are satisfied. The optimized placements of piezoelectric
sensors/actuators and thickness distribution contours of the
base structure are shown in Fig. 15, which indicates that the
placement of sensors/actuators is substantially consistent with
the thickness distribution of the base shell elements. Obvious
differences can be observed between these optimal solutions
and those obtained at individual frequencies f = 122 Hz (see
Figs. 12b and 13b) and f = 153 Hz (see Figs. 12c and 13c).The
radiated sound power levels for the initial design without/with
control and the optimized design obtained under frequency
band are compared in Fig. 16. It is shown that the radiated
power level at specified frequency has the smallest sound pow-
er only in the vicinity of this specific frequency and the solu-
tion of the frequency band has a smaller value of the sound
power over the whole frequency band of concern.

4.2.5 Optimal solutions for the model with structural damping

In this example, assume that the structural damping is consid-
ered and regarded as the proportional damping. The optimiza-
tion problem with damping coefficient α = β = 5 × 10−4 is
considered. Here, the excitation frequency is fixed as 153 Hz.

Fig. 19 Iteration history of the objective function under the broad
frequency range

Table 7 Summary of design parameters for the initial and optimized
designs with different damping coefficients

Parameters Initial
value

Upper
bound

Lower
bound

Optimized
result

G1 0.100 0.300 0.010 0.300

G2 0.100 0.300 0.010 0.300

G3 0.100 0.300 0.010 0.282

G4 0.100 0.300 0.010 0.300

Mass of the base
shell (kg)

1.638 1.638 - 1.638

Number of
sensors/actuators

60 32 - 32

Average sound power
level (dB)

63.06 59.89
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The parameters for the initial design and optimized de-
sign are given in Table 6. It can be seen that the sound
power decreases from 71.54 dB in the initial design to
60.05 dB in the final design. By comparison of design
parameters in Tables 2 and 6, we find that the structural
damping can further significantly reduce the sound radia-
tion from 80.07 dB to 71.54 dB before optimization, and
the sound radiation of the optimized design with the struc-
tural damping is lower than that of the optimized design
without the structural damping. Also, the amount of noise
reduction in these two cases achieved by optimization is
different. The optimal placement of the actuators/sensors
and the optimal thickness distribution are shown in Fig. 17.
It is shown that the placement of actuators is similar to the
thickness distribution of structural elements. By comparing
the optimized designs in Fig.17 with the corresponding
ones in Fig.7a and b, some small differences can be ob-
served in the optimized designs. These small differences
are found in the small central region near the fixed end and
the corners of the free end. In short, the structural damping
has marginally affected the optimization results.

4.3 Example 4: integrated optimization for the simply
supported piezoelectric spherical shell

The sound radiation from the piezoelectric spherical shell is
studied, see Fig. 18. The certain size spherical shell is obtained
by using the rectangle with length 0.6 m and width 0.5 m to
cut the sphere with radius 1.5 m. The initial thickness of the
spherical shell is 2×10−3 m, and each piezoelectric layer is
1×10−4 m thick. The material properties of the base shell
and piezoelectric layer are the same as the example 3. Here,
the structural damping is neglected. Four corners of the struc-
ture are clamped. The smart structure is modeled by 8×8 uni-
form elements. There are 64 sensors/actuators and they con-
stitute different closed-loop systems with four control gains
(G1-G4) as shown in Fig. 18b. The disturbance is assumed to
be a harmonic force with amplitude F = 1 Nand its location is
shown in Fig. 18b. The mass density and sound velocity of the
acoustic medium are the same as those of example 3.

Fig. 20 A series of selected
intermediate designs and final
design for the sensor/actuator
distribution

Fig. 21 Optimized result for the structural thickness distribution

Fig. 22 Comparison of the radiated sound power for the initial design
without/with control and the optimized design obtained under a broad
excitation frequency range
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In this example, the thicknesses of base shell elements and
the locations of sensors/actuators as well as control gains are
optimized for minimizing the average sound power of the
broad frequency band 40 Hz - 250 Hz. Iteration history of
average sound power in optimization process is shown in
Fig. 19 and the initial and optimized values are listed in
Table 7. It can be seen that the average sound power under
the frequency band decreases from 63.06 dB to 59.89 dB, for
about 3.17 dB. Constraints of the base structural mass and the
number of sensors/actuators are all satisfied. A series of se-
lected intermediate designs and final design of the piezoelec-
tric sensors/actuators are given in Fig. 20. Figure 21 shows the
optimized thickness distribution contours of the base shell
elements. It is clear that the placement of sensors/actuators is
similar to the thickness distribution of base shell elements.
The curve chart of the radiated sound power levels for initial
and optimized designs with the frequency increasing is plotted
in Fig. 22. It is seen that the peaks of the radiated power for the
initial design is decreased by active control and the overall
sound power level across the frequency band is significantly
decreased by optimization. Actuator voltage amplitudes under
the excitation frequencies 88Hz, 146 Hz and 204 Hz are given
in Fig. 23. For the same excitation frequency, the actuators
attached to the asymmetrical positions are driven by different
voltages, because the nodal velocities at the positions of dif-
ferent actuators are different and the corresponding control
gains may be different. For the different excitation frequen-
cies, the same actuator is driven by different voltages, because
the nodal velocities at its corresponding position are different
under different excitation frequencies.

5 Conclusion

The vibrating curved shell structure integrated with sensors/
actuators is discrete with finite element method in structural
dynamic analysis and the sound radiation analysis is treated by
the Rayleigh integral. The displacement constraint equation is
used to couple the base shell and piezoelectric shell. The ac-
tive damping of the piezoelectric curved shell is formulated by
the velocity feedback algorithm. An integrated optimization
model of the vibro-acoustic problem is proposed based on
both passive and active measures. The radiated sound power

is taken as the design objective to beminimized. The thickness
of the base shell and the location of sensors/actuators as well
as control gains are assigned as design variables and simulta-
neously optimized. Since the optimization problem simulta-
neously exists discrete and continuous variables, the simulated
annealing algorithm is employed for solving the optimization
model. The results of first two numerical examples verify the
correctness and accuracy of the finite element model and
acoustic procedure through comparing with the results of the
references. The last two numerical examples confirm the fea-
sibility and effectiveness of the presented method. The influ-
ences of some factors, including mesh-size, design variable,
excitation frequency and structural damping, on the optimized
design are studied in the numerical examples. It is seen that the
integrated optimization of structural thickness and control sys-
tem can reduce the number of actuators/sensors and the total
sound power better than respective optimizations. These two
examples also demonstrate that the radiated sound power at
specified excitation frequency, or in a certain frequency band
can be significantly reduced by integrated optimization. In
particular, the overall sound power level for a given broad
frequency band can be well controlled.

To minimize the sound radiation from the vibrating piezo-
electric curved shells by integrated optimization, the design
has been driven by mechanical property and the effect of ac-
tive control. For a single excitation frequency near the first
resonance frequency, the design is determinedmainly bymov-
ing the nearest resonance frequency far away from the pre-
scribed excitation frequency, while the design is driven by
controlling the vibration amplitudes for the higher excitation
frequency and the broad frequency range, and this furnishes
significant differences in the optimized designs.

The present work provides us a primary view on the char-
acteristics of integrated design of structure size and control
system with respect to acoustic criteria, which may help us
to understand further how to improve the vibro-acoustic be-
havior of the structure by integrated optimization.
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Fig. 23 Actuator voltage
amplitude distribution at different
frequencies: a f = 88 Hz; b
f = 146 Hz; c f = 204 Hz
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