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Abstract The aim of this paper is to present a microstructural
topology optimizationmethodology for the structural-acoustic
coupled system. In the structural-acoustic system, the struc-
ture is considered to be a thin composite plate composed of
periodic uniform microstructures. The discrete design vari-
ables are used in the microstructural topology optimization,
and the constitutive matrix is interpolated by the power-law
scheme at the micro scale. The equivalent macro material
properties of the microstructure are computed through the ho-
mogenization method. The design objective is to minimize the
sound pressure level (SPL) in an interior acoustic medium.
The sensitivities of the SPL with respect to design variables
are derived. The bi-directional evolutionary structural optimi-
zation (BESO) method is extended to solve the structural-
acoustic coupled optimization problem to find the optimal
material distribution of the microstructure. Numerical exam-
ples of a hexahedral box and an automobile passenger com-
partment are given to demonstrate the efficiency of the pre-
sented microstructural topology optimization method.

Keywords Microstructure design . Topology optimization .

Structural-acoustic coupled system . Homogenization
method . Bi-material interpolation . BESO

1 Introduction

With the increasing of people’s awareness of the performance
of NVH (Noise, Vibration and Harshness), the issues
concerning structural acoustic and vibration design have been
extensively studied. In literatures, a vast majority of re-
searches have been focused on optimization of the size, shape,
position parameters and material parameters of the structure
(Koopmann and Fahnline 1997; Christensen et al. 1998a, b;
Marburg 2002; Sorokin et al. 2006; Ranjbar et al. 2012). With
the advent of the method of topology optimization (Bendsøe
and Kikuchi 1988; Bendsøe and Sigmund 2003), structural
design can be performed in a space with adequately more
freedom and a better solution can be expected compared with
the traditional methods. During the last two decades, several
topology optimization techniques including the Solid
Isotropic Material with Penalization (SIMP) model (Zhou
and Rozvany 1991; Rozvany et al. 1992), the level set method
(Sethian and Wiegmann 2000; Wang et al. 2003), the
Evolutionary Structural Optimization (ESO) method (Xie
and Steven 1993, 1997) and its advanced version the Bi-
directional ESO (BESO) (Huang and Xie 2009, 2010) method
have been developed and extensively applied to various fields
of engineering. Thankfully, topology optimization provides a
promising approach to tackle the challenging on
non-intuitive multi-physics design problem, such as
thermomechanical, electro-static, and fluid-structure inter-
action problems (Maute 2014). Naturally, the topology
optimization has been applied in the structural-acoustic
problem to seek the optimal structural layout or material
distribution for improving the NVH performance (Wadbro
and Berggren 2006; Shu et al. 2009; Yamamoto et al.
2009; Du and Olhoff 2007; Shu et al. 2011).

Through exploiting topology optimization, many studies
have been done on noise reduct ion. A topology
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optimization-based approach has been proposed by Luo et al.
to study the optimal configuration of stiffeners for interior
sound reduction (Luo and Gea 2003). Dühring et al. have
studied the acoustic design of a rectangular room using the
topology optimization method (Dühring et al. 2008). Du et al.
have researched the topological design of vibrating bi-material
structures in a surrounding acoustic medium (Du and Olhoff
2010). The topology optimization of composite material plate
concerning the minimization of sound power radiation has
been investigated by Xu et al. (2011). Zhang et al. have pre-
sented a study on topology optimization of damping layers of
a shell structure for minimizing sound radiation (Zhang and
Kang 2013). A level set-based topology optimization method
has been proposed by Shu et al. for interior noise reduction of
the structural–acoustic coupled system (Shu et al. 2014).
Considering the minimization of the frequency response
of fluid–structure systems, Vicente et al. have proposed
a topology optimization methodology using a modified
BESO (Vicente et al. 2015). Shang et al. have investi-
gated topology optimization of a bi-material model for
acoustic-structural coupled system based on optimality
criteria (Shang and Zhao 2016).

Up to now, most of the researches on structural acoustic
topology optimization have concentrated on the macro scale,
that is, the macro structural layout or material distribution.
However, composites with periodic microstructure can often
be found being used in some real acoustic structures or mate-
rials engineering application, such as automobile engineering
and aerospace engineering. Therefore, it is promising to ex-
tend the structural acoustic topology optimization to the micro
scale.Microstructural topology optimization, sometimes men-
tioned as topology optimization of material, was first realized
by using the technique of inverse homogenization (Sigmund
1994, 1995). Based on this technique, numerous works have
been carried out to obtain the material with tailored physical
properties in different application areas (de Kruijf et al. 2007;
Guest and Prévost 2007; Prasad and Diaz 2009; Choi and Yoo
2010; Huang et al. 2011, 2013; Nakshatrala et al. 2013).
Certainly, some significant progress has been made on the
application of the microstructural topology optimization in
structural acoustic design. Yang and Du have investigated
the microstructural topology optimization of a beam and a
plate with respect to minimizing their sound power radiation
(Yang and Du 2013; Du and Yang 2015; Olhoff and Du 2009).
In these literatures, the boundary element method combined
with the finite element method is employed to carry out the
exterior acoustic field analysis and the response sensitivity
analysis in topology optimization. However, the effect of the
coupling between structure and acoustic in these works is
ignored. Namely, the microstructural topology optimization
for minimizing the sound pressure level (SPL) of a
structural-acoustic coupled system has not been researched
yet. The interior noise control is an important way to improve

the riding comfort of automobile and aircraft cabins. Usually,
damping materials are used to reduce the internal noise
through attaching them to structure. But the develop-
ment of material science and manufacture techniques
offers tremendous opportunities in using composite ma-
terials with tailored NVH performance. From this per-
spective, the design method of the composite material
for the interior noise control is demanding.

Motivated by the summary above, the presented work aims
to develop a topology optimization methodology of the peri-
odic microstructure to minimize the SPL of the structural-
acoustic coupled system. Because of the simplicity and com-
putational efficiency of the BESO method (Xie and Steven
1997; Huang and Xie 2009; Huang et al. 2011), this paper
will investigate the microstructural topology optimization on
the structural-acoustic coupled system by using the BESO
method with discrete design variables. In the structural-
acoustic coupled system, the macro structure is considered
to be constructed with periodic microstructures, and the mi-
crostructure is assumed to have the same configuration and
uniform distribution within the macroscopic domain. The fi-
nite element model for structural-acoustic coupled system is
adopted in this paper as the finite element method has been
widely used in engineering applications (Xia et al. 2013; Xia
and Yu 2014; Chen et al. 2016). The optimization objective is
to minimize the sound pressure level (SPL) in an interior
acoustic medium. The binary design variables are employed
to represent two different material phases of the unit cell of the
microstructure. The homogenization theory will be used
to compute the equivalent macro material properties of
the microstructure, and the constitutive matrix is inter-
polated by the power-law scheme at the micro scale.
Then the BESO method is extended to find the optimal
material distribution of the microstructure.

The remainder of this paper is organized as follows. In
Sections 2 and 3, the finite element equilibrium equation of
the structural–acoustic system and the homogenization theory
is introduced. In Section 4, the microstructural topology opti-
mization of two-scale structural-acoustic problem is set up and
the formulations of the corresponding sensitivity analysis are
deduced. Two numerical examples are presented in Section 5
and some conclusions are given in Section 6.

2 Equilibrium equation of the structural–acoustic
system

Let us consider the case in which a Kirchhoff plate constructed
with periodic microstructures is coupled with an acoustic cav-
ity. Both the plate and the acoustic medium satisfy the linear
constitutive equations and the acoustic medium is assumed to
be inviscid and incompressible. The interaction between the
acoustic field and the vibrating plate cannot be neglected. On
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the interface between the structure and the fluid, only the
normal displacement of the structure is coupled with the fluid
and the fluid just exerts normal loads on the structure.

Assuming that the external excitation is time harmonic, the
dynamic equilibrium equation of the structural-acoustic sys-
tem neglecting damping can be expressed as

Ks−ω2Ms −H
ρ f ω

2HT K f −ω2M f

� �
us
p

� �
¼ Fs

F f

� �
ð1Þ

where ω represents the angle frequency, ρf is the density of the
acoustic fluid; Ks and Ms. stand for the structural stiffness
matrix and structural mass matrix; Kf and Mf stand for the
acoustic stiffness matrix and the acoustic mass matrix; H is
the spatial coupled matrix; us and p are the displacement vec-
tor of structure and the sound pressure vector in the acoustic
domain; Fs and Ff are the generalized force vectors related to
the structure and to the internal acoustic cavity. The detailed
derivation of (1) is provided in reference (Xia et al. 2013).

The structural stiffness matrixKs and mass matrixMs., can
be expressed as

Ks ¼ ∑
i¼1

N cell

∫ΩiB
TDHBdΩ

� � ð2Þ

Ms ¼ ∑
i¼1

N cell

∫Ωiη
HNT

sNsdΩ ð3Þ

where B is the strain matrix at the macroscale; DH is the
equivalent macro constitutive matrix of the periodic micro-
structure; ηH is the average mass density of the micro unit cell;
Ns is the Lagrange shape function of the isoparametric quad-
rilateral element; the summation represents an assembly pro-
cess of the system matrices and vectors; Ncell is the total num-
ber of elements in the structural domain;Ωi is the i-th element
in the structural domain.

The acoustic mass matrix Mf and acoustic stiffness matrix
Kf can be expressed as

M f ¼ ∑
j¼1

ncell 1

c2
∫Ω jN

T
fN f dΩ ð4Þ

K f ¼ ∑
j¼1

ncell

∫Ω j ∇N f
� �T⋅ ∇N f

� �
dΩ ð5Þ

in which ncell is the total number of elements in the acoustic
domain;Ωj is the j-th element in the acoustic domain;Nf is the
Lagrange shape function of the isoparametric hexahedral ele-
ment; c is the speed of the sound.

The coupled interface between the plate and the
acoustic fluid domain satisfies the continuity conditions
of normal particle velocity and pressure usn = ufn. n is
the normal vector on the interface; us is the displace-
ment of the plate on the interface; uf is the displacement

of the acoustic fluid on the interface. The spatial

coupled matrix H is H ¼ ∑
i¼1

N cell

∫ΩiN
T
s nN f dΩ

� �
.

In order to simplify the process of analyzing the dynamic
equilibrium equation of the structural–acoustic system, we
rewrite (1) as the following form

ZU ¼ F ð6Þ
where Z is the acoustic impedance matrix (Sgard et al. 1994);
U is the frequency response vector; F is the external excitation
vector. They can be expressed as

Z ¼ Ks−ω2Ms −H
ρ f ω

2HT K f −ω2M f

� �
U ¼ us pf gT

F ¼ Fs F f
� 	T

ð7Þ

3 Homogenization-based microstructural analysis

The macro plate is assumed to be constructed by periodic
microstructures. Thus, the equivalent macro constitutive ma-
trix DH of the periodic microstructure can be computed
through the homogenization method (Bendsoe and Kikuchi
1988; Bendsoe et al. 1993).

DH ¼ 1

Ωj j ∫ΩDe I‐bχð ÞdΩ ð8Þ

Where Ω is the domain of the micro unit cell and |Ω| rep-
resents its area; De stands for the constitutive matrix of the eth
element in the micro unit cell; the symbol I is a unit matrix; the
symbol b is the strain matrix at the micro scale; χ represents
the characteristic displacement of the microstructure, which is
the solution of the auxiliary equation given by

kχ ¼ f ð9Þ
here, the stiffness matrix k and the force vector f at the micro-
scale can be expressed as

k ¼ ∫
Ω
bTDebdΩ ð10Þ

f ¼ ∫
Ω
bTDedΩ ð11Þ

in which the constitutive matrix De can be interpolated by the
power-law scheme (Huang and Xie 2009), that is

De ¼ xqeD
1 þ 1−xqe

� �
D2 ð12Þ

whereD1 andD2 stand for the constitutive matrices of the two
given solid isotropic base material 1 and 2, respectively; xe is
the relative volumetric density, which describe the layout of
the micro structure. The symbol q is the exponent of
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penalization, which usually taken to be equal to 3. In the
present paper, the Kirchhoff plate element is employed in
the finite element model. The elasticity constitutive matrix
of the given solid isotropic material can be expressed as

D ¼ Eh3

12 1−v2ð Þ

1 v 0
v 1 0

0 0
1−v
2

2
64

3
75 ð13Þ

where h is the thickness of the plate; the symbols E and ν are
the Young’s modulus and the Poisson’s ratio of the given
material, respectively.

The average mass density ηH of the micro unit cell can be
calculated as following

ηH ¼ 1

Ωj j ∫Ω ηedΩ ð14Þ

Here, ηe is the mass density of the eth element in the micro
unit cell and can also be interpolated as

ηe ¼ xeη1 þ 1−xeð Þη2 ð15Þ
where η1 and η2 stand for the mass density of the two given
solid isotropic base material 1 and 2, respectively.

4 Microstructural topology optimization
for the coupled systems

4.1 Problem statement

In the coupled structural–acoustic system, the macro plate is
considered to be constructed by a kind of composite material
with a periodic microstructure, and the microstructure is as-
sumed to have the same configuration and uniform distribu-
tion within the macroscopic domain. The micro unit cell is
composed of two different solid isotropic materials and is
assumed to be identical from point to point at the macrolevel.
In this paper, the aim of topology optimization for the coupled
structural-acoustic systems is to find a material distribution of
the microstructure that satisfies prescribed constrains and min-
imizes the sound pressure level (SPL). Usually two distinct
situations should be considered when harmonic loads are act-
ing in a system. The first one is that the external force is acting
under just one specified frequency, and the other one is that the
applied load can vary in a frequency interval. For the first
situation, the objective function and the sensitivity can be
calculated directly. Considering the latter situation, a number
of approaches can be employed to determine the objective
function and the sensitivity in the frequency domain. In liter-
atures, Yoon used an integral function to calculate the objec-
tive function in an frequency interval range (Yoon 2010).
Zhang et al. calculated the objective function using the

Kreisselmeier–Steinhauser (KS) aggregated function and took
sampling frequencies in the frequency interval range analyzed
(Zhang et al. 2014). In the present work, a linear approxima-
tion is used to interpolate the objective function in the ana-
lyzed frequency interval. The analyzed frequency range is
divided equally into n discrete frequencies. The objective
function and the sensitivity for the structural-acoustic system
are calculated for each frequency. Then, the arithmetic mean
values of the objective function and sensitivity for n discrete
frequencies are computed as the effective objective function
and sensitivity. Here, the topology optimization model for the
coupled systems can be stated as

min ∑
ω
SPLω; j

s:t: ZU ¼ F

∑
e
xeve≤V

xe ¼ xmin or 1

ð16Þ

where xe is a binary design variable corresponding to element
e in the microstructural domain and ve is the element volume;
here, the microstructure is considered to be composed of a soft
material (Material 1) and a stiff material (Material 2); V is the
predefined upper bound of the volume occupied with soft
material; xe = 1 and xe = xmin denote the soft material elements
and stiff material elements, respectively; A small value xmin =
0.001 is used to denote the stiff material elements; here, the
SPLω,j is defined as following

SPLω; j ¼ 10log10
pω; j
p0


 �2

ð17Þ

where pω,j is the amplitude of the sound pressure at the jth
degree of freedom when the angle frequency is ω; p0 is the
reference sound pressure, which is equal to 2 × 10−5 Pa.

4.2 Sensitivities analysis

In this paper, the BESO is extended to solve the microstruc-
tural topology optimization for the minimization of the SPL of
the structural-acoustic coupled systems. The direct-variable
sensitivity analysis is conducted here. However,it should be
noted that the adjoint-variable method is more efficient than
the direct variable method in the problems involving a large
number of design variables but only a few behavior functions,
as in the case of a topology optimization (Kang et al. 2012). In
the extended microstructural BESO, the sensitivity is defined
as the derivative of the objective function SPLω,j with respect
to the design variable xe, which can be expressed as

∂SPLω; j

∂xe
¼ 20

pω; jlog 10ð Þ
∂pω; j
∂xe

ð18Þ
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In order to determine the derivative of the response sound
pressure in the jth degree of freedomwith respect to the design
variable, a load vector ξj is introduced. This load vector has the
unity value in the jth degree of freedom and zero in all other

positions. Thus,
∂pω; j
∂xe can be expressed as

∂pω; j
∂xe

¼ ξTj
∂U
∂xe

ð19Þ

Taking derivatives of (6) with respect to design variable xe,
one gets

∂U
∂xe

¼ −Z‐1 ∂Z
∂xe

U ð20Þ

Combining with (19), (20) and (18), the sensitivity of
SPLω,j can be rewritten as

∂SPLω; j

∂xe
¼ −20

pω; jlog 10ð Þ ξTj Z
‐1 ∂Z
∂xe

U ð21Þ

where

∂Z
∂xe

¼
∂Ks

∂xe
−ω2 ∂Ms

∂xe
−
∂H
∂xe

ρ f ω
2 ∂H

T

∂xe
∂K f

∂xe
−ω2 ∂M f

∂xe

2
664

3
775 ð22Þ

Due to xe is only associated with the eth microstructural
element, (22) can be simplified as

∂Z
∂xe

¼
∂Ks

∂xe
−ω2 ∂Ms

∂xe
0

0 0

" #
ð23Þ

where

∂Ks

∂xe
¼ ∑

i¼1

N cell

∫ΩiB
T ∂D

H

∂xe
BdΩ


 �
ð24Þ

∂Ms

∂xe
¼ ∑

i¼1

N cell

∫Ωi

∂ηH

∂xe
NT

sNsdΩ ð25Þ

where the derivative of DH can be computed as following
through mapping method (Liu et al. 2002)

∂DH

∂xe
¼ 1

Ωj j ∫Ω I‐bχð ÞT ∂De

∂xe
I‐bχð ÞdΩ ð26Þ

The derivative of De can be expressed as

∂De

∂xe
¼ pxq−1e D1−D2

� � ð27Þ

The derivative of ηH in (25) can be calculated as follows

∂ηH

∂xe
¼ 1

Ωj j ∫Ω
∂ηe
∂xe

dΩ ð28Þ

where

∂ηe
∂xe

¼ η1−η2 ð29Þ

4.3 Solution algorithm

In this paper, the microstructural BESO is developed to min-
imize the SPL of the structure-acoustic coupled system. The
binary design variables are employed to represent two differ-
ent material phases of the unit cell of the microstructure. The
constitutive matrix is interpolated by the power-law scheme at
the micro scale, and the equivalent macro material properties
of the microstructure are computed through the homogeniza-
tion method in each iteration of the optimization procedure.
The main steps of the microstructural BESO method for
coupled systems are given as follows

Step 1: Discretize the macro structural–acoustic system
and microstructure design domain by a finite element
mesh with given boundary and loading condition.
Step 2: Define the BESO parameters, such as the material
volume constraint V, evolutionary ratio ER, penalty factor
p, filter radius rmin ect. The detail of BESO parameters
can be found in literatures (Huang et al. 2011) and
(Huang et al. 2013).
Step 3: Perform the finite element analysis on the micro
scale to calculate the effective elastic matrix DH and the
average mass density ηH based on the homogenization
method presented in section 3.
Step 4: Carry out the finite element analysis for the
coupled system using the effective elastic matrix DH

and the average mass density ηH.
Step 5: Compute the sensitivity numbers αe for minimiz-
ing the SPL in the structural-acoustic coupled systems,
which is

αe ¼ −
∂SPLω; j

∂xe
¼ 20

pω; jlog 10ð Þ ξTj Z
‐1 ∂Z
∂xe

U ð30Þ

here, the sensitivity numbers can be negative or positive.
Positive sensitivity number means the design variable has
a positive effect on the optimization objective function,
and vice versus.

Step 6: Update sensitivity numbers by a mesh-
independency filter scheme, which is defined as

α̂i ¼
∑
M

j¼1
w rij
� �

α j

∑
M

j¼1
w rij
� � ð31Þ

where M is the total number of nodes in the sub-domain
Ωi; the sub-domain Ωi is generated by drawing a circle of
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radius rmin centered at the centroid of ith element; rij
denotes the distance between the center of the element i
and node j; αj is the nodal sensitivity numbers; w(rij) is
the weight factor defined as (Xie and Steven 1997)

w rij
� � ¼ rmin−rij for rij < rmin

0 for rij≥rmin

�
ð32Þ

Step 7: Average sensitivity numbers with historical infor-
mation as

α̂i ¼ α ̂
k

i þ α̂
k−1

i

2
ð33Þ

where k is the current iteration number. In this way, the
updated sensitivity number considers the sensitivity in-
formation in the previous iterations.

Step 8: Determine the target soft material volume for the
next design. When the current soft material volume Vk is
larger than the objective soft material volume V, the target
soft material volume for the next design can be calculated
by

Vkþ1 ¼ Vk 1−ERð Þ ð34Þ

If the calculated soft material volume for the next de-
sign is less than the objective soft material volume V, the
target soft material volume for the next design Vk+1 is set
to be V.

Step 9: Reset the design variables of all elements. For soft
material elements, the elemental density is switched from
1 to xmin if the criterion αi≤αth is satisfied. Whereas, for
stiff material elements, the elemental density is switched
from xmin to 1 if the criterionαi > αth is satisfied. In these
criterions, αth is the threshold of the sensitivity number.
The detail of determining αth can refer to literature
(Huang and Xie 2009).
Step 10: Repeat 2–9 until the prescribed material volume
constraint is achieved and the convergent criterion with a
predefined error tolerance τ = 0.001 is satisfied. The var-
iation in the objective function is calculated as following

∑3
j¼1Rk− jþ1‐∑3

j¼1Rk− j‐2

��� ���
∑3

j¼1Rk− jþ1
≤τ ð35Þ

where Rk denotes the objective function value in the kth
iteration.

The flow chart of the iterative procedure for the mi-
crostructural BESO method for coupled systems is
shown in Fig.1.

5 Numerical example

5.1 A hexahedral box

A three-dimensional cavity is enclosed with a hexahedral box
of dimensions 0.25 m × 0.25 m × 0.25 m, as shown in Fig. 2.
The top surface of the box is a clamped plate with thickness
1 mm and the other surfaces are rigid. A concentrated harmon-
ic loading F = 10 N is applied to the midpoint of the top
surface. The density and the sound speed of the air are
1.21 kg/m3 and 343 m/s, respectively. The clamped plate is
discretized by 64 four-node Kirchhoff plate elements and the
acoustic domain is discretized by 512 hexahedral elements.
The reference point A is used to observe the sound pressure
response in the acoustic field.

Define the initial design domain for microstructure

start

Define BESO parameters: V, ER, p ect.

Finite element analysis on the

microstructure

Converged?

No

Yes

end

Calculate the effective elastic matrix DH

and the average mass density H

Finite element analysis on the structural-

acoustic system, using D
H and H

Calculate elemental sensitivity numbers

Construct a new design

Is volume constraint

satisfied?

No

Filtering and averaging the sensitivity

numbers

Yes

Fig. 1 Flowchart of the procedure of the solution algorithm
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The macro clamped palate is considered to be com-
posed of a periodic uniform material, thus the homoge-
nization theory can be applied. The microstructure unit
cell is composed of two prescribed materials, namely,
the strong material (Red color) and the soft material
(Blue color). The strong material has a Young’s modu-
lus E1 = 71 GPa, Poisson’s ratio v1 = 0.3, and mass
density ρ1 = 2700 kg/m3. The soft material has a
Young’s modulus E2 = E1 / 10, Poisson’s ratio
v2 = 0.3, and mass density ρ2 = ρ1 / 10. Figure 3
depicts the initial design of the microstructure unit cell.
A small disturbance of material volume density is intro-
duced to the central elements of the design domain to
avoid the trivial solution, in which all the elements have
the same material volume density in the final design
(Yang and Du 2013). For simplicity the unit cells in
the micro scale are assumed to be squared and with a
dimensionless length of 1 × 1. The microstructure de-
sign domain is discretized into 30×30 quadrilateral ele-
ments. The parameters in the BESO procedure are set
as: the evolutionary ratio is set to be 2%; the radius
rmin of the filter is chosen to be 3; the volume fraction
of the solid material is constrained to 50% of the total
volume. In order to obtain the symmetric designs, only
quarter of the microstructure is designed. Simulations of
this hexahedral box are carried out by MATLAB
R2014a on a 2.93GHz Core(TM) 8 CPU E7500.

Firstly, cases of microstructural topology optimization
for the coupled box model with respect to discrete fre-
quency are considered. The optimum topologies of the
micro unit cell under four different frequencies harmon-
ic loading are shown in Fig. 4. It can be seen from
Fig. 4 that the optimal topology varies with frequency.
Figure 5 presents the evolutionary history of the SPL in
these microstructural topology optimization processes.
The corresponding sound pressure at the reference point
of the initial design and the optimum design are com-
pared in Table 1. The sound pressure at the reference
point can be decreased effectively through microstruc-
tural topology optimization. It can be found out from
Fig. 5 that the sound pressure reduction at f = 150 Hz
is the largest among these four different frequencies. As
shown in Table 1, the sound pressure is reduced from

Fig. 3 Initial uniform design with slight perturbation in the center of the
mirco unit cell

Fig. 2 A hexahedral box

(a)

(b)

(c)

(d)
Fig. 4 Optimum topologies of the micro unit cell and the corresponding
6 × 6 arrays for the different excitation frequencies
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102.8 dB to 78.83 dB when the excitation frequency is
150 Hz, a drop of almost 23.3%. This means that the
presented microstructural BESO can achieve a good re-
sult on the noise reduction of a coupled structural-
acoustic system. Furthermore, Fig. 6 shows the compar-
ison of the sound pressure at the reference point be-
tween the initial and optimum designs of the coupled
box model considering the target frequency f = 250 Hz.
It can be found out from Fig. 6 that the sound pressure
at the reference point of the optimum design is smaller
than that of the original design at the target frequency.
Besides, it can be seen that the resonance frequency of
optimum design has a shifting compared with original
design.

Then the situation of the coupled box model consid-
ering a frequency interval loading is investigated. The
frequency range is set to be 125–175 Hz and is divided
into n = 11 discrete frequency values. Using the algo-
rithm mentioned in section 4.1, the optimum topology of
the micro unit cell considering the frequency interval of
f = 125–175 Hz are shown in Fig. 7. Sound pressures at
the reference point associated with the initial design and
the optimum designs are calculated respectively within
the frequency interval f = 50–200 Hz. The corresponding
sound pressure curves are plotted in Fig. 8 and the target
frequency interval is shadowed. It can be observed from
Fig. 8 that the resonance frequency is shifted away from
the interval of the applied excitation and the sound pres-
sure at the reference point in the target frequency interval
decrease obviously in the optimum design. This further
indicates that the presented microstructural BESO for

structural-acoustic coupled system has a good perfor-
mance in noise control.

5.2 An automobile passenger compartment

Figure 9 shows an automobile passenger compartment
with flexible roof panel. A harmonic point force
F = 10 N is applied at the central of the roof. The
thickness of the roof panel is 1 mm. The four sides of
the roof panel are set to be fixed. The density and the
sound speed of the air are 1.21 kg/m3 and 343 m/s,
respectively. The node A is near the driver’s ear. The
macro roof panel is assumed to be composed of a peri-
odic uniform material. The microstructure unit cell is
composed of two prescribed materials. The two materials
employed and the initial design of the microstructure unit
cell are the same as those in Section 5.1. The unit cells
in the micro scale are assumed to be squared and with a
dimensionless length of 1 × 1. The microstructure design
domain is discretized into 30×30 quadrilateral elements.
Here, the proposed microstructural BESO for structural-
acoustic systems is used to perform the topology design.
The evolutionary ratio is set to be 2%. The radius rmin of
the filter is chosen to be 3. The volume fraction of the
solid material is constrained to 50% of the total volume.
In order to obtain the symmetric designs, only quarter of
the microstructure is designed. Simulations of this auto-
mobile passenger compartment are carried out by
MATLAB R2014a on a 2.93GHz Core(TM) 8 CPU
E7500.

Simulations of microstructural topology optimization
for the automobile passenger compartment model with
respect to discrete frequency are performed firstly. The
optimum topologies of the micro unit cell under three
different frequencies harmonic loading are shown in
Fig. 10. The comparison of the corresponding sound
pressure at the node A in the initial design and the
optimum design are made, as shown in Table 2. It can
be seen from Fig. 10 that the optimal topology varies
seriously with frequency. The sound pressure at the
node A can be decreased effectively through microstruc-
tural topology optimization. Specifically, the sound pres-
sure is reduced from 67.29 dB to 42.41 dB when the
excitation frequency is 180 Hz, a reduction of almost

0 5 10 15 20 25 30 35 40
60

70

80

90

100

110

Iterations

S
P

L
 (

d
B

)

50 Hz

150 Hz

250 Hz

350 Hz

Fig. 5 The evolutionary history of the SPL at different excitation
frequencies

Table 1 The sound pressure at
the reference point in the initial
design and optimum design

Excitation frequencies (Hz) Initial design (dB) Optimum design (dB) Reduction rate

50 70.96 66.36 6.48%

150 102.8 78.83 23.32%

250 92.61 77.08 16.77%

350 94.33 84.51 10.41%
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37.0%. This indicates that the proposed microstructural
BESO for structural-acoustic systems can be employed
to acquire better NVH performance in practical engi-
neering. Figure 11 shows the comparison of the sound
pressure at the reference point between the initial and
optimum designs of the automobile passenger compart-
ment mode l cons ide r ing the ta rge t f requency
f = 180 Hz. It can be found out from Fig. 11 that the
sound pressure at the reference point of the optimum
design is smaller than that of the original design at
the target frequency. Besides, the phenomenon that the
resonance frequency of optimum design has a shifting
compared with original design can be observed as well.

The case of the automobile passenger compartment
model considering a frequency interval loading is also
investigated. The frequency range is set to be 110–
130 Hz and is divided into n = 11 discrete frequency
values. Through the algorithm presented in section 4.1,
the optimum topology of the micro unit cell considering
the frequency interval of f = 110–130 Hz are given in
Fig. 12. The first twelve order non-zero resonance fre-
quencies of original design and optimum design are
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Fig. 6 The comparison of the sound pressure at the reference point
between the initial and optimum designs of the coupled box model
considering the target frequency f = 250 Hz

Fig. 7 Optimum topology of the micro unit cell and the corresponding
6 × 6 arrays considering the frequency interval of f = (125–175) Hz
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Fig. 8 The comparison of the sound pressure at the reference point
between the initial and optimum designs of the coupled box model
considering the frequency interval f = (125–175) Hz

Fig. 9 An automobile passenger compartment

(a)

(b)

(c)
Fig. 10 Optimum topologies of the micro unit cell and the corresponding
6 × 6 arrays for the different excitation frequencies
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listed in Table 3. It can be found out that the resonance
frequencies of optimum design move to low values
compared with original design. Also, resonance frequen-
cies located in the target frequency interval are
117.98 Hz and 127.36 Hz in the original design, where-
as the resonance frequency in the optimum design is
129.84 Hz. Sound pressures at the node A associated
with the initial design and the optimum designs are
computed respectively within the frequency interval
f = 20–200 Hz. The corresponding sound pressure
curves are plotted in Fig. 13 and the target frequency
interval is shadowed. It can be observed from Fig. 13
that the resonance peaks are shifted away from the in-
terval of the applied excitation and the sound pressure
at the node A in the target frequency interval decrease
obviously in the optimum design. Besides, it can be
found out from Fig. 13 that the SPL is decreased at
most of the frequencies within the frequency interval
f = 20–200 Hz. Therefore, the presented microstructural
BESO for structural-acoustic systems is practicable and
available for reducing low-frequency noise in engineer-
ing problems.

6 Conclusions

Motivated by the requirement of the design approach
for the composite material in the field of the interior
noise control, this paper has presented a microstructural
topology optimization methodology for the structural-
acoustic coupled system to minimize the SPL generated
by the vibrating structure. In the structural-acoustic sys-
tem, the macro plate is assumed to be composed of a
periodic uniform microstructure. The binary design var-
iables are employed to represent two different material
phases of the unit cell of the microstructure. The con-
stitutive matrix is interpolated by the power-law scheme

Table 2 The sound pressure at
the node A in the initial design
and optimum design

Excitation frequencies (Hz) Initial design (dB) Optimum design (dB) Reduction rate

80 87.49 76.80 12.22%

180 67.29 42.41 36.97%

280 97.78 85.32 12.74%

Fig. 12 Optimum topology of the micro unit cell and the corresponding
6 × 6 arrays considering the frequency interval of f = (110–130) Hz

Table 3 The first twelve order non-zero resonate frequencies of
original design and optimum design

Resonate frequency order Initial design (Hz) Optimum design (Hz)

1 24.69 20.20

2 32.65 25.46

3 56.05 45.41

4 67.88 55.33

5 77.24 62.17

6 101.17 80.20

7 117.98 99.58

8 127.36 103.85

9 132.09 107.79

10 150.28 129.84

11 161.87 133.43

12 167.58 150.28
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Fig. 13 The comparison of the sound pressure at node A between the
initial and optimum designs of the automobile passenger compartment
considering the frequency interval f = (110–130) Hz
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Fig. 11 The comparison of the sound pressure at node A between the
initial and optimum designs of the automobile passenger compartment
considering the target frequency f = 180 Hz
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at the micro scale, and the equivalent macro material
properties of the microstructure are computed using the
homogenization method in each iteration of the optimi-
zation procedure. The BESO method is extended to find
the optimal material distribution of the microstructure.
Numerical examples of a hexahedral box and an auto-
mobile passenger compartment excited at a single or a
band of excitation frequencies by a time-harmonic ex-
ternal loading are performed using the proposed micro-
structural BESO. The results indicate that the micro-
structural BESO for structural-acoustic coupled systems
presented in this article is practicable and available for
reducing noise in engineering problems.

Acknowledgements The paper is supported by the National Natural
Science Foundation of China (No.11572121), the Independent Research
Project of the State Key Laboratory of Advanced Design and
Manufacturing for Vehicle Body in Hunan University (Grant
No.71375004) and Hunan Provincial Innovation Foundation for
Postgraduate (Grant No. CX2014B147).

References

BendsoeMP, Díaz A, Kikuchi N (1993) Topology and generalized layout
optimization of elastic structures. Topology design of structures,
Springer

Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in struc-
tural design using a homogenization method. Comput Methods
Appl Mech Eng 71(2):197–224

Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in struc-
tural design using a homogenization method. Comput Methods
Appl Mech Eng 71(2):197–224

Bendsøe MP, Sigmund O (2003) Topology optimization: theory,
methods, and applications. Springer, Berlin

Chen N, YuD, Xia B, BeerM (2016) Uncertainty analysis of a structural–
acoustic problem using imprecise probabilities based on p-box rep-
resentations. Mech Syst Signal Process 80:45–57

Choi JS, Yoo J (2010) Design and application of layered composites with
the prescribed magnetic permeability. Int J Numer Methods Eng
82(1):1–25

Christensen ST, Sorokin SV, Olhoff N (1998a) On analysis and optimi-
zation in structural acoustics—part I: problem formulation and so-
lution techniques. Struct Multidiscip Optim 16(2–3):83–95

Christensen ST, Sorokin SV, Olhoff N (1998b) On analysis and optimi-
zation in structural acoustics—part II: exemplifications for axisym-
metric structures. Struct Multidiscip Optim 16(2–3):96–107

de Kruijf N, Zhou S, Li Q, Mai YW (2007) Topological design of struc-
tures and composite materials with multiobjectives. Int J Solids
Struct 44:7092–7109

Du JB, Olhoff N (2007) Minimization of sound radiation from vibrating
bi-material structures using topology optimization. Struct
Multidiscip Optim 33(4–5):305–321

Du JB, Olhoff N (2010) Topological design of vibrating structures with
respect to optimum sound pressure characteristics in a surrounding
acoustic medium. Struct Multidiscip Optim 42(1):43–54

Du JB, Yang RZ (2015) Vibro-acoustic design of plate using bi-material
microstructural topology optimization. J Mech Sci Technol 29(4):
1413–1419

Dühring MB, Jensen JS, Sigmund O (2008) Acoustic design by topology
optimization. J Sound Vib 317(3):557–575

Guest JK, Prévost JH (2007) Design of maximum permeability material
structures. Comput Methods Appl Mech Eng 196:1006–1017

Huang X, Radman A, Xie YM (2011) Topological design of microstruc-
tures of cellular materials for maximum bulk or shear modulus.
Comput Mater Sci 50:1861–1870

Huang X, Xie YM (2009) Bi-directional evolutionary topology optimi-
zation of continuum structures with one or multiple materials.
Comput Mech 43(3):393–401

Huang X, Xie YM (2010) Evolutionary topology optimisation of contin-
uum structures: methods and applications. Chichester, JohnWiley &
Sons, Ltd

Huang X, Zhou S, Xie YM, Li Q (2013) Topology optimization of mi-
crostructures of cellular materials and composites for macrostruc-
tures. Comput Mater Sci 67(0):397–407

Kang Z, ZhangX, Jiang SG, ChengGD (2012) On topology optimization
of damping layer in shell structures under harmonic excitations.
Struct Multidiscip Optim 46(1):51–67

Koopmann GH, Fahnline JB (1997) Designing quiet structures: a sound
power minimization approach. Academic, London

Liu ST, Cheng GD, Gu Y, Zheng XG (2002) Mapping method for sensi-
tivity analysis of composite material property. Struct Multidiscip
Optim 24(3):212–217

Luo JH, Gea HC (2003) Optimal stiffener design for interior sound re-
duction using a topology optimization based approach. J Vib Acoust
125(3):267–273

Marburg S (2002) Developments in structural-acoustic optimization for
passive noise control. Arch Comput Meth Eng 9(4):291–370

Maute K (2014) Topology optimization of coupled multi-physics prob-
lems. Topology Optimization in Structural and Continuum
Mechanics. Springer, Vienna, pp 421–437

Nakshatrala PB, Tortorelli DA, K.B. (2013) Nakshatrala, nonlinear struc-
tural design using mutiscale topology optimization part i: static for-
mulation. Comput Methods Appl Mech Eng 261–262:167–176

Olhoff N, Du JB (2009) On topological design optimization of structures
against vibration and noise emission. Computational aspects of
structural acoustics and vibration, Springer

Prasad J, Diaz AR (2009) Viscoelastic material design with negative
stiffness components using topology optimization. Struct
Multidiscip Optim 38(6):583–597

Ranjbar M, Marburg S, Hardtke HJ (2012) Structural-acoustic optimiza-
tion of a rectangular plate: a tabu search approach. Finite Elem Anal
Des 50:142–146

Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization
without homogenization. Structural Optimization 4:250–254

Sethian JA, Wiegmann A (2000) Structural boundary design via level set
and immersed interface methods. Int J Numer Methods Eng 163(2):
489–528

Sgard F, Atalla N, Nicolas J (1994) Coupled FEM-BEM approach for
mean flow effects on vibro-acoustic behavior of planar structures.
AIAA J 32(12):2351–2358

Shang LY, Zhao GZ (2016) Optimality criteria-based topology optimiza-
tion of a bi-material model for acoustic–structural coupled systems.
Eng Optim 48(6):1060–1079

Shu L, Ma ZD, Fang ZD (2009) Topology-boundary optimization of
coupled structural-acoustic systems. Proceedings of ASME 2009
International Mechanical Engineering Congress and Exposition,
Vol. 15, Florida, pp 471–478

Shu L, Wang MY, Fang Z, Ma ZD, Wei P (2011) Level set based struc-
tural topology optimization for minimizing frequency response. J
Sound Vib 330(24):5820–5834

Shu L, Wang MY, Ma ZD (2014) Level set based topology optimization
of vibrating structures for coupled acoustic–structural dynamics.
Comput Struct 132:34–42

Sigmund O (1994) Materials with prescribed constitutive parameters: an
inverse homogenization. Int J Solids Struct 31(17):2313–2329

Microstructural topology optimization of structural-acoustic coupled system 1269



Sigmund O (1995) Tailoring materials with prescribed elastic properties.
Mech Mater 20(4):351–368

Sorokin SV, Olhoff N, Ershova OA (2006) The energy generation and
transmission in compound elastic cylindrical shells with heavy in-
ternal fluid loading -from parametric studies to optimization. Struct
Multidiscip Optim 32(2):85–98

Vicente WM, Picelli R, Pavanello R, Xie YM (2015) Topology optimi-
zation of frequency responses of fluid–structure interaction systems.
Finite Elem Anal Des 98:1–13

Wadbro E, Berggren M (2006) Topology optimization of an acoustic
horn. Comput Methods Appl Mech Eng 196(1–3):420–436

Wang MY, Wang XM, Guo D (2003) A level set method for structural
topology optimization. Comput Methods Appl Mech Eng 192:227–
246

Xia B, Yu D (2014) An interval random perturbation method for
structural-acoustic system with hybrid uncertain parameters. Int J
Numer Methods Eng 97(3):181–206

Xia B, Yu D, Liu J (2013) Hybrid uncertain analysis for structural–acous-
tic problem with random and interval parameters. J Sound Vib 332:
2701–2720

Xie YM, Steven GP (1993) A simple evolutionary procedure for struc-
tural optimization. Comput Struct 49:885–896

Xie YM, Steven GP (1997) Evolutionary structural optimization.
Springer, London

Xu ZS, Huang QB, Zhao ZG (2011) Topology optimization of composite
material plate with respect to sound radiation. Engineering Analysis
with Boundary Elements 35(1):61–67

Yamamoto T, Maruyama S, Nishiwaki S, Yoshimura M (2009) Topology
design of multi-material soundproof structures including poroelastic
media to minimize sound pressure levels. Comput Methods Appl
Mech Eng 198(17–20):1439–1455

Yang RZ, Du JB (2013) Microstructural topology optimization with re-
spect to sound power radiation. Struct Multidiscip Optim 47:191–
206

Yoon GH (2010) Structural topology optimization for frequency response
problem using model reduction schemes. Comput Methods Appl
Mech Eng 199(25–28):1744–1763

Zhang XP, Kang Z (2013) Topology optimization of damping layers for
minimizing sound radiation of shell structures. J Sound Vib 332:
2500–2519

Zhang X, Kang Z, Li M (2014) Topology optimization of electrode cov-
erage of piezoelectric thin-walled structures with CGVF control for
minimizing sound radiation. Struct Multidiscip Optim 50(5):799–
814

Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological,
geometrical and generalized shape optimization. Comput Methods
Appl Mech Eng 89:309–336

1270 N. Chen et al.


	Microstructural topology optimization of structural-acoustic coupled systems for minimizing sound pressure level
	Abstract
	Introduction
	Equilibrium equation of the structural–acoustic system
	Homogenization-based microstructural analysis
	Microstructural topology optimization for the coupled systems
	Problem statement
	Sensitivities analysis
	Solution algorithm

	Numerical example
	A hexahedral box
	An automobile passenger compartment

	Conclusions
	References


