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Abstract In mode acceleration method for topology op-
timization related harmonic response with multiple fre-
quencies, most of the computation effort is invested in
the solution of the eigen-problem. This paper is focused
on reduction of the computational effort in repeated so-
lution of the eigen-problem involved in mode accelera-
tion method. The block combined approximation with
shifting method is adopted for eigen-problem reanalysis,
which simultaneously calculates some eigenpairs of
modified structures. The triangular factorizations of
shifted stiffness matrices generated within a certain
number of design iterations are utilized to calculate the
modes. For improving computational efficiency, Basic
Linear Algebra Subprograms (BLAS) are utilized. The
reanalysis method is based on matrix-matrix operations
with Level-3 BLAS and can provide very fast develop-
ment of approximate solutions of high quality for fre-
quencies and associated mode shapes of the modified
structure. Numerical examples are given to demonstrate
the efficiency of the proposed topology optimization
procedure and the accuracy of the approximate
solutions.

Keywords Topology optimization . Harmonic response with
multiple frequencies .Mode accelerationmethod . Block
combined approximationwith shifting

1 Introduction

Structural topology optimization problem is concerned
with the optimal distribution of material for the load-
bearing structures and is applied to a wide range of struc-
tural design problems (Bendsøe and Kikuchi 1988). The
problem of topology optimization related to dynamic re-
sponses is concerned with design of structures subjected
to harmonic force excitations. The purpose of the dynamic
response topology optimization is to minimize the dynam-
ic compliance of structure at prescribed material volume.
In general, it is necessary to incorporate the model reduc-
tion methods, such as the mode displacement method
(MDM), and mode acceleration method (MAM), into the
topology optimization procedure to reduce the computa-
tional cost, especially for the large-scale problem (Greene
and Haftka 1991). However, due to the changes in the
design variables, optimization for the dynamic response
requires repetitious solution of generalized eigen-problem,
and the process involves repeated and tremendous
calculations.

The reanalysis methods are intended to efficiently evaluate
the structural responses for various changes in design without
solving the full set of modified analysis equations. One of the
tools for reanalysis is the Combined Approximations (CA)
approach, which attempts to give global qualities local ap-
proximations. The CA method uses binomial series terms as
basis vectors in reduced basis approximations. Originally, the
CA method was proposed for structural static reanalysis
(Kirsch and Papalambros 2001). Afterwards, the method had
been extended to vibration reanalysis (Kirsch et al. 2007;
Kirsch 2010). It has been shown the CA approach can provide
accurate results for lower mode shapes (Kirsch and
Bogomolni 2004). The CA method, however, calculates a
frequency and associated mode shape each time, it is less
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efficient and accurate, especially for higher order mode
shapes. Based on utilizing CA method, some considerable
efforts have been made about topology optimization. Leu
and Chang (2000) addressed the implementation of structural
reanalysis method in both mathematical programming (MP)
and optimality criteria (OC) schemes, a reduced basis method
extended from Kirsch’s method is employed for the linear
reanalysis. Amir et al. (2009) investigated the implementation
of CA method in structural topology optimization. It integrat-
ed the linear reanalysis into the standard topology optimiza-
tion for minimum compliance problems. Bogomolny (2010)
put forward an extension towards reanalysis-based topology
optimization for free vibrations. The CAmethod involved into
the optimization process is utilized for repeated eigenvalue
analysis. Xu et al. (2010) applied an adaptive reanalysis meth-
od into the optimal design of trusses, where the CA method is
adopted for the static analysis. A reanalysis-based genetic
algorithm for structural optimization with frequency
constrains was presented by Zou et al. (2011). The ex-
tended Kirsch CA method is used for the case of re-
peated eigenvalue problem. The integration of approxi-
mate reanalysis procedures in robust topology optimiza-
tion for a minimum-weight formulation was proposed
by Amir et al. (2012). Zuo et al. (2016) presented a
new sensitivity reanalysis of static displacement for ar-
bitrary changes of design variables. Taylor series expan-
sion and CA method is utilized to solve the sensitivity
equations. Based on CA method, a novel sensitivity
reanalysis method of vibration problem (Zou et al.
2017) is proposed to acquire the derivatives of the ei-
genvalues and eigenvectors.

In this study, the block combined approximation with
shifting (BCAS) (Zheng et al. 2015) is implemented in topol-
ogy optimization related to dynamic responses with multiple
frequencies. For the optimization problem, the MAM is
adopted because of its compromise between computing accu-
racy and efficiency (Liu et al. 2015). To implement MAM,
however, it generally needs to firstly solve the eigen-problem
via subspace iteration or Lanczos algorithms, which is quite
time-consuming in optimization process. For improving the
efficiency of the topology optimization, the BCAS method is
utilized for repetitious solving the eigen-problem invested in
MAM. Compared with the CA method, the BCAS method is
used to simultaneously compute several frequencies and asso-
ciated mode shapes of the modified structure at a time. For
improving computational efficiency, Basic Linear Algebra
Subprograms (BLAS) are adopted. The BLAS are routines
that provide standard building blocks for performing basic
vector and matrix operations. They were first published as a
Fortran library in 1979 (Lawson et al. 1979) and are still used
as a building block in higher-level mathematical programming
languages and libraries, including LINPACK, LAPACK and
so on. The Level-1 BLAS perform scalar, vector and vector-

vector operations; the Level-2 BLAS perform matrix-vector
operations; the Level-3 BLAS perform matrix-matrix opera-
tions and thereby its higher performance is achieved (Goto
and Van De Geijn 2008). Because the BLAS are efficient,
portable, and widely available, they are commonly used
in the development of high quality linear algebra soft-
ware. For eigenvalue reanalysis, matrix-vector opera-
tions in the CA method are based on the Level-2
BLAS; while the matrix-matrix operations in the
BCAS method are based on the Level-3 BLAS. The
execution efficiency is thus enhanced. When using
BCAS for repeated structural analysis, one can substan-
tially reduce the number of required factorized forms of
the shifted stiffness matrices, thus removing a signifi-
cant portion of the computational effort.

The paper is organized as follows. In Section 2, the MAM
is firstly introduced for computing the dynamic response of
complex structure. The topology optimization problem formu-
lations are reviewed in Section 3, including the polynomial
interpolation model, sensitivity analysis and harmonic excita-
tions with multiple frequencies. In section 4, the BCAS meth-
od is described generally for completeness. Finally, accuracy
and performance comparisons are shown by three numerical
examples in section 5 and the conclusions are presented in
Section 6.

2 The mode acceleration method

As is known, the governing equation for the structural re-
sponse of a structure under harmonic external force can be
written as

M€X tð Þ þ CX tð Þ þKX tð Þ ¼ F tð Þ ð1Þ
whereX(t) represents the displacement vector, F(t) is the force
vector. M, C, K are n × n the mass matrix, damping matrix
and stiffness matrix, respectively. F(t) = F0e

jωt(j2 = − 1) is the
vector of excitation force with a frequency ω and amplitude
F0.

In this paper, the Rayleigh damping corresponds to

C ¼ αMþ βK ð2Þ

is considered where α and β are Rayleigh damping coeffi-
cients of the structure that may depend on ω.

2.1 Mode acceleration method

To implement MAM (Cornwell et al. 1983), the l lowest
eigenpairs need to be computed firstly by solving the follow-
ing eigen-problem

Kφi ¼ ω2
iMφi; i ¼ 1;…; l ð3Þ
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where ωi is the ith circular eigenfrequency and its correspond-
ing eigenvectors isΦ = [φ1,φ2, … ,φl], both of them satisfy
the following orthogonalities

φT
i Kφ j ¼ δijω

2
i

φT
i Mφ j ¼ δij

φT
i Cφ j ¼ 2δijζiωi

8><
>: i; j ¼ 1; 2;…; l ð4Þ

where δij is the Kronecker delta, ζi ¼ αþβω2
i

2ωi
is damping ratio

of the Rayleigh damping.
By using the following transformation

X tð Þ ¼ ΦY tð Þ ð5Þ

where Y(t) = [Y1(t), Y2(t), … , Yn(t)] is the vector of modal
coordinate. A set of n uncoupled equations can be obtained
by substituting (5) into (1) and by premultiplying ΦT

€Y j tð Þ þ 2ζ jω jY j tð Þ þ ω2
j Y j tð Þ ¼ φT

j F tð Þ; j

¼ 1; 2;…; n ð6Þ

In the MAM, (6) is solved for Yj(t)and gives

Y j tð Þ ¼
φT

j F tð Þ
ω2

j
−
€Y j tð Þ
ω2

j
−
2ζ jY j tð Þ

ω j
ð7Þ

The substitution of (7) into (5) yields

X tð Þ ¼ ∑
n

j¼1

φ jφ
T
j F tð Þ
ω2

j
−
φ j

€Y j tð Þ
ω2

j
−
2φ jζ jY j tð Þ

ω j

 !
ð8Þ

However, the first term in (8) can be represented as
(Besselink et al. 2013)

∑
n

j¼1

φ jφ
T
j F tð Þ
ω2

j
¼ K−1F tð Þ ð9Þ

According to (7), the second and third parts in (8) can be
written as

∑
n

j¼1

φ j
€Y j tð Þ
ω2

j
þ 2φ jζ jY j tð Þ

ω j

 !

¼ ∑
n

j¼1

φ jφ
T
j F tð Þ
ω2

j
−Y j tð Þ

 !
ð10Þ

By inspection of (10), it needs all the n terms for the two
parts, which is not practical for the large-scale problem. As a

result, only first l(l < < n) terms are employed in MAM, espe-
cially for the large-order problem. Hence, the substitution of
first l terms in (10) into (8) and combination with (9) yields

X tð Þ ¼ K−1F tð Þ− ∑
l

j¼1

φ jφ
T
j F tð Þ
ω2

j
−φ jY j tð Þ

 !
ð11Þ

The summation in (11) represents the displacement re-
sponse approximate result of (1) by MAM.

3 Topology optimization under harmonic force
excitation with multiple frequencies

3.1 Statement of topology optimization

Topology optimization of a dynamic problem under har-
monic force excitations is formulated as

find 0 < ρ≤ρe≤1 e ¼ 1; 2;…Ne min f s

¼ X s tð Þk ks:t: ν≤ν ð12Þ

where ρe(e = 1, … , Ne) is the pseudo-density of the eth
element, ρ is a positive lower bound of the set of de-

sign variables. Here, ρ ¼ 0:001 is assigned to ρe to pre-

vent the mass, stiffness and damping matrices from be-
coming singular. Xs(t) denotes displacement response
corresponding the sth DOF. Ne and v represent the num-
ber of element and material volume, respectively. v is
the prescribed volume of available material.

In topology optimization, Solid Isotropic Material
with Penalization Model (SIMP) approach would cause
localized modes phenomena because of the mismatch
between element stiffness and mass (Liu et al. 2015;
Zuo and Saitou 2017). In this paper, the Polynomial
Interpolation Scheme (PIS) (Zhu et al. 2010) will be
used.

me ¼ ρeme0

ke ¼ 15ρ5e þ ρe
16

ke0

8<
: ð13Þ

where me and ke are the mass matrix and stiffness ma-
trix of element e. me0 and ke0 represent the mass matrix
and stiffness matrix of solid element e.

3.2 Sensitivity analysis and filtering method

The Globally Convergent Method of Moving Asymptotes
(GCMMA) algorithm (Svanberg 1995) is employed as the
optimizer. To solve the topological optimization for a har-
monic problem, the sensitivity of displacement with
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respect to design variables ρe(e = 1, … , Ne) are firstly re-
quired. Suppose X(t) = X0e

jωt is the solution to (1), its
substitution into (1) yields

K þ jωC−ω2M
� �

X0 ¼ F0 ð14Þ

where X0 is the complex amplitude vector of displace-
ment response. Take the derivative of (14) with respect
to design variable ρe

∂Kd

∂ρe
X0 þKd

∂X0

∂ρe
¼ 0 ð15Þ

and

Kd ¼ K þ jωC−ω2M ð16Þ

Suppose

X s ¼ aTX0 ð17Þ
where a denotes a n × 1 vector with all terms being zero except
term s being 1. Based on (15), the sensitivity of the displace-
ment amplitude for the sth DOF is then established

∂X s

∂ρe
¼ aT

∂X0

∂ρe
¼ −aTK

−1

d
∂Kd

∂ρe
X0 ð18Þ

So the sensitivity of displacement for the concerned DOF s
can be derived through the chain rules as

∂ f s
∂ρe

¼ ∂ X s tð Þk k
∂ρe

¼ Re X s

� �
⋅Re

∂X s

∂ρe

 !
þ Im X s

� �
⋅Im

∂X s

∂ρe

 ! !
X s tð Þk k−1

ð19Þ

To avoid the numerical instabilities (Sigmund and
Petersson 1998), such as checkerboards patterns and mesh-
dependencies phenomena, some restriction on the designmust
be imposed. Here a filtering technique (Sigmund 1997) is used

to modify the sensitivities ∂ f s
∂ρe

as follows:

∂ f s
∧

∂ρe
¼ 1

ρe ∑
j¼1

N j

H j

∑
j¼1

N j

H jρ j
∂ f s
∂ρe

ð20Þ

where Nj is the set of elements e for which the center-to-center
distance dist(e, j) to element e is smaller than the filter radius rmin,
and the convolution operator (weight factor)Hj in (20) is defined
as

H j ¼ max 0; rmin−dist e; jð Þð Þ ð21Þ

3.3 Harmonic excitations with multiple frequencies

In general, frequency response analysis is concerned with dy-
namic behavior of a structure subjected to harmonic load in a
frequency interval, not just at a prescribed frequency value.
For the topological optimization under harmonic excitations
with multiple frequencies, the object function for minimizing
the integral of displacement amplitude in the frequency inter-
val [ωA, ωB] can be expressed as

find 0 < ρ≤ρe≤1 e ¼ 1; 2;…;Ne min f si

¼ ∫ωB

ωA
X s ωð Þk kdωs:t ν≤ν ð22Þ

For yielding converged solution (Cheng and Ali 1988; Liu
et al. 2015), the Gauss-Legendre integration is utilized to cal-
culate the integral in a frequency interval.

∫ωB

ωA
X s ωð Þk kdω≈ ωB−ωA

2

� ∑
j¼1

Ng

γ j X s
ωB−ωA

2
μ j þ

ωB þ ωA

2

� ���� ��� ð23Þ

where γj is the weight factor for the jth Gaussian point, and μj
is the Gaussian point within [−1, 1], Ng is the number of
Gaussian points.

With the complicated integrand or the large integration
interval, it needs to subdivide the integration interval to ensure
the computing accuracy. As well-known, the curve of harmon-
ic response has a sharp jump around the resonant
eigenfrequency, the large frequency interval can be firstly
subdivided by the eigenfrequencies. For each subinterval be-
tween the two neighboring eigenfrequencies, it will be further
separated by P additional points. The pth point in the subin-
terval [ωi, ωi + 1] is determined by

ωi;p ¼ ωi þ qp ωiþ1−ωið Þ; 1≤p≤P; 0 < qp < 1 ð24Þ

where qp is the proportional factor of the pth point in the
subinterval. For representing the sharp jumps, qpshould be
chosen properly to form small subintervals near
eigenfrequency and large subintervals far from the
eigenfrequency. Refer to Liu et al. (2015), theP = 5 addition
points are selected between the two neighboring
eigenfrequencies as

ωi;1 ¼ ωi þ 0:01 ωiþ1−ωið Þ
ωi;2 ¼ ωi þ 0:11 ωiþ1−ωið Þ
ωi;3 ¼ ωi þ 0:50 ωiþ1−ωið Þ
ωi;4 ¼ ωi þ 0:89 ωiþ1−ωið Þ
ωi;5 ¼ ωi þ 0:99 ωiþ1−ωið Þ

ð25Þ
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4 Block combined approximations method
with shifting

In this section, the BCAS method for repeated solution
of the generalized eigen-problem is shortly summarized
for the sake of completeness. Consider an initial design
or a “reference” design with n × n stiffness and mass
matrices K0 and M0, respectively. The corresponding l
lowest eigenpairs can be computed by solving the fol-
lowing eigen-problem via subspace iteration with
shifting (Bathe 2013) or shifted Lanczos algorithm
(Grimes et al. 1994)

K0Φ0 ¼ M0Φ0Λ0 ð26Þ

where Λ0 ¼ diag ω2
01;ω

2
02;…;ω2

0l

� �
and Φ0 = [Φ01, Φ02,

… , Φ0l] represent the matrices of l computed eigen-
values and the corresponding eigenvectors, respectively.
Whereas the solution procedure involves a series of
LDLT factorized forms of the shifted stiffness matrices
K0 − μ0jM0(j = 1,…m, μ0j ≥ 0), m is the number of these
triangular factorizations. Assume a change in the struc-
ture, the corresponding changes in the stiffness and
mass matrices are denoted as ΔK and ΔM, respective-
ly, where the modified eigen-problem can be written as

KΦ≔ K0 þΔKð ÞΦ ¼ M0 þΔMð ÞΦΛ≔MΦΛ ð27Þ

whe r e Λ ¼ diag ω2
1;ω

2
2;…;ω2

l

� �
and Φ = [φ 1 , φ 2 ,

… ,φl] are the matrices of requested eigenvalues and
that of the corresponding eigenvectors for the new de-
sign structure.

Consider the shifted generalized eigen-problem of the
modified eigen-problem

K0 þΔKð Þ−μ0s M0 þΔMð Þ½ �Φ≡ K0−μ0sM0ð Þ þ ΔK−μ0sΔMð Þ½ �Φ ¼ MΦΛ

ð28Þ

whereΛ ¼ Λ−μ0sI. The two eigen-problems in (27) and (28)
have the same eigenvectors. Premultiplying (28) by (K0

− μ0sM0)
−1 yields

Iþ B½ �Φ ¼ R ð29Þ

where

B ¼ K0−μ0sM0ð Þ−1 ΔK−μ0sΔMð Þ ð30Þ

R ¼ K0−μ0sM0ð Þ−1MΦΛ ð31Þ

If the spectral radius ρ(B) of matrix B is less than 1, use of
(29) leads to the so-called binomial series expansion

Φ ¼ I−Bþ B2−⋯
� �

R ð32Þ

Because R is unknown, replacingΛ withΛ0 and substitut-
ing Φ0 for Φ in (31) results in

R≈ K0−μ0sM0ð Þ−1MΦ0 Λ0−μ0sIð Þ ð33Þ

Note that multiplication of a basis vector by a scalar does
not affect the results (Kirsch et al. 2007), we can dropΛ0−μ0s

I ¼ diag ω2
01−μ0s;…;ω2

0l−μ0s

� �
and the first basis vectors are

given by

R1 ¼ K0−μ0sM0ð Þ−1MΦ0 ð34Þ

In summary, for calculating the first l eigenpairs by BCAS
method, l × s basis vectors of the subspace RB = [R1,R2, … ,
Rs] need to be constructed by the terms of the binomial series
in (32)

R1 ¼ K
−1

0 MΦ0 ð35Þ
R j ¼ −BR j−1; j ¼ 2;…; s ð36Þ

where

K0 ¼ K0−μ0sM0 ð37Þ
ΔK ¼ ΔK−μ0sΔM ð38Þ

B ¼ K
−1

0 ΔK ð39Þ

The BCAS method can achieve approximate solutions of
high quality withs = 2. Based on the information of initial
eigenvalues, the shifted frequency μ0s is chosen as

μ0s−
λ01 þ λ0l

2

����
���� ¼ min

1≤ j≤m
μ0 j−

λ01 þ λ0l

2

����
���� ð40Þ

which is the nearest to the center of the l eigenvalues of the
initial or “reference” structure.

The reduced eigen-problem is then solved for the first l-
eigenpairs by

RT
BKRB

� �
ΘR ¼ RT

BMRB
� �

ΘRΛR ð41Þ

where ΛR and ΘR are the matrices of the first l eigenvalues
and the corresponding eigenvectors of the reduced eigen-
problem. Finally, the matrix of eigenvectors and the matrix

The approximate reanalysis method for topology optimization 1189



of eigenvalues for the modified structure can be evaluated by

Φ ¼ RBΘR;Λ ¼ ΛR ð42Þ

As the triangular factorization of the shifted stiffness matrix
K0 − μ0sM0 has already been given in the “reference” optimi-
zation step, the calculation of the subspace basis RB involves

(a)

(b)
Fig. 2 Convergence curve for the objective function of a 2D cantilever
beam: the proposed method vs. the exact method. a fr = [0, 50]Hz. b
fr = [0, 100]Hz

Fig. 3 Optimized configurations of structure 1 with frequency interval
fr = [0, 50]Hz. a Exact method. b Proposed method

Fig. 4 Optimized configurations of structure 1 with frequency interval
fr = [0, 100]Hz. a Exact method. b Proposed method

F
Fig. 1 2D cantilever beam.
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only forward and backward substitution. For more details, we
refer readers to Ref. (Zheng et al. 2015). Note that, for the
BCAS method, all computations are based on matrix-matrix
operation and its higher performance can thus be achieved by
using the Level-3 BLAS.

However, the approximate reanalysis procedure cannot
accommodate extremely large changes in stiffness matrix,
hence these should be bounded in some way. This results
in the use of an outdated physical model, so that in many
cases the approximate solution will converge to a higher
value and cannot reach the final optimum. In some certain
cases, the approximate solution is not accurate enough
and leads to unreliable optimal results, sometime with a
better objective value than the optimum results (Amir
et al. 2009). In order to efficiently achieve an accurate
optimization result, it is necessary to choose the right time
to stop a sequence of approximate reanalysis and perform
an exact solution. Here, the Modal Assurance Criterion
(MAC) (Allemang and Brown 1982) value is adopted to
control the approximate optimization procedure.

MAC ρA
k ;ρ

E
p

� �
¼

ρA
k

� �T
ρE
p

� �� �2

ρA
k

� �T
ρA
k

� �� �
ρE
p

� �T
ρE
p

� �� 	 ð43Þ

where ρA
k ¼ ρAk;1;…; ρAk;Ne

h i
, ρE

p ¼ ρEp;1;…; ρEp;Ne

h i
are the

design variable vector at kthstep and the one corre-
sponding to the previous exact solution, respectively.
The MAC value is used to represent the correlation
number between the two modal shapes, and its value
ranging from 0.7 to 1 can usually be regarded as a
good correlation between two design variable vectors
(Massa et al. 2011). In this paper, the subspace iteration

method with shifting is performed for eigen-problem

analysis when the MAC ρA
k ;ρ

E
p

� �
is less than ερ = 0.95.

The implementation of the proposed method for solving
the optimization problem may be described as following
five steps.

Input the boundary condition, material properties, applied
loads.

Solving the (1) by MAM: if k = 1 or MAC ρA
k ;ρ

E
p

� �
≤ερ,

perform the subspace iteration with shifting method to solve
the eigen-problem; if not, utilize the BCAS method to com-
pute the eigen-problem.

Sensitivity analysis for the objective function.
Update the design variable using GCMMA.
Check convergence: if the convergence criteria are not sat-

isfied, goto step 2; otherwise, perform the postprocessor
result.

5 Numerical examples

In this section, we present three examples to illustrate
the efficient and accuracy of the proposed method. The
subspace iteration method with shifting (SIM) (Bathe
2013) is used to calculate the exact eigenpairs in
MAM, where the relative difference of eigenvalues in
terms of consecutive iterations is less thanελ = 10−8.
The filter radius rmin = 2.0 is adopted in the numerical
examples. The compressed sparse row storage format
for matrices is used. All programs are complied by
using Intel Fortran Composer XE 2015 with Math
Kernel library 11.2, and run on the platform: Intel I5–
3450, quad-core CPU with 3.10GHz, 8GB RAM. For

Table 1 Results of the 2D
cantilever beam under harmonic
excitations with multiple
frequencies fr = [0, 50]Hz

Method Design
iterations

Total SIM
iterations

Total BCAS
iterations

Objective MAC
value

CPU
time(s)

Exact method 253 896 0 0.2270 3957.5

Proposed
method

238 11 810 0.2289 0.9978 1582.4

Table 2 Results of the 2D
cantilever beam under harmonic
excitations with multiple
frequencies fr = [0, 100]Hz

Method Design
iterations

Total SIM
iterations

Total BCAS
iterations

Objective MAC
value

CPU
time(s)

Exact method 284 1166 0 0.5268 4855.0

Proposed
method

332 12 1525 0.5246 0.9306 2188.2
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the convergence criteria, the following indicator is
adopted: the relative difference of the objective function
values between two neighboring iterations steps (Kang
et al. 2011)

f kþ1
si − f ksi
f ksi

�����
����� < 0:0001 ð44Þ

where the optimization step is denoted by superscript k.
Meanwhile, we use MAC(ρE, ρA) to demonstrate the ac-
curacy of the result, where ρE and ρA represent the
design variable vectors evaluated by exact method and
the proposed approach with BCAS method, respectively.

5.1 Structure 1: 2D cantilever beam

As the first example, the presented structure is a rectan-
gular domain of 1.0m × 0.5m, and its thickness is 0.01. It
is clamped at the left side, as shown in Fig. 1. Here, the
domain is meshed into 100×50 four-node elements and
the total number of DOFs is 10,200. The Young’s module
of material is E = 2.0 × 1011Pa, the mass density is ρ =
7.8 × 103kg/m3, and Poisson’s ratio is ν = 0.30. Initial
values of all pseudo-densities are set to be 0.25. The cor-
responding first eigenfrequency of the initial structure is
45.05 Hz. The coefficients for the Rayleigh damping are
chosen as α = 10−2and β = 10−4.

As shown in Fig. 1, a harmonic force with the am-
plitude of 10,000 N is vertically applied at the middle
node of the right edge, the corresponding frequency
intervals are fr = [0, 50]Hz and fr = [0, 100]Hz (ω = 2πfr),
respectively. The minimization of dynamic compliance
at the loaded point along the force direction is taken
as objective function. The first l = 20 modes for the
structure are employed in MAM. The optimization seeks
the layout of this support structure with a volume 25%
of the whole design domain. The iteration histories of
the objective function are presented in Fig. 2. The op-
timized results with exact method and proposed method
are shown in Fig. 3 and Fig. 4. From these Figs, it can
be found that the results of the proposed method are

almost in agreement with the exact solution. The more
details of computational results are provided in Tables 1
and 2, the corresponding MAC values for the design
variables vector computed by the proposed procedure
are 0.9978 and 0.9306, which indicates that, the pro-
posed method can achieve very excellent approxima-
tions to the exact results. For the two frequency inter-
vals fr = [0, 50]Hz and fr = [0, 100]Hz, the exact method
reaches objective values of 0.2270 and 0.5268, and the
proposed method reaches 0.2289 (0.8% error) and
0.5246 (0.4% error), respectively. In addition, compared
with the exact method, the number of SIM iterations
can be reduced significantly and the CPU times for
the proposed method are remarkably reduced.

5.2 Structure 2: 2D clamped-clamped beam

Consider a clamped-clamped beam as shown in Fig. 5,
the rectangular design domain is a 1.8m × 0.3m rectan-
gular area whose thickness is 0.01 m. The Young’s
module of material is E = 2.0 × 1011Pa, Poisson’s ratio
ν = 0.30 and structural densityρ = 7.8 × 103kg/m3. The

Fig. 7 Convergence curve for the objective function of a 2D clamped-
clamped beam: the proposed method vs. the exact method

Fig. 6 Optimized configurations of structure 2 with frequency interval
fr = [0, 50]Hz. a Exact method. b Proposed method

F

Fig. 5 2D clamped-clamped beam.
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design domain is fixed at one end but simply supported
at the other. The design domain is discretized with four-
node finite elements with a total number of 180×30
elements, and total 11,218 DOFs. In the initial design
domain where the all pseudo-densities are uniformly set
to be 0.5 and the first eigenfrequency of the initial
structure is 46.80 Hz, correspondingly. The coefficients
for the Rayleigh damping are chosen as α = 0.01 and
β = 10−4.

Here MAM is still implemented with first l = 20
modes in this example. A harmonic force with the am-
plitude of 10,000 N is applied at middle node of the top
edge, and the corresponding frequency interval fr = [0,
50]Hz is considered here. As the objection function, the
dynamic compliance at the loaded point along the force
direction is minimized. The volume fraction of solid
material is limited to be less than 50%. The final opti-
mization results are shown in Fig. 6 and the iteration
curves of the objective function are plotted in Fig. 7.
Observing Figs. 6 and 7, it is evident that the approx-

imate result obtained by the proposed method is in
agreement with the exact one. The results of the pro-
posed method and the exact method are listed in
Table 3. The MAC value for the design vector calculat-
ed by the proposed method is 0.99986. The approximate
method reaches an objective value of 8.738×10−2, with

(a)

(b)
Fig. 9 Convergence curve for the objective function of a 3D cantilever
beam: the proposed method vs. the exact method. a fr = [0, 50]Hz. b
fr = [0, 200]Hz

F

Fig. 8 3D cantilever beam.

Table 3 Results of the 2D
clamped-clamped beam under
harmonic excitations with
multiple frequencies fr = [0,
50]Hz

Method Design
iterations

Total SIM
iterations

Total BCAS
iterations

Objective MAC
value

CPU
time(s)

Exact
method

263 856 0 8.735×10−2 6261.1

Proposed
method

254 6 792 8.738×10−2 0.99986 3398.0
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relative error of 0.03%. Moreover, with a fewer number
of SIM iterations in contrast to the exact method, the
CPU time of the proposed method is considerable cut
down with respect to the one of the exact method.

5.3 Structure 3: 3D cantilever beam

In this example, we present the solution for the minimum
compliance of a 3D cantilever beam to demonstrate accuracy
and competence of the proposed method. The cantilever beam
has a size of 1.0m × 0.5m × 0.04m. As illustrated in Fig. 8, the
beam is fixed on the left side and a harmonic force with the
amplitude of 10,000 N is loaded at the middle bottom point of
the right side. The domain is meshed into 100 × 50 × 4 cubic
elements and the structure has 76,500 DOFs in all. The
Young’s module of material is E = 2.0 × 1011Pa, the mass den-
sity is ρ = 7.8 × 103kg/m3, and Poisson’s ratio is ν = 0.30.
Initial values of all pseudo-densities are uniformly set to be
0.30 and the corresponding first eigenfrequency of the initial
structure is 8.855 Hz. The coefficients for the Rayleigh
damping are chosen as α = 10−2 and β = 10−5.

Here, two frequency intervals are considered, namely fr-
= [0, 50]Hz and f

r
= [0, 200]Hz, and first l = 15 modes for the

structure 3 are employed in MAM for the first frequency in-
terval while l = 20 is used for the last interval. The prescribed
volume fraction of solid material is set to 0.3. In Fig. 9, the
performance of the proposed method is compared against the
one of the exact method. The optimized configurations with
exact method and proposed method are shown in Figs. 10 and
11. From Figs. 9 and 11, it can be observed that the proposed
method can achieve very good approximation to the exact
results. The details of computational results are provided in
Tables 4 and 5, the corresponding MAC values for the design
variables vector computed by the proposed procedure are
0.9989 and 0.8872, respectively. The exact method reaches
objective values of 6.484 × 10−2 and 0.3791 while the pro-
posed method obtains 6.668 × 10−2 (2.8% error) and 0.3859
(1.8% error). From Tables 4 and 5, one could find that the
proposed method can achieve very excellent approximations
to the exact results. Additionally, compared with the CPU
times of exact method, the one of the proposed method are
considerably cut down as less number of the SIM iterations.

Fig. 10 Optimized configurations of structure 3 with frequency interval
fr = [0, 50]Hz. a Exact method. b Proposed method

Fig. 11 Optimized configurations of structure 3 with frequency interval
fr = [0, 200]Hz. a Exact method. b Proposed method
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Note that, the BCAS method takes full advantage of Level-3
BLAS for matrix-matrix operation. Therefore, the computa-
tional efficiency of the proposed method is greatly improved.

6 Conclusions

An efficient approach for topology optimization was presented.
The high computational effort included in solving eigen-
problem is decreased by using BCAS method. The reanalysis
procedure applied in this paper is based on performing exact
solutions of eigen-problem in certain design steps, correspond-
ing to ‘reference’ designs. As a result, in the following series of
reanalysis procedures, the factorization of the modified stiffness
matrix and those of associated shifted stiffness matrices are not
needed. As taking full advantage of Level-3 BLAS for matrix-
matrix operations, the proposed approach with BCAS method
allows very fast development of approximate solutions of high
quality and low computational cost for topology optimization
related harmonic response. The numerical examples of finite
element models have shown that the proposed optimization
procedure with BCAS method is quite effective.
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