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Abstract By coupling the low-fidelity (LF) model with
the high-fidelity (HF) samples, the variable-fidelity model
(VFM) offers an efficient way to overcome the expen-
sive computing challenge in multidisciplinary design opti-
mization (MDO). In this paper, a cooperative radial basis
function (Co-RBF) method for the VFM is proposed by
modifying the basis function of RBF. The RBF method is
constructed on the HF samples, while the Co-RBF method
incorporates the entire information of the LF model with
the HF samples. In Co-RBF, the LF model is regard as a
basis function of Co-RBF and the HF samples are utilized
to compute the Co-RBF model coefficients. Two numeri-
cal functions and three engineering problems are adopted
to verify the proposed Co-RBF method. The predictive
results of Co-RBF are compared with those of RBF and Co-
Kriging, which show that the Co-RBF method improves the
efficiency, accuracy and robustness of the existing VFMs.
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1 Introduction

Multidisciplinary design optimization (MDO) is a field of
engineering that focuses on the use of numerical opti-
mization for the design of systems that involve several
disciplines. However, MDO is computationally expen-
sive for the multidisciplinary analysis of complex mod-
els (Sobieszczanski-Sobieski and Haftka 1997; Breitkopf
and Coelho 2010). To overcome the computing challenge,
the surrogate model (also known as metomodel, response
surface method or approximation model) is adopted to
approximate the HF model. The general surrogate model
is constructed with HF samples under certain assumption
(Booker et al. 1998; Leary et al. 2003; Simpson et al. 2004;
Gorissen et al. 2010). However, with the increase of model
nonlinearity, the surroagte model requires a large number
of expensive HF samples to satisfy the predefined accu-
racy. Therefore, the information of fast-cheap LF model
is an alternative choice to reduce the computational cost
(Rodriguez 2001; Keane and Nair 2005; Marduel et al.
2006; Zahir and Gao 2012; Courrier et al. 2016). Whereas,
the LF model often results in precision loss. Thus, the
advantages of HF model and LF model should be coupled
to construct a surrogate model to improve the computational
efficiency and accuracy.

Variable-fidelity (also known as multi-fidelity) model
(VFM) couples the HF samples with the LF model informa-
tion in a surrogate model, which offers a trade-off solution
between the computing cost and the accuracy. The advan-
tage of the VFM is that it reduces the expensive HF samples
while guarantees necessary accuracy of the surrogate model
(Rodriguez 2001; Zheng et al. 2012; Liem et al. 2015). For
instance, the flight vehicle CFD model of 2 million meshes
takes several hours with Navier-Stocks code while several
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minutes with Euler inviscid flow method, and even faster
with engineering empirical method. Thus, the VFM model
makes it possible to optimize the time-consuming design
with good accuracy (Kuya et al. 2011; Leifsson and Koziel
2015).

Zero-order scaling is the simplest approach for VFM,
involving a scale factor based on the value of the HF and
LF models at a single point x0. This method is also referred
as the local-global approximation strategy (Haftka 1991).
A straightforward extension of the method (Haftka 1991;
Eldred et al. 2004) can be formulated by Taylor expansions
of the scaling factors. It generates first-order scaling and
second-order scaling respectively. However, when the value
of LF model is zero, the scaling factor tends to infinity,
which is a failure case for the method. To avoid the prob-
lem, Lewis and Nash (2005) developed an additive bridge
function to replace the scaling factor. Whereas, Gano et al.
(2005, 2006) showed that the additive bridge functions did
not always have better prediction accuracy than the multi-
plicative scaling method. Hence, an adaptive hybrid method
that combines the multiplicative and additive methods was
developed (Gano et al. 2005, 2006). The method builds a
correlation (or bridge) function between the HF and LF
models, which has good local prediction accuracy during the
optimization process. However, it doesnt work well when a
global surrogate model is required (Han 2013; Zheng 2013).

Co-Kriging is another powerful VFM constructed under
the assumption that the HF and LF models are almost lin-
ear dependent (Kennedy and O’Hagan 2000; Forrester et al.
2007, 2008; Laurenceau and Sagaut 2015). It is a kind of
Kriging method that correlates multiple sets of data. Thus,
Co-Kriging performs a higher approximation accuracy than
the surrogate model with the only HF samples. However, a
difficult and time-consuming multivariable optimization is
required for the estimation of the parameters. Moreover, Co-
Kriging uses numbered LF samples other than the entire LF
model. Therefore, the parameter estimation process should
be simplified and more LF model information should be
included into the VFM.

Han et al. (2012, 2013) improved Co-Kriging via
gradient-enhanced Kriging, which takes more HF infor-
mation into consideration. The improved method performs
much better than the original Co-Kriging when gradient
information is available. Nevertheless, the gradient infor-
mation is difficult to obtain in most practical cases, which
limits the application of the improved Co-Kriging.

This paper develops a cooperative radial basis function
(Co-RBF) method for variable fidelity surrogate model-
ing under the assumption that the HF and LF models are
almost linear dependent (Forrester et al. 2008). Under this
assumption, the LF model is regarded as a basis function
of Co-RBF. Then the surrogate model is built with the HF

samples. Finally, the Co-RBF model shape parameter is
optimized with the leave-one out cross validation (LOOCV)
error (Hastie et al. 2000). In the Co-RBF method, the LF
model basis function captures most of the model features,
and the other basis functions of original RBF captures the
left model features. Therefore, Co-RBF gets better predic-
tion accuracy with less HF samples.

The remainder of this paper is structured as follows.
In Section 2, the RBF, Co-Kriging surrogate models and
the model validation methods are introduced, and then the
Co-RBF is constructed as well as the features are dis-
cussed. Subsequently, in Section 3 two analytical functions
and three engineering problems are used to compare Co-
RBFwith RBF and Co-Kriging. Finally, the conclusions and
suggestions are given in Section 4.

2 Cooperative radial basis function method

In practical engineering problems, different simulation
models are often used in different design stages. LF models
are computationally cheap (eg. Euler equations in aerody-
namic), while HF models are expensive (eg. Navier-Stocks
equations). In order to describe the relationship, the coop-
erative radial basis function method proposed in this paper
utilizes the idea of radial basis functions and the basic
hypothesis of Co-Kriging, by combining a small number of
HF sample points with a large number of LF sample points.
In this section, the basic theories of RBF and Co-Kriging
are introduced in Sections 2.1 and 2.2 respectively. There-
after, in Sections 2.3–2.5, the theory and implementation of
Co-RBF are introduced in detail.

2.1 Radial basis function method

A surrogate model is a prediction model for the unknown
points according to the given samples, and an interpola-
tion or a regression model mathematically (Simpson et al.
2004). It is also a branch of data mining and machine learn-
ing (Hastie et al. 2000). The common used surrogate models
include polynomial response surface method (PRSM), radia
basis functions (RBF), Kriging, support vector machine
(SVM) and artificial neutral net (ANN). (Gutmann 2000;
Forrester et al. 2008; Boopathy and Rumpfkeil 2015). Since
RBF works well in nonlinear cases and is simple to build,
this paper modifies RBF with HF samples and LF model.
For a given data set S = {(xi , yi)|i = 1, 2, ..., n}, writ-
ten in a form of matrix X = [x1, x2, · · · , xn]T , y =
[y1, y2, · · · , yn]T , where n is the number of samples; X ∈
R

n×d is the input samples matrix; y ∈ R
n×1 is the output

response vector; n is the number of samples; d is the num-
ber of design variables. The prediction value at x is ŷ(x).
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RBF is performed through linear combination of nonlinear
basis functions. The formulation is presented as follows,

ŷ(x) =
n∑

i=1

βif (‖x − xi‖) = f(x)T β (1)

where βi is the ith coefficient for RBF; f (‖(x − xi‖) is the
ith radial basis function. The conventional form of the basis
function is presented in Table 1. Substituting the n samples
into (1)

⎡

⎢⎢⎢⎣

y1
y2
...

yn

⎤

⎥⎥⎥⎦=

⎡

⎢⎢⎢⎣

f (‖x1 − x1‖) · · · f (‖x1 − xn‖)
f (‖x2 − x1‖) · · · f (‖x2 − xn‖)

...
. . .

...

f (‖xn − x1‖) · · · f (‖xn − xn‖)

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

β1

β2
...

βn

⎤

⎥⎥⎥⎦

and rewrite it in a matrix form

y = Fβ (2)

The equation has a unique solution β = F−1y since rank(F)

is full rank, say F ∈ R
n×n, according to the linear alge-

bra theory. Substituting the solution into (1), the prediction
model is given by

ŷ (x) = f (x)T F−1y (3)

In (3), f(x)T is determined by the prediction point x and the
matrix of samples X. F−1y is just relevant to X and y, and is
calculated only once. For a given prediction point x, the pre-
diction value ŷ(x) can be calculated after evaluation of f(x).
It should be pointed out that the shape parameter c makes
significant influence on the prediction performance. Thus,
the additional optimization criterion is required to determine
the parameter c.

2.2 Co-Kriging

When additional LF information is available, the accuracy
of a surrogate of the HF model improves. To make use of the

Table 1 Radial basis functions

Funtion type Function form f (‖(x − xi‖)

Gaussian exp
(
−cr2

)

Multiquadric
√

r2 + c2

Inverse Multiquadric
1√

r2 + c2

Thin plate spline r2 log
(
cr2 + 1

)

LF samples, some form of correction process which com-
bines the differences between the LF and HF models must
be adopted. The expensive HF data have values yH at points
XH and the cheap LF data have values yL at points XL. To
simplify the formulation of a correction process, we assume
the HF sample locations coincide with a subset of the LF
ones (XH ⊂ XL). Co-Kriging is a representative variable-
fidelity method (Kennedy and O’Hagan 2000; Forrester
et al. 2008; Kuya et al. 2011). The correction process takes
the form

yH(x) = ρyL(x) + Zd(x) (4)

where yH(x) and yL(x) represent the features of the HF and
LF models respectively. In the correction process, the HF
model is approximated as the LF model multiplied by a con-
stant scaling factor ρ plus a Gaussian process Zd(x) which
represents the difference between ρyL(x) and yH(x). The
Co-Kriging prediction model is given by

ŷH(x) = μ̂ + cT C−1(y − 1μ̂) (5)

where

μ̂ = 1T C(X,X)−1y/1T C(XH,XH)−11 (6)

and c is a column vector of the covariance between X and
x, C is the covariance matrix. For more details about the
derivation, see Forrester et al. (2008).

Criterion for

adding samples

Refine？

End

Start

No

Yes

HF Validation Samples

Initial HF +LF Training Samples

DoE

Co-RBF Construction

Model Validation

（RMSE, R , MAX）

Sample Set Updating

Parameter Optimization

2

Fig. 1 The refinement flow chart of Co-RBF
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Fig. 2 Prediction models and the absolute errors

2.3 Validation of the surrogate model

The generalization performance of a surrogate model relates
to its prediction capability on independent test data. Assess-
ment of this performance is extremely important in practice,
since it guides the choice of the model or the parameter, and
it gives us a measure of the quality of the ultimate model
(Hastie et al. 2000).

Three assessments are adopted to validate the accu-
racy of the surrogate models over the training samples:
the root-mean-square error (RMSE), the maximum absolute
error (MAX) and the square of the coefficient of multiple
correlation R2 (Qian et al. 2006). They are defined as

RMSE =
√√√√1

n

n∑

i=1

(yi − ŷ(xi; S))2 (7)

MAX = max
i=1,2,··· ,n

|yi − ŷ(xi; S)| (8)

R2 = 1 −
∑n

i=1(yi − ŷ(xi; S))2∑n
i=1(yi − ȳ)2

(9)

Table 2 Performance comparison of 1D example

Models R2 RMSE MAX

LF −0.4845 6.5762 11.5136

RBF 0.0730 5.1969 12.8466

Co-Kriging 0.9921 0.4798 1.1734

Co-RBF 1.0000 3.1442 × 10−6 5.4126 × 10−6
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Fig. 3 Predictions and absolute
errors with more complex
correction function δ(x)

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

High−Fidelity Model

Low−Fidelity Model

RBF

Co−Kriging

Co−RBF

High−Fidelity Samples

Low−Fidelity Samples

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

RBF

Co−Kriging

Co−RBF

(a) (b)

where n denotes the total number of validation samples, ȳ

denotes the mean value of observed value yi and ŷi is the
predicted value. RMSE is utilized to measure the global
accuracy of the surrogate model; MAX is employed to eval-
uate the local accuracy; R2 is computed to reflect the linear
dependence between the predicted and the actual values. R2

takes values below 1; a higher value indicates a better pre-
dictability of the HF model from LF model, with a value of
1 indicating that the predictions are exactly correct.

However, when the prediction surrogate model goes
through the samples, RMSE = 0, MAX = 0 and R2 = 1,
additional validation samples are required to measure the
prediction performance of the surrogate model. To avoid the
problem, the cross validation method is adopted. The sam-
ples are divided into K roughly equal-sized parts. For the
kth part (k = 1, 2, · · · , K), the model is fitted with the other
K − 1 parts of the samples, while the kth part of samples
are used to estimate the prediction error. When K = n, the
method is named leave-one-out cross validation (LOOCV)
error (Hastie et al. 2000; Fasshauer and Zhang 2007;
Forrester et al. 2008). Thus the RBF shape parameter c can be
estimated through the following sub optimization problem

min
c

LOOCV= 1

n

n∑

i=1

[yi −ŷi (xi; S−{(xi , yi)})]2 (10)

where, for a given c the surrogate model is calculated for
n times. LOOCV doesn’t require additional samples. It is
an ideal method to describe the match degree between sam-
ples and the model. Moreover, the LOOCV based parameter
optimization avoids the potential over fitting problem (Tetko
et al. 1995). Since the surrogate model and parameter is
determined, the VFM can be constructed.

2.4 Construction of the cooperative radial basis
function model

In engineering, the LF model information is often compu-
tationally cheaper than the HF samples. For instance, the

LF model can be calculated via empirical equations while
the HF samples are evaluated with finite element analysis
or computational fluid dynamics. Co-RBF makes the best
of the HF samples and LF model, by regarding LF model
as a basis of RBF. In this paper, a similar correction process
to Co-Kriging (See Section 2.2) is used, which is originally
from the auto-regression model of Kennedy and O’Hagan
(2000), assuming cov{yH(xi ), yL(x)|yL(xi )} = 0, ∀x �= xi ,
which means that no more information can be learnt about
yH(xi ) from the LF model if the value of the HF model at
xi is known (this is known as a Markov property which,
in essence, says we assume that the HF model is correct
and any inaccuracies lie wholly in the LF model). Using
the auto-regressive model we essentially approximate the
HF model as the LF model multiplied by a constant scal-
ing factor βL plus a correction function. Actually, the HF
and LF models have some similarities most of which can
be captured by the scaling LF model. Moreover, the correc-
tion function is adopted to capture the remaining nonlinear
information. Given the HF samples S = {(xi , yH(xi )|i =
1, 2, · · · , n}. The formulation is presented as

yH(x) = βLyL(x) + δ(x) + ε(x) (11)

Where yH(x) and yL(x) are the HF and LF model respec-
tively; βL is an unknown constant coefficient; δ(x) is the
correction function; ε(x) is the error function. Furthermore,
the correction function δ(x) can be replaced by radial basis
functions, defined as δ(x) = fδ(x)T βδ; ε(x) is the Gauss

Table 3 Performance comparison of 1D example with the effect of
δ(x)

Models R2 RMSE MAX

LF −0.4101 6.4095 11.5136

RBF 0.0730 5.1969 12.8466

Co-Kriging 0.9659 0.9961 2.4235

Co-RBF 0.9980 0.2400 0.5810
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Fig. 4 Predictions and absolute
errors with nonlinear coefficient
βL
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stochastic process, ε(x) ∼ N(0, σ 2), σ is an unknown
constant. Substituting the HF samples into (11)

⎡

⎢⎢⎢⎣

yH(x1)
yH(x2)

...

yH(xn)

⎤

⎥⎥⎥⎦=

⎡

⎢⎢⎢⎣

yL(x1) fδ(‖x1 − x̃1‖) · · · fδ(‖x1 − x̃m‖)
yL(x2) fδ(‖x2 − x̃1‖) · · · fδ(‖x2 − x̃m‖)

...
...

. . .
...

yL(xn) fδ(‖xn − x̃1‖) · · · fδ(‖xn − x̃m‖)

⎤

⎥⎥⎥⎦·

⎡

⎢⎢⎢⎣

βL

β1
...

βm

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎢⎣

ε

ε
...

ε

⎤

⎥⎥⎥⎦

(12)

Where fδ(·) takes the similar form as the one in (1); x̃i is the
given center point of the ith radial basis function determined
by design of experiment (DOE), and the point doesn’t need
to be the same as the HF input samples. However,here we
choose HF samples as the center points of the radial basis
functions. n is the number of samples; m is the number of
radial basis function center points; Eq. 12 can be written in
a simple form of matrix

y = Fβ + ε (13)

where the response samples vector becomes a multivariable
Gaussian distribution y ∼ N(Fβ,�); the covariance matrix
� = cov(ε, ε) = σ 2[r(‖xi − xj‖)]n×n = σ 2R, r(·) is
the correlation function and R is the correlation matrix. The
probability distribution function (PDF) is formulated as

L(y|X;Fβ, σ 2R) = 1√
|2πσ 2R| ·

exp[− 1
2 (y − Fβ)T (σ 2R)−1(y − Fβ)] (14)

For convenience, transforming the PDF into logarithm
form

ln L = −n
2 ln(2π) − n

2 ln(σ
2) − 1

2 ln(|R|)
− 1

2 (y − Fβ)T (σ 2R)−1(y − Fβ)
(15)

According to the maximum likehood estimation (MLE)
{

∂ ln L
∂β = 0

∂ ln L
∂σ 2 = 0

(16)

Furthermore, from the first component of (16), setting
F̃ = R−1F, then

F̃β = ỹ (17)

Where F̃ ∈ R
n×(m+1), ỹ ∈ R

n×1, according to the matrix
theory (Kaare and Michael 2012), if n = m + 1, say
rank(F̃T ) = n, there exists unique solution β = F̃−1ỹ; if
n > m + 1, say rank(F̃T ) = m + 1, there exists unique
least square solution β = (F̃T F̃)−1F̃T ỹ, which means the
surrogate doesn’t strictly go through the HF samples; if
n < m + 1, say rank(F̃T ) = n, there exists unique least
norm solution β = F̃T (F̃F̃T )−1ỹ, which means the surro-
gate strictly go through the HF samples. Assuming F̃+ to
be the pseudo-inverse (or Moore-Penrose inverse) of F̃, then
the parameter estimation can be obtained in an unified form
{

β = F̃+ỹ
σ 2 = 1

n
(y − FF̃ỹ)T R−1(y − FF̃ỹ)

(18)

Substituting the estimations (18) into (11), we get access
to the prediction model

ŷ(x) = f(x)T F̃+ỹ (19)

Intuitively, the formulation of the prediction model is
similar to that of RBF in (3). However, the basis functions
are different. F̃+ includes both the HF and LF information

Table 4 Performance comparison of 1D example with the effect of βL

Models R2 RMSE MAX

LF −0.4036 6.3946 11.5136

RBF 0.0730 5.1969 12.8466

Co-Kriging 0.9897 0.5482 1.2019

Co-RBF 0.9984 0.2128 0.4303
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Fig. 5 Predictions and absolute
errors with the variable
disturbance
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and ỹ contains HF information. It is worth to mention that
the shape parameter c in F̃ ∈ R

n×(m+1) has a significant
effect on the performance of the surrogate model. The shape
parameter c can be determined with the LOOCV method
(See Section 2.3). Since there is only one parameter, the
sub optimization of parameter is easier than the multivari-
able optimization of Co-Kriging (Forrester et al. 2008). The
correlation matrix R illustrates the correlation between the
HF samples, which means that the larger the distance is,
the weaker the relation is. Here we assume the samples are
totally independent, so R becomes an identity matrix, and
F̃ = F. Thus,

ŷ(x) = f(x)T F+y (20)

After the prediction model is obtained, the values of the
base functions of Co-RBF are obtained by substituting the
prediction point into the formula for the new prediction
point. This is a vector-valued function, in which the first
term is the value of the LF model, the left are the val-
ues of the traditional radial basis functions. However, the
model coefficient β = F+y only needs the initial HF and
LF samples. It is worth noting that, in order to achieve
better prediction accuracy, we usually need to optimize
shape parameter c. Finally,the new prediction point can be
obtained by the inner product of the prediction base vector
function f(x) and the model coefficient vector β.

The Co-RBF method takes the similar correction pro-
cess of Co-Kriging with a constant scaling factor (See
Section 2.2) between the HF and LF models. The LF
model includes most information of the HF model, and the
reminder radial basis functions make up for the components
that can’t be captured by the LF model. When predict-
ing the new points, the values of LF at the new locations
are utilized, while Co-Kriging just uses the initial HF and
LF samples. Since the LF samples at the prediction loca-
tions contains some information of the HF model, Co-RBF
gets better prediction accuracy. However, when the LF val-
ues at the prediction locations are not available we have to

calculate the values with the LF samples by extra interpo-
lation technique. Moreover, whether the linear dependent
assumption of the constant scaling factor holds or not is
unknown in practice and the assumption is difficult to vali-
date directly. Instead, in the community of surrogate model
(Forrester et al. 2007, 2008; Qian et al. 2006), different
prediction error estimations (See Section 2.3) are adopted
to verify the model assumption indirectly. In what follows,
several examples are used to demonstrate the performance
of Co-RBF.

2.5 Refinement of the surrogate model

In the practical engineering problems, the VFM constructed
through the initial samples may not directly satisfy the
required precision, therefore, it is necessary to refine the
surrogate model by adding samples in the important region
which we are interested in. Since the uncertainty of the
prediction model increases with the HF samples sparsity
(Bischl et al. 2014; Haftka et al. 2016) and the differences
between the HF and LF models, we improve the global
accuracy of the surrogate model by adding points where the
HF samples is spare and the LF model differs greatly from
the HF samples with large uncertainty. The detailed pro-
cess is shown in Fig. 1. The process does not depend on
the constructed surrogate model, but only on the HF sam-
ple density and the differences between the LF model and
the HF samples, which is actually a multi-objective opti-
mization problem. We transform it into a single objective
optimization problem by multiplying the two objectives.
The criterion for adding points is given by

max
x

dist(x,XH) · dist([x; ŷL(x)], [XH, yH]) (21)

where ŷL(x) is the surrogate model of the LF model con-
structed with LF samples; [x; ŷL(x)] is a 1×(m+1) column
vector, [XH, yH] is a n × (m + 1) matrix; dist(x, ·) is the
smallest standardized Euclidean distance between x and the
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(c) (d)

(e) (f)

Fig. 6 Different prediction models
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Table 5 Performance comparison of 1D example with the effect of
the variable disturbance

Models R2 RMSE MAX

LF −0.4865 6.5808 11.6374

RBF 0.0730 5.1969 12.8466

Co-Kriging 0.9881 0.5880 1.4170

Co-RBF 0.9978 0.2528 0.6835

sample matrix. Given by n × p sample matrix X, which is
combined with n (1×p) row vectors xT1 , xT2 , xTn , the distance
is defined as

dist(x,X) = min
xi

√
(x − xi )T D−1(x − xi ) (22)

where D is the p × p diagonal matrix whose j th(j =
1, 2, · · · , p) diagonal element is the variance of the j th
column of the data matrix X.

Table 6 Performance comparison of example 2

Models R2 RMSE MAX

LF Model 0.3808 47.4268 151.5645

RBF 0.8049 26.6253 162.4648

Co-Kriging 0.7554 29.8114 190.9640

Co-RBF 1.0000 9.5152 × 10−7 5.4481 × 10−6

3 Numerical examples

In this section, 2 numerical and 3 engineering examples
are used to demonstrate the performance of Co-RBF, com-
pared with RBF and Co-Kriging. The 1D and 2D examples
demonstrate how Co-RBF works in the simple cases, while
the engineering examples illustrate the effectiveness of Co-
RBF in practice. Co-Kriging is realized by Forrester’s MAT-
LAB toolbox (Forrester et al. 2008) which can be found

(a) (b)

(c) (d)

Fig. 7 Contour map of the prediction absolute errors
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Fig. 8 Grids for RAE2822
(Han 2013)

(a) (b)

on the book website at http://www.wiley.com/go/forrester.
RBF and Co-RBF are realized by the authors’ in-house
MATLAB toolbox.

3.1 Example 1: 1D function

Consider the following 1D numerical model in which the
LF model is almost linear dependent with the HF one

(Forrester et al. 2007, 2008). The coefficient βL is constant
and the correction function is 10(x − 0.5) − 5. HF Model:

yH(x) = (6x − 2)2 sin(12x − 4), x ∈ [0, 1]

LF Model:

yL(x) = 0.5(6x − 2)2 sin(12x − 4) + 10(x − 0.5) − 5
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Fig. 9 Comparisons of VFMs and the absolute errors for RAE2822
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Acorrding to Forrester et al. (2008), 4 HF samples
XH = [0, 0.4, 0.6, 1]T and 11 LF samples XL =
[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]T are used to
build the surrogate models. And additional 11 samples
XV = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]T for
both HF and LF models, are taken to compute RMSE, MAX
and R2.

3.1.1 Predicted accuracy analysis

Figure 2a and b show that the RBF surrogate model based
on the HF samples performs poor with large error than the
other two methods. Co-Kriging performs better than RBF
and captures the features of HF model with a prediction
curve close to the HF function. However, in the scaling
absolute error of Fig. 2c and d, Co-RBF performs even much
better than Co-Kriging, since the maximum absolute error
is about 0.8 in Co-Kriging while about 5 × 10−6 in Co-
RBF. More details about the performance comparison are
given in Table 2. The Co-RBF method has a good prediction
accuracy with R2 = 1.0000 and RMSE = 3.1412 × 10−6,
thus it is a perfect approximation of the HF model for this
problem.

3.1.2 Effect of the correction function δ(x)

In the earlier section, Co-RBF performs well, since the cor-
rection function δ(x) is relatively simple. However, what if
δ(x) becomes more complex? Intuitively, all the surrogate
methods would perform worse. In what follows, the effect
of the correction function is demonstrated and discussed. In
the 1D numerical example, the LF model is modified as

yL(x) = 0.5(6x − 2)2 sin(12x − 4) + 10(x − 0.5) − 5+ x3

Figure 3 and Table 3 show that the prediction accuracy
of RBF keeps the same since it doesn’t use the LF model
information. However, the performance of Co-Kriging and
Co-RBF decreases with the increase of the complexity of
δ(x). In Fig. 3, the accuracy of Co-Kriging decreases much
more than that of Co-RBF, while the Co-RBF method still
has a good approximation of the HF model.

3.1.3 Effect of linear coefficient βL

In the previous section, the effect of correction function δ(x)
is discussed. Moreover, the linear coefficient βL has a sig-
nificant effect on the prediction accuracy. βL is assumed to
be a constant scaling factor, while there may exist some non-
linear component in practice. In what follows, the effect of
the nonlinearity is discussed. In the 1D numerical example,
the LF model is modified as

yL(x) = (0.5+0.1x2)(6x−2)2 sin(12x−4)+10(x−0.5)−5

Table 7 Comparison of prediction models for Cl

Models R2 RMSE MAX

LF Model 0.8448 0.2255 0.6881

RBF 0.9926 0.0492 0.1338

Co-Kriging 0.9965 0.0339 0.0898

Co-RBF 0.9979 0.0263 0.0524

Figure 4 and Table 4 show that the predictions perfor-
mances are reduced in different degree. Co-RBF doesn’t
perform significantly better than Co-Kriging, but still works. A
conclusion that the basic linear dependent assumption plays
an important role in Co-Kriging and Co-RBF can be drawn.
If the assumption is violated, more HF samples should be
added to improve the accuracy.

3.1.4 Effect of the variable disturbance

In practice, the relation between HF and LF is unknown.
Though the almost linear dependent assumption is common
and suitable in most cases, the other possible assump-
tions also should be taken into consideration to validate the
robustness and range of application of the method. Here we
assume the LF model comes from the HF model with small
variable disturbance. In the 1D numerical example, the LF
model is modified as

yL(x) = 0.5(6(x + 0.005) − 2)2 sin(12(x + 0.005) − 4)

Figure 5 and Table 5 show that a small disturbance in
the variable results in a prominent reduction of the predic-
tion performances. Co-Kriging and Co-RBF performs better
than RBF, since the VFMs include some information of LF
model in some degree. It can be concluded that when the
assumption is slightly violated Co-RBF and Co-Kriging still
work, but the performance is worse than the case satisfying
the assumption.

3.2 Example 2: 2D Branin function

The second numerical example comes from Forrester
et al. (2008). It is a modified version of the tra-
ditional two-variable Branin function. The LF model

Table 8 Comparison of prediction models for Cd

Models R2 RMSE MAX

LF Model 0.1874 0.0192 0.0733

RBF 0.7270 0.0111 0.0339

Co-Kriging 0.9584 0.0043 0.0169

Co-RBF 0.9829 0.0028 0.0116
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Fig. 10 Iterations of Lift coefficient and the model uncertainty for RAE2822
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Fig. 11 Prediction performances of different models with increasing samples for RAE2822

is transformed from the HF model and a correction
term is added. The HF and LF models are definded
as yH(x) = (

15x2 − 5.1/(4π2)(15x1 − 5)2 − 6
)2 +

10 ((1 − 1/8π) cos(15x1 − 5) + 1)+5(15x1 −5), yL(x) =
0.5yH(x) + 10(x1 − 0.5) + 5x2 − 5, x1 ∈ [0, 1], x2 ∈ [0, 1].

16 HF samples (See Fig. 6d) are included by latin hyper-
cube sampling (LHS) (Forrester et al. 2008). 32 LF samples
are included, among which 16 are the same with the HF
samples and the left 16 are sampled by 42 full factorial
design (FFD) (See Fig. 6e, f). Moreover, additional 202 HF
and LF samples by FFD are used for the model validation.

Since the prediction surfaces are similar to the origin HF
one, for convenience, we use the contour map to compare
the performances of the prediction models. Figures 6 and
7 show the predictions and the absolute errors and Table 6
shows the performances for different models. We can see
that the prediction performances of Co-RBF are much better
than those of RBF and Co-Kriging, since R2 is 1, RMSE is
9.5152×10−7 andMAX is 5.4481×10−6. Since R2 = 1, we
know that the linear depndence assumption holds between
LF model and HF model.

3.3 Example 3: aerodynamic coefficients
of the RAE2822 airfoil

In the previous section, the 1D and 2D numerical problems are
illustrated, and the effects of different factors are discussed.
In the literature of surrogate model, the models are under
different assumptions. We often validate the performances
of models rather than validate the assumptions directly,
which means that a good prediction performance illustrates
the assumption holds. Next we consider the RAE2822 air-
foil as shown in Fig. 8 (Han 2013) and use the Co-RBF
to generate VFM models for the aerodynamic lift and drag
coefficients (Cl and Cd ) as functions of the attack angle
α which varies between −4◦ and 16.5◦. Setting the Mach
number and the Reynolds number to be 0.2 and 6.5 × 106,
respectively. The HF model is Navier-Stocks code and the

LF model is Euler code. The aerodynamic data comes from
Han (2013). This problem includes 5 HF samples, in which
the first and last one are fixed and the other 3 are sampled
by LHS, and 12 LF samples (See Fig. 9). Meanwhile, 42
validation samples XV = [−4 : 0.5 : 16.5]T are adopted.

Figure 9, Tables 7 and 8 show that Co-RBF performs
better than the other two methods, since the absolute error
curve is closer to zero and the prediction curve is closer to
the lift coefficient curve or the drag coefficient curve, with
R2 to be 0.9979 and 0.9829 respectively.

However, ifwewant amore accurate predictionmodel,more
HF samples are required to refine the VFMmodel. The process
of adding points is shown in Fig. 10 and the validation errors
are shown in Fig. 11. It can be seen from Fig. 10 that the
higher the difference between the HF and LF model, the
more sample points are added, and the sample distribution is
relatively uniform throughout the sample space. Figure 11
shows that the accuracy of RBF, Co-Kriging and Co-RBF
increases with the increase of sample points. When the num-
ber of samples is less than 8, the accuracy of Co-RBF is higher

D

W

H

x
z

y

Heat Source Twall

Entry temperature Tin

Mass flow rate m

Fig. 12 Physical process for the heat exchanger



1090 X. Li et al.

Table 9 Comparison of prediction models for the heat exchanger

Models R2 RMSE MAX

LF Model 0.8655 4.431 10.490

Qian et al. (2006) 0.9017 3.795 8.490

Zheng et al. (2013) 0.9183 3.571 7.950

RBF (Zheng et al. 2013) 0.6460 6.990 17.293

RBF (LOOCV) 0.9460 2.807 5.170

Co-Kriging 0.9250 3.308 6.754

Co-RBF 0.9474 2.770 5.646

than that of RBF and Co-Kriging, however, RBF starts to per-
form better than the VFM method when the number of the
sample points is higher than 8. Therefore, the VFMs have
high accuracy when the number of the samples is small.
With the increase of the sample points, the HF samples pro-
vide enough information to capture the features of the HF
model. Thus, when enough HF samples are available, it isn’t
necessary to take into the LF model information.

3.4 Example 4: heat exchanger design problem

This section deals with a heat exchanger (shown in Fig. 12)
for an electronic cooling application design problem with
Co-RBF. The device dissipates the heat generated by a
microprocessor. The influence factors include 4 variables,
the entry temperature Tin, total mass flow rate ṁ, the heat
source wall temperature Twall and the solid material ther-
mal conductivity k. For more details about the problem, see
Qian et al. (2006).

Two types of simulations, computationally expensive HF
FLUENT simulations and fast LF finite difference (FD)
simulations are employed to analyze the impact on heat
transfer rates. Each FLUENT simulation requires two three
orders of magnitude more computing time than the corre-
sponding FD simulation. However, the FLUENT simula-
tions are generally more accurate than the FD simulations.
The 22 HF samples and 64 LF samples are used to build

the surrogate models. For validation and comparison, the
additional 14 samples are also utilized. For more details
about the samples, see Qian et al. (2006).

The prediction performances comparison of the different
models for the problem is illustrated in Table 9 and Fig. 13.
Table 9 shows the results with 22 HF, 64 LF samples and 14
validation samples. Co-RBF (RMSE = 2.770) improves the
RMSE of the LFmodel about 38.5%, while Co-Kriging, and
the methods by Qian et al. (2006) and Zheng et al. (2013)
improve that about 26.1%, 14.8% and 20.0%, respetively.
To avoid the effect of different sampling locations, we take
the average value of 50 times. Figure 13 illustrates the aver-
age performances of different samples. We can see that the
performance of RBF improves fast with the number of HF
samples increasing, due to the weak nonlinearity of the HF
model. Co-RBF achieves a lower RMSE with small num-
ber (about 6) of samples, while Co-Kriging requires about
18 samples to reach the accuracy. Since the prediction accu-
racy is small, it illustrates that Co-RBFwith few HF samples
performs well in this engineering problem.

3.5 Example 5: inverted wing with vortex generators
in ground effect

This section deals with an inverted wing with vortex genera-
tors in ground effect problem. The influence factors include
2 normalized variables (ranging between 0 to 1) of the
wing incidence angle α and ride height h/c. The response
is the sectional downforce CLs . For more details about the
problem, see Kuya et al. (2011).

Two types of data, the expensive HF experimental
data and relatively cheap LF FLUENT simulations are
employed. The HF experimental data are obtained in the
2.1 × 1.5 m closed-section wind tunnel at the University
of Southampton. The LF FLUENT data are obtained by
three-dimensional steady Reynolds-averaged Navier-Stokes
(RANS) simulations using the Spalart-Allmaras turbulence
model. 12 HF samples are used to build the surrogate
models. For the LF data two types of sampling designs are
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Fig. 13 Prediction performances of different models with increasing samples for the heat exchanger
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Table 10 Model verification at four verification points regarding response of sectional downforce

Models (0.25, 0.25) (0.75, 0.25) (0.25, 0.75) (0.75, 0.75) RMSE

HF Model (Kuya et al. 2011) 2.42 1.87 2.6 1.75 0.00

Kriging (Kuya et al. 2011 ) 1.75 1.74 1.74 1.74 0.55

Co-Kriging(FFD) (Kuya et al. 2011) 2.37 1.69 1.98 1.55 0.34

Co-Kriging(LHS) (Kuya et al. 2011) 2.51 1.56 2.08 1.51 0.33

LF Model 2.59 1.82 2.34 1.98 0.1949

RBF (Optimized with LOOCV) 2.0864 1.6326 1.7999 1.6424 0.4527

Co-RBF(FFD with LF Validation Values) 2.4192 1.7374 2.0363 1.6013 0.2989

Co-RBF(LHS with LF Validation Values) 2.5853 1.6189 2.1101 1.5989 0.2972

Co-RBF(FFD without LF Validation Values) 2.4192 1.7374 2.0363 1.6013 0.2989

Co-RBF(LHS without LF Validation Values) 2.4387 1.6214 2.1160 1.5801 0.2852

employed: full factorial design (FFD) and latin hypercube
sampling (LHS) with 25 samples. For validation and com-
parison, the additional 4 validation samples are also utilized
(Kuya et al. 2011).

The comparison of the different prediction performances
is illustrated in Table 10. As a reference, the Kriging and
RBF methods are constructed only with the HF samples.
They are used to highlight how much the LF samples con-
tribute to improving the prediction accuracy. Table 10 shows
the model validations with RSME at four validation points.
The Kriging and RBF methods show a poor accuracy due
to the sparsity and location of the HF samples, leading
to the model features not being captured. The Co-Kriging
method improves the accuracy by about 40% compared with
the Kriging method, while the Co-RBF method improves
that about 46% − 48%. For the Co-RBF with the sampling
method of FFD, the LF validation samples dont’t affect
the RMSE, because in this problem the prediction loca-
tions are sub set the initial LF locations. In Co-RBF without
LF validation values, since the LF values are not avail-
able, we have to use extra RBF interpolation to calculate
the values at the prediction locations. Moreover, the RMSE
of LF model with a value of 0.1949 is much better than
any of the other prediction models in this problem, which
means that the VFMs don’t always work better than the LF
model. However, when the LF model (FLUENT simulation)
is time-consuming, the VFM is necessary.

4 Conclusion

An efficient Co-RBF for variable-fidelity surrogate mod-
elling is proposed in this paper. The HF samples and LF
model are combined by a constant scaling factor and addi-
tional radial basis functions. According to the analytical
example 1 and 2, Co-RBF performs well with a small
number of HF samples when the HF model and LF model
have an approximate linear relationship. However, in most

cases the link between the HF and LF is unknown, thus
some validation samples are required to measure the predic-
tion accuracy of Co-RBF. When the accuracy is not enough,
more HF samples are required to refine the surrogate model.
In this paper, we add samples where the samples are sparse
and where the HF samples and the LF model differ greatly.
The engineering example 3 and 4 show that Co-RBF have
better accuracy than the alternative methods when the num-
ber of the HF samples is small. However, when the HF
samples are more and more, the surrogate model (RBF)
constructed just with the HF samples have similar accuracy
with the VFMs (Co-RBF and Co-Kriging), which means
that when the HF samples are enough the LF model doesn’t
improve the accuracy significantly. Thus, VFMs are well
suited for the situations in which the number of the HF
samples is small. The engineering example 5 compares Co-
RBF with the existing alternative methods, which further
shows the effectiveness and superiority of the proposed
method. The further research may be the construction of
variable-fidelity model in specific application background
and taking more physical or empirical information into
consideration. In addition, the criterions for adding points
in different application backgrounds are worthy of further
study.
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