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Abstract In the product development process, structural opti-
mization plays vital role because it deals with size, shape and
topology of the structures. However, structural performance
greatly depends on its geometric shape and hence structural
shape optimization has remained one of the most active research
areas since early 1970s. Conventional parametric shape optimi-
zation technique employs grid-based numerical tools like FEM
and BEM for structural analysis, which experiences some innate
limitations like mesh distortion and frequent remeshing, element
locking and poor approximation while dealing with large shape
changes during the optimization process. Meshless Methods
(MMs) can alleviate these issues when used as a structural anal-
ysis tool in shape optimization. In last two decades, MMs have
been explored for structural shape optimization along with vari-
ous deterministic and stochastic optimization algorithms. The
objective of present work is twofold, first is to review advanced
parametric shape optimization techniques which are based on
MMs like Element Free Galerkin (EFG) method and
Reproducing Kernel Particle Method (RKPM) for linear elastic,
thermoelastic, hyperelastic, frictional contact and structure dy-
namics optimization problems and second is to emphasize ben-
efits of meshless techniques in shape optimization. Based on the
review, the article presents some critical observations including
Design Sensitivity Analysis (DSA) in meshless environment,
numerical integration techniques inMMs and benefits of coupled

FEM-MM approach in shape optimization. At the end, promis-
ing future research directions in shape optimization field based
on MMs are presented along with concluding remarks.

Keywords Structural optimization . Parametric shape
optimization .Meshlessmethods (MMs) . EFG . RKPM

1 Introduction

Structural optimization deals with determination of optimum lay-
out of the structure which includes information on its size, shape
and topology (Fig. 1). Conceptually, these problems deal with
different aspects, for instance, sizing problem determines optimal
thickness/cross-sectional area for minimizing weight, shape opti-
mization finds best geometric shape under prescribed constraints
while topology optimization decides location and size of cavities
in the domain (Bendsøe and Sigmund 2002). As widely accepted
reference, modern structural optimization has its root in 1960
when Schmit (1960) proposed a ‘Structural Synthesis’ technique
by combining FEMwith nonlinear numerical optimization meth-
od for a simple three-bar truss structure. It is worth tomention that
majority of the early research dealt with sizing optimization. The
development in shape optimization somewhat lagged behind be-
cause of its inbuilt nonlinearities. For comprehensive details on
historical development of structural optimization field, review
articles of Arora (1990) and Vanderplaats (1993) may be referred.

Shape optimization is a post processing tool used in product
design process to optimize the product configuration obtained
after topology optimization by modifying internal and external
boundaries. Accordingly, shape optimization decides final geo-
metric shape of the structure which can improve structural per-
formance; hence shape optimization has remained an active
research area from early 1970s to till date. The technique is
comprised of three phases, i.e. geometry description &
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modification (design model), structural analysis (analysis mod-
el) and optimization algorithm (optimization model). For an
efficient shape optimization technique, strong interaction be-
tween these models is crucial. The design model defines the
problem domain under consideration with the geometric ele-
ments which subsequently gets converted into the analysis
model compatible for numerical analysis for computing struc-
tural response and finally an appropriate optimization algorithm
is adopted for obtaining optimum configuration through itera-
tive process (Wall et al. 2008). In this iterative process of shape
optimization, structural analysis techniques play vital role be-
cause it highly influences quality of solutions and computation-
al time of the process. Grid-based numerical techniques like
FEM and BEM have become standard tools for structural
analysis in shape optimization since early 1970s. The earliest
work in shape optimization with FEM was presented by
Zienkiewicz and Campbell (1973) followed by Bhavikatti and
Ramakrishnan in shape optimization of fillets in flat and round
tension bars (1977), shoulder fillets in tension bars and T-heads
(1979) and rotating disks (1980), Schnack in shape optimiza-
tion for stress concentration (1979), Dems and Dems andMorz
in multiparameter shape optimization of elastic bars under

torsion (1978, 1980), Queau and Trompette in shape optimal
design of two dimensional structures e.g. polygonal plate, fillet
and spherical vessel (1980) and optimal shape design of turbine
blades (1983), Bennett and Botkin in shape optimization of
automotive structures (1981) and two dimensional structures
with adaptive mesh refinement e.g. torque arm and bracket
(1983, 1985), Imam in shape optimization of three dimensional
structures (1982), Braibant et al. (1983) and Braibant and
Fleury (1984, 1986) in shape optimization with CAD concepts
and B-splines’ and Botkin and Bennett in three dimension
folded plate structures (1985). Over a period of time, some
limitations of FEM became apparent in shape optimization,
like, accuracy of initial mesh for continuously changing geom-
etry needing subsequent remeshing and inaccurate boundary
stresses impairing design sensitivities, which promoted use of
BEM in shape optimization around mid 1980s. Because BEM
formulates the problem with boundary integral equations
(BIEs) which describes the problem with known and
unknown boundary states, the dimension of problem is
reduced which reduces quantum of input data and
computational efforts compared to FEM. Mota Soares et al.
(1984a, b) were the first to employ BEM in optimizing
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geometry of shafts followed by Mota Soares et al. (1984a,
1984b) for minimizing compliance of two dimensional linear
elastic structures, Sandgren and Wu (1988) in plane stress,
plane strain and three dimensional elasticity problems, Xu
and Yu (1990) in problems of minimizing stress concentrations,
Yang (1990) in two-dimensional linear elastic structures e.g. an
infinite plate with elliptical hole and fillet, Lee and Kwak
(1991) in two dimensional thermoelastic structures, Tafreshi
and Fenner (1991) in two dimensional elastic structures e.g.
plate with a hole and connecting rod, Zhang et al. (1992) in
shape design sensitivities for materially and geometrically non-
linear problems and Yamazaki et al. (1993) in two dimensional
plate with hole shapes.

1.1 MMs in shape optimization

Owing to the rapid development in computational mechanics
and computer speed in last three decades, several numerical
shape optimization techniques have been proposed which are
broadly classified as: Parametric and Free-form techniques.
The parametric technique (Fig. 1) is based on the ‘design
element’ concept given in the early work by Imam (1982),
Braibant et al. (1983) and Braibant and Fluery (1984). The
technique is based on selection of meaningful geometrical
design parameters governing the shape of the structure and
considered as an extension of parametric CAD wherein the
optimum configuration is located within the search space cov-
ered by design variables with externally defined objective
function (Chen et al. 2007). Every change made in design
variable brings change in the design domain which needs
evaluation of structural performance through structural analy-
sis by numerical simulation techniques like FEM and BEM.
However, there exist numerous limitations with conventional
grid-based techniques in shape optimization problems, like,

1) Remeshing: Grid-based techniques need frequent
remeshing to avoid distorted elements with deteriorated
aspect ratios which may result in poor accuracy in a new
shape design during the optimization process (Bennett
and Botkin 1985).

2) Mesh topology: In a gradient-based shape optimization
technique, from view point of accurate sensitivities and
stable optimization process, it is devisable to maintain
same mesh topology for initial and perturbed geometry,
during the optimization process (Kim and Choi 2005;
Lacroix and Bouillard 2003; Grindeanu et al. 1999)

3) Grid optimization:Conventional grid-based techniques are
sensitive to node distribution in the domain which require
grid optimization i.e. r-refinement (number of nodal points
remain same but are repositioned) for minimizing the com-
putational errors (Diaz et al. 1983; Ingber andMitra 1986).

4) Element locking: Conventional displacement-based FEM
suffers from locking i.e. element formulation is incapable

of capturing appropriate displacements in case of
hyperelastic and nearly incompressible materials (whose
poission’s ratio approaches 0.5 and volumetric strain 0)
which results in significant loss of accuracy (Babuska and
Suri 1992; Grindeanu et al. 1999; Kim et al. 2001a, b). In
FEM framework, mixed interpolation i.e. displacement/
pressure (u/p) is a popular approach for handling this
issue wherein displacements and pressure are interpolated
separately (Bathe 1996).

5) Poor Accuracy: Conventional displacement -based FEM
(with linear shape functions) gives discontinuous second-
ary field variables e.g. stress across element boundaries
leading to another mathematical difficulty in imposing
point stress constraints during the shape optimization pro-
cess (Bobaru and Mukherjee 2001). Within FEM frame-
work, mixed formulation based on extended variational
principles e.g. Hu-Washizu functional may be used for
obtaining smooth stress variation wherein displacements
and stresses are treated as independent variables (Bathe
1996). Alternatively, techniques like superconvergent
patch recovery and posteriori error estimates as proposed
by Zienkiewicz and Zhu may be used (1987; 1992).
However, at material interface, geometrical interface or
loading interface, discontinuity in stresses can be captured
by FEM with nodes positioned at those interfaces.

To conquer aforementioned issues related to conventional
parametric shape optimization techniques based on FEM, var-
ious alternative techniques have been proposed from different
perspectives:

a) Isogeometric analysis (IGA): IGA as proposed byHughes
et al. (2005) has emerged as an efficient shape optimiza-
tion technique in last one decade because it unifies geo-
metric description of design and analysis model through
discretization based on Non-Uniform Rational B-Spline
(NURBS) elements which eliminate error-prone and time
consuming conversion of geometric information from de-
signmodel to analysis model at each iterative step of FEM
based shape optimization.

b) XFEM with level sets: Though eXtended FEM (XFEM)
was mainly proposed (Moes et al. 1999; Belytschko et al.
2003a, b) to improve classical FEM in dealing with mov-
ing boundaries and discontinuities in the problem but use
of XFEM along with level set description in structural
optimization was firstly demonstrated by Belytschko
et al. (2003a, b). Here, XFEM enables working with fixed
mesh while level sets can construct and track smooth
geometry in fixed grid without explicit parameterization
which will be quite useful in shape optimization.

c) MMs: MMs have also gained much attention by broader
research community in last two decades and proved quite
promising in shape optimization because they do not
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employ elements/mesh to construct shape function for
field variable approximation in the domain; instead a set
of nodes and their associated support domain are used.
Thus, MMs eliminate mesh related issues of conventional
shape optimization techniques.

Although main theme of this paper is shape optimization
techniques based on MMs, Section 1.2 presents brief intro-
duction and review of IGA and XFEM based shape optimiza-
tion techniques for comparison.

To provide bird’s eye view of the literature on ‘parametric
shape optimization techniques based on MMs’, found in the
database of ‘Google Scholar’ and ‘Scopus’ (English language
publications), Table 1 summarizes the basic information while
detailed review, its analysis and critical observations are pre-
sented in section 3.

Though parametric approach has been extensively explored,
the downside of this approach is its suitability to only those
problems which are formulated with well defined design pa-
rameters e.g. distances or radii. Thus, there exist evident limi-
tations of parametric approach in terms of its inability to sup-
port large topological changes in the structures and need of re-
evaluation of the boundary representation associated with every
change made in design variables. In contrast, some recent tech-
niques in shape and topology optimization are based on free
form implicit representation of design shape, which supports
boundary deformation and large topological changes with ease.
In the free-form approach, the shape is defined by its bound-
aries without any prior explicit dimensional parameterization. It
searches the space of free-form shapes by incremental local
motion of the free-form boundaries (Chen et al. 2007). Level
set methods (LSMs) are the most frequently employed free-
form shape optimization technique wherein shape is represent-
ed as a level set of a higher-dimensional surface and the prob-
lem is formulated and solved on this higher-dimensional sur-
face. Themethod was proposed by Osher and Sethian (1988) to
compute and analyze motion of interfaces in two and three
dimensions under prescribed velocity field.

1.2 Shape optimization with IGA and XFEM

Conventional shape optimization techniques based on FEM use
different geometric descriptions for design and analysis model
i.e. modern CAD tools rely on Computer Aided Geometric
Design (CAGD) elements like Bezier, B-Spline and NURBS
curves and surfaces for geometry description while currently
used FEM software packages employ piecewise linear approxi-
mation of geometry. With different geometric descriptions used
in design and analysis model, the FEM based shape optimization
becomes inefficient and inaccurate due to repetitive conversions
required for geometric information of design model to the anal-
ysis model (Schramm and Pilkey 1993; Wang and Turtelautb
2015). In contrast, IGA unifies the design and analysis model
by discretization based on Non-Uniform Rational B-Spline
(NURBS) three dimensional solid elements. Once the initial
mesh is constructed for defining the exact geometry with
NURBS elements, subsequent refinement doesn’t need any fur-
ther communication with CAD model, thus eliminates error-
prone conversion of geometric description between design
model and analysis model in shape optimization. Hughes et al.
(2005) anticipated IGA based shape optimization as a promising
future research area and accordingly in a set of recent articles
IGA has been successfully implemented in shape optimization.
For instance, Wall et al. (2008) proposed a shape optimization
technique for two-dimensional elastic continuum structures e.g. a
cantilever beam, a plate with a hole and an open spanner based
on IGA and gradient-based method of moving asymptotes
(MMA). Later, Cho and Ha (2009) emphasized the advantages
offered by NURBS based isogeometric shape design optimiza-
tion and isogeometric sensitivity over conventional FE sensitivity
and shape optimization for linear elastic problems e.g. L-shape
stiffener and connecting rod geometry. A variant of IGA i.e. T-
spline (a generalization of non-uniform B-spline, which permits
T-junctions) based IGA was proposed by Ha et al. (2010) for
shape optimization of 2D linear elastic structures which reduces
number of degrees of freedom and yields same optimal shape
more efficiently. NURBS based geometries are affected by both,

Table 1 Parametric shape optimization with MMs – literature summary

Type of problems Analysis technique References

Linear elastic-2D EFG
FE-EFG

Bobaru and Mukherjee 2001
Lacroix and Bouillard 2003, Gong et al. 2009

Linear / Nonlinear thermoelastic-2D & 2.5D EFG Bobaru and Mukherjee 2002, Bobaru and Rachakonda 2004a, 2004b,
Bobaru and Rachakonda 2006

Linear elastic-2D & 3D RKPM Grindeanu et al. 2002, Kim et al. 2003, Zhang et al. 2005, Zou et al. 2007

Hyperelastic-2D RKPM Grindeanu et al. 1998, Grindeanu et al. 1999, Grindeanu et al. 2002

Frictional contact-2D RKPM Kim et al. 2000a, Kim et al. 2000b, Kim et al. 2001a, b, Kim et al. 2001a, b,
Kim et al. 2002

Structure dynamics-2D RKPM Kim and Choi 2001, Zhang et al. 2008
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location and weights of its control points. In spite of this fact,
most of the research work considers only locations of control
points as design variables and evaluates analytical sensitivities
with respect to control point only, which is termed as partial
sensitivities (Qian 2010). However, Nagy et al. (2010) developed
sizing and shape design optimization technique for curved beam
structures using IGAwith design variables taken as location and
corresponding weights of control points. Full sensitivity formula
for computing sensitivities for both control point locations and
weightswith numerical implementation in linear elastic 2D shape
optimization problems e.g. a plate with a hole, a cantilever beam
and an open spanner was proposed by Qian (2010). In a recent
development, Fubeder et al. (2015) proposed equivalence of two
approaches in IGA framework, i.e., discretize first–optimize then
vs. optimize first–discretize then with gradient-based shape opti-
mization technique and it has been shown that both these
schemes yield same discrete systems. Wang and Turtelautb
(2015) proposed a shape optimization technique for quasi-static
processes within IGA framework with adjoint sensitivity analy-
sis, wherein problem formulation was extended to include time
dependent loads and responses. Another recent development
demonstrated development of generalized isogeometric shape
sensitivity formulation in curvilinear coordinate system by Ha
(2015), which was then applied to derive shape sensitivity anal-
ysis of geometrically exact shell model and its shape optimiza-
tion. Conventional IGA in shape optimization of trimmed or
topologically complex shell structures pose many difficulties
which include dividing the complex shell structure in multiple
NURBS patches and need of special techniques for attaching
them for analysis. Kang and Youn (2016) proposed IGA based
shape optimization technique with gradientbased algorithm for
trimmed shell structures using two dimensional Trimmed
SurfaceAnalysis (TSA)with a single patch extended throughout.
While in another recent development, Herrema et al. (2017) pro-
poses a first of its kind computational framework, utilizing
Rhinoceros (typically abbreviated as Rhino – a commercial
CAD software based on NURBS) and its graphical algorithmic
editor, Grasshopper, which is capable of performing IGA-based
parametric design optimization of realistic engineering structures
which are generated through complex geometric operations of
CAD.

Despite of aforementioned promising benefits offered by
IGA in shape optimization, there exist some shortcomings in
its original form which includes domain parameterization i.e.
how to parameterize a volumetric domain from its boundary.
This is due to the fact that a CAD model provides boundary
information only while numerical analysis in general requires
parameterizations of the interior of the domain (Lian et al.
2017, Li and Qian 2011). This issue can be effectively dealt
with boundary integral based isogeometric analysis i.e.
isogeometric boundary element method (IGABEM) wherein
analysis problem is formulated with boundary integral form
and the design boundary representation and approximation of

physical fields is carried out with NURBS (Li and Qian 2011).
The concept was proposed by Simpson et al. (2012) by real-
izing the fact that NURBS based boundary representation and
BEM deals with quantities entirely based on problem bound-
ary. Owing to the tight integration achieved between CAD and
analysis, IGABEM offers immediate advantages in shape op-
timization and hence employed in some of the recent articles
(Lian et al. 2017, Lian et al. 2016, Kostas et al. 2015, Li and
Qian 2011). Thus, IGA (both FEM and BEM based) has trig-
gered a renewed interest in the field of shape optimization.

XFEM was mainly developed with the objective of han-
dling crack propagation problems without remeshing, but the
potential use of XFEM with level sets for structural topology
optimization was initially identified by Belytschko et al.
(2003a, b). Later, Duysinx et al. (2006) proposed generalized
shape optimization approach for a benchmark problem of the
plate with a hole, using XFEM and LSMs, which results in
smooth boundary description and allows topological
modifications, too. Miegroet and Duysinx (2007) also pro-
posed 2D fillet shape optimization for minimizing stress con-
centration using XFEM and level set description with sequen-
tial convex programming. In these techniques, XFEM enables
working with fixed mesh while level set features help in
smooth shape description and defining design variables.

1.3 Layout of the present review

MMs have become popular alternative numerical techniques
to conventional grid-based techniques in diverse fields of en-
gineering research, including structural shape optimization, in
last two decades. These techniques eliminate innate limita-
tions of FEM in structural shape optimization. Accordingly,
the objective of present work is to review shape optimization
techniques based on MMs and to emphasize their benefits.

The field of shape optimization is almost five decades old
now. Several review articles have been presented in this field
during this tenure. Brief details on the development in this
field can be referred from following reviews/bibliography:

1) A survey by Haftka and Grandhi (1986) on shape optimi-
zation for automated mesh generation and refinement
techniques in FEA, selection of design variables with
techniques for sensitivity calculation, solution techniques
and applications.

2) A literature review by Ding (1986) on typical procedural
steps involved in shape optimization including FE mesh
generation and refinement, sensitivity analysis and solu-
tion methods.

3) A survey on structural shape optimization by Hsu (1994),
covering developments from 1987 to 1993, with empha-
size on techniques of geometry representation, structural
analysis, sensitivity analysis, optimization, difficulties en-
countered in extending two dimensional to three
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dimensional shape optimization and significance of zero-
order optimization algorithms in shape optimization.

4) A bibliography byMackerle (2003) on topology and shape
optimization of structures using FEM and BEM, covering
research papers, conference proceedings and thesis/
dissertation presented during 1999 to 2001 in this field.

5) A survey on structural optimization in mechanical prod-
uct development by Saitou et al. (2005) with major re-
search focus on geometry parameterizations, approxima-
tion methods, optimization techniques and integration
with non-structural issues like cost, manufacturing and
assembly aspects.

The layout of present review is as follows:

Section 2 presents comparison of different grid-based
analysis techniques and MMs for their capabilities and
limitations in shape optimization followed by essential
numerical aspects of MMs like meshless shape functions
and their properties, technique to impose EBCs and nu-
merical integration which assist further discussion on
MMs application in shape optimization.
Section 3 covers review of EFG and RKPM based
shape optimization techniques for diverse engineer-
ing field problems.
Section 4 presents critical observations of the present re-
view including DSA in meshless environment, numerical
integration techniques in MMs and benefits of coupled
FEM-MM approach in shape optimization.
Section 5 presents promising future research direc-
tions in the field of shape optimization with empha-
size on role of MMs.
Section 6, finally, presents conclusion of the present re-
view article.

2 Structural analysis techniques

Success of shape optimization process greatly depends on
structural analysis technique used because it greatly influences
solution accuracy and computational time of the process. The

major concerns for selection of analysis technique in shape
optimization include amount of input data required i.e.
converting geometric information of design model into the
analysis model, versatility of analysis technique and solution
accuracy achieved. Various grid-based techniques and MMs
are discussed here in terms of their usefulness and limitations
in shape optimization and are shown on timeline in Fig. 2.

2.1 Grid-based techniques

Before the development of numerical techniques for structure
mechanics problems in 1950s, analytical methods were used
for structural analysis. However, it was not possible to model
and analyze large and complex structures with analytical
methods. In mid 1950s, major development of FEM for struc-
tural analysis began in aerospace industries and by 1970s it
was developed as a practical analysis tool to model complex
problems of diverse engineering fields. With its versatility in
dealing with various types of loading, boundary conditions
and nonlinearities, FEM became a standard technique for
obtaining structural response in shape optimization and today
almost all modern commercial software packages use FEM
for structural optimization e.g. Genesis, MSC.Nastran,
OptiStruct etc. However, there exist some computational
drawbacks with FEM which become severe in shape optimi-
zation problems, like, continuously changing geometry in
shape optimization problems need frequent remeshing to
avoid distorted elements which may impair solution accuracy.
Here, mesh refinement techniques, both manual and automat-
ed become extremely important to maintain certain level of
solution accuracy. Sophisticated adaptive mesh refinement
techniques, eliminating user intervention, including h and p
refinement have been studied extensively in the literature
(Mohite and Upadhyay 2015; Schleupen et al. 2000; Bennett
and Botkin 1985). Another major concern related to FEM in
gradient-based shape optimization is the condition of main-
taining same topology of mesh for initial and perturbed geom-
etry for accurate computation of design sensitivities and stable
optimization process. To achieve this, one must ensure mesh
updates to follow the direction of design velocity field in DSA
(Kim and Choi 2005). Moreover, discontinuous approxima-
tion of secondary field variables like stresses across element
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boundaries due to linear shape functions in displacement-
based FEM also impairs solution accuracy. To alleviate these
evident limitations of FEM in shape optimization, BEM
gained much attention as an alternative numerical technique
by mid 1980s. Being boundary oriented technique, BEM for-
mulates boundary value problems (BVP) with BIEs which
describe problems with known and unknown boundary states,
thus reducing dimension of problem by one degree which
requires discretization of the surface rather than the volume.
Consequently, meshing time reduces considerably and design
changes can be incorporated with ease. Degree of accuracy for
the field variables at boundary of the domain will also remain
high with BEM, which makes it suitable for stress concentrat-
ed shape optimization applications. Thus, BEM offers several
advantages over FEM in shape optimization problems like
lesser input data, smaller computational efforts and higher
accuracy in boundary stress approximation (Xu and Yu
1990). However, BEM is not efficient in dealing with prob-
lems involving inhomogeneity and nonlinearities. Non-
banded and non-sparse system matrices become another com-
putational drawback of BEM.

Numerical methods based on Lagrangian grid, like FEM,
the grid is attached to the material during the entire computa-
tion process and hence it deforms with material under external
loading which leads to mesh distortion issue in classical FEM
based shape optimization techniques. The problem can be
resolved effectively by adopting Fixed Grid (FG)/Eulerian
grid approach in which the grid of finite elements (in back-
ground) remains fixed throughout the design optimization
process while the geometric model is allowed to move across
it to accommodate shape variation. Subsequently, the shape
density concept, quite similar to homogenization in topology
optimization, for identifying finite elements inside, outside or
on the boundary is adopted for shape optimization However, it
must be noticed that the total design space occupied by the
fixed grid must include all possible design combinations
based on upper and lower bounds of design parameters
(Najafia et al. 2015; Kim and Chang 2005; Gracia and
Gonzalez 2004; Garcia-Ruiz and Steven 1999).

2.2 MMs: Alternative numerical techniques

A new class of numerical techniques has emerged in last two
decades wherein novel techniques for shape function con-
struction allow field variable approximation globally with a
set of nodes and their associated support domains only, with-
out defining elements/mesh. MMs provide accurate and stable
numerical solution for governing PDEs with all possible
boundary conditions and are expected to be superior to con-
ventional grid-based techniques. Numerous meshless tech-
niques have been developed by employing novel techniques
of shape function construction like moving least square
(MLS) approximants, reproducing kernel approximation,

partition of unity (PU) and so forth. Some of the well-known
MMs include Smoothed Particle Hydrodynamics (SPH) by
Lucy (1977), Element Free Galerkin (EFG) method by
Belytschko et al. (1994), Reproducing Kernal Particle
Method (RKPM) by Liu et al. (1995), Meshless Local
Petrov Galerkin (MLPG) method by Atluri and Zhu (1998),
Point InterpolationMethod (PIM) by Liu and Gu (1999, 2001)
and so forth. It is worth to notice that, based on their compu-
tational framework; these techniques may need background
mesh for numerical integration purpose which is not related
to the approximation of field functions and does not weaken
the meshless characteristics and its associated benefits.

Although MMs were mainly developed to solve some
specific class of problems, like fracture mechanics with
moving material discontinuities, large deformations and
simulation of manufacturing process e.g. metal forming
where conventional grid-based techniques struggle to pro-
vide accurate solutions even after successive remeshing,
some features of these techniques make them much suit-
able analysis technique in structural optimization prob-
lems e.g. shape optimization. Different meshless tech-
niques may employ different shape functions for approx-
imating field variables but they share a common useful
feature of lifting the stringent requirement of meshing as
posed by FEM which is extremely beneficial in shape
optimization problems and provide much needed flexibil-
ity. Moreover, meshless shape functions produce continu-
ous approximation of field variables i.e. displacement and
stress which will improve design sensitivities and overall
solution accuracy in shape optimization process. Past lit-
erature shows enthusiastic results of MMs i.e. EFG and
RKPM in shape optimization problems of various fields
(Table 1). To discuss significance of various numerical
aspects of MMs in shape optimization, it is essential to
present those aspects here including their shape functions
and its properties, techniques to impose EBCs and numer-
ical integration.

2.3 Meshless shape functions

MMs may be classified based on various criteria, for instance,
method of deriving discrete system equations, method of con-
structing shape functions etc. Accordingly, MLS
approximants are employed to construct shape functions of
desired order continuity in EFG, MLPG and HP-cloud meth-
od. The MLS approximant, uh(x) of the field function u(x)
defined over the domain Ω is given by,

uh xð Þ ¼ pT xð Þa xð Þ ¼ ∑
m

j
p j xð Þa j xð Þ; ∀x∈Ω ð1Þ

where, pT(x) are monomial basis functions of order m and a(x)
are vector coefficients which are functions of space
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coordinates x. They are determined at any point x by minimiz-
ing weighted discrete L2 norm defined as follows,

J xð Þ ¼ ∑
n

i
wi x−xið Þ pT xið Þa xð Þ−ui

� �2 ð2Þ

where, n is the number of nodes in neighborhood of x for
which weight function wi(x-xi) can’t be zero and ui is the
nodal value of u at x = xi. The neighborhood of x is termed
as domain of influence or support domain.

Weight functions in MLS approximants play two important
roles i.e. providing suitable weightings to the residuals for dif-
ferent nodes in the influence domain based on their position
from the point of interest and ensuring compatibility condition
of shape functions i.e. continuity of field function over the
domain. Some of the frequently used weight functions are ex-
ponential and spline functions of different orders (Liu 2010).

In order to minimize weighted residual (2) at any arbitrary
point x within the domain,

∂J
∂a

¼ 0 ð3Þ

On further simplification, approximation uh(x) can be
written as,

uh xð Þ ¼ ∑
n

i
ϕi xð Þui ð4Þ

where, ϕi(x) is called the MLS shape functions in EFG
and it is given by,

ϕi xð Þ ¼ ∑
m

j
p j xð Þ A−1 xð ÞB xð Þ� �

ji ð5Þ

MLS shape functions (5) are complex and computationally
more expensive, as it needs matrix inversions, compared to
polynomial like shape functions of FEM. Again, it is essential
that moment matrix, A(x)must remain invertible for obviating
singularity issues in the formulation. While from accuracy
viewpoint, MLS shape functions provide exemplary approxi-
mation i.e. smoother stress, strain fields in the solution even
with low order monomial basis function that is owing to
higher order weight functions. But they do not possess
Kronecker delta property, which means uh(xi) ≠ ui, and hence
imposition of EBCs become more complex than conventional
FEM. Kronecker delta property of shape function is defined in
the following way:

ϕi x j
� � ¼ 1 when i ¼ j

0 when i≠ j

�
ð6Þ

Numerous techniques have been developed for imposing
EBCs in MMs, which includes Lagrange multiplier, penalty ap-
proach, modified variational principle, coupling with FEM,
transformation method, Nitsche’s method and D’Almbert’s

principle (Belytschko et al. 1994; Dolbow and Belytschko
1998; Lu et al. 1994; Krongauz and Belytschko 1996; Gunther
and Liu 1998; Hoai 2009; Chen et al. 1996; Griebel and
Schweitzer 2002). Among these techniques, penalty approach
is more convenient in implementation because it results in posi-
tive definite and banded system matrices without increasing its
size. However, it is crucial to select appropriate value of penalty
parameter, α for desired solution accuracy.

On the other hand, SPH (Lucy 1977; Gingold and
Monaghan 1977) and RKPM (Liu et al. 1995) fall under the
same category ofMMs wherein shape functions are construct-
ed using integral representation methods. In SPH, the approx-
imation of field variable u(x), uh(x) is given in the following
way,

uh xð Þ ¼ ∫
Ωs

u ξð Þ W
⌢

x−ξ; hð Þdξ ð7Þ

where, W x−ξ; hð Þ is the kernel function and h is termed as
smoothing length in SPH which is often termed as compact
support domain or influence domain. The kernel function pro-
vides continuity and the locality of the approximation with
compact support and commonly used kernel functions are
Gaussian or spline functions of different orders.

On the basis of theory of wavelets and some desirable
features of SPH, DEM and EFG methods, Liu et al. proposed
RKPM approach. Shape function in RKPM is derived by in-
troducing correction function, C(x, ξ) in (7), which improves
SPH approximation near boundary. Thus, approximation in
RKPM is given by,

uh xð Þ ¼ ∫
Ωs

u ξð Þ C x; ξð Þ W
⌢

x−ξ; hð Þdξ ð8Þ

Upon discretizing the domain Ωs by a set of particles [x1,
x2,..,xn] and using trapezoidal rule, (8) can be rewritten as,

uh xð Þ ¼ ∑
n

i¼1
C x; x−xið ÞW⌢ x−xið Þ u xið ÞΔxi ð9Þ

The correction function C(x, x-xi) is constructed by mono-
mial basis as follows,

C x; x−xið Þ ¼ q xð ÞTH x−xið Þ ð10Þ
where, H(x - xi) and q(x) are basis function and coefficient
vectors respectively. To get shape functions, (10) is substituted
in (9),

uh xð Þ ¼ ∑
n

i¼1
ϕi xð Þui ð11Þ

where, ϕi(x) is termed as RKPM shape functions and it is
given by,
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ϕi xð Þ ¼ q xð ÞTH x−xið ÞW⌢ x−xið Þ ð12Þ

Again, RKPM shape functions do not possess Kronecker
delta property (6); hence, EBCs are imposed with special
techniques mentioned earlier.

2.4 Numerical integration in MMs

Numerical integration is the approximation of continuous in-
tegral over a domain Ω by a discrete sum, in the following
way:

∫
Ω
f ξð Þdξ≈ ∑

l¼1

nq

f ξl
� �

Wl ð13Þ

where, nq is number of quadrature points, ξl is the coordinate
of point l and Wl is the corresponding weight (Beissel and
Belytschko 1996). Overall performance and accuracy of
MMs depend on accurate and efficient numerical integration
schemes. Several techniques have been proposed for numeri-
cal integration of discrete equations in MMs, which includes
classical Gauss quadrature technique (utilizing back ground
cell structure/mesh), direct nodal integration (Beissel and
Belytschko 1996), stabilized confirming nodal integration
(SCNI) (Chen et al. 2001) and partition of unity quadrature
technique (PUQ), moving least square quadrature (MLSQ)
(Carpinteri et al. 2002; Duflot and Hung 2002). Classical
Gauss quadrature technique has been found much useful in
practical applications but the need of background integration
cells makes these techniques ‘pseudomeshless’. However, the
background mesh (for numerical integration) is not related to
the approximation of field functions and does not weaken the
meshless characteristics and its associated benefits (Chen et al.
2001). Dolbow and Belytschko (1999) studied sources of er-
rors associated with Gauss quadrature numerical integration
schemes in MMs. The misalignment between local support
domain of shape functions and integration cells results in
significant error in MMs and affects convergence rate.
Hence, it was highly desirable to derive completely meshless
formulation. Accordingly, Beissel and Belytschko (1996) pro-
posed nodal integration to develop truly meshless technique.
However, the proposed nodal integration was suffering from
spatial instability initially, which was dealt by adding a stabi-
lization term consisting of the square of the residual of the
equilibrium equation to the potential energy functional.
Another stabilized nodal integration technique was proposed
by Chen et al. (2001) by strain smoothing technique in RKPM
framework, which avoids evaluation of shape function deriv-
atives at nodes and thus eliminates spurious modes while
Carpinteri et al. (2002) and Duflot and Hung (2002) proposed
a new integration technique (14) based on partition of unity
property of meshless shape functions which does not require
background mesh/cells since the quadrature cells are

determined by the weight supports of meshless shape function
and thus resulting technique will be truly meshless.

∫
Ω
f xð ÞdΩ ¼ ∑

n

i−1
∫
Ωi

ϕi xð Þ f xð ÞH xð ÞdΩ ð14Þ

where, H(x) is given by,

H xð Þ ¼ 1 if x∈Ω
0 if x∉Ω

�
ð15Þ

3 Shape optimization with MMs

The present section reviews shape optimization techniques
based on EFG and RKPM in problems of diverse engineering
fields and emphasizes major gain obtained through meshless
implementation instead of conventional grid-based
techniques.

3.1 Linear elastic problems

EFG based shape DSA and shape optimization technique was
firstly developed by Bobaru and Mukherjee (2001) wherein
sensitivities were derived through material derivative approach,
using Direct Differentiation Method (DDM) and particular ap-
proximation for displacement sensitivities, thus avoiding differ-
entiation of meshless shape functions with respect to design
variables. The proposed technique was applied to optimize
two dimensional fillet shape geometry for minimizing area
which provided lower value of objective function compared
to earlier solutions obtained by Phan et al. (1998) using
Boundary Contour Method (BCM) and Zhao (1991) using
BEM and optimum shape without any remeshing. Later,
Grindeanu et al. (2002) proposed CAD-based shape optimiza-
tion by integrating a CAD tool i.e. Pro/Engineer with RKPM
for shape optimization of two dimensional hyperelastic
structure and three dimensional linear elastic structure. Their
work was inspired from earlier work by Hardee et al. (1999)
for CAD based shape DSA and shape optimization with FEM.
They proposed a new hierarchical boundary displacement
method to maintain consistency between the discrete and
CAD model throughout the shape optimization process and
sensitivities were computed by hybrid finite difference and
boundary displacement procedure. The capability of proposed
technique was demonstrated by solving a three dimensional
elastic beam structure with uniform loading without any mesh
distortion. Another RKPM based shape optimization technique
was proposed by Kim et al. (2003) for two dimensional and
three dimensional linear elastic structures with the objective of
demonstrating meshless shape DSA and its numerical imple-
mentation. They derived sensitivities through material deriva-
tive of variational equation and considered design derivatives
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of meshless shape functions (unlike Bobaru and Mukherjee
2001) which proved more consistent approach for meshless
DSA. The proposed RKPM based shape optimization tech-
nique was insensitive to regularity of the particle distribution
and generated optimum shapes of bracket, torque arm and road
arm geometry without mesh distortion and any remeshing as
compared to the earlier study by Bennett and Botkin (1985)
using FEM for the same problems. Moreover, the proposed
technique showed improved convergence rate of design opti-
mization process through accurate computation of sensitivities
with RKPM. On the other hand, Zou et al. (2007) proposed
numerical shape optimization technique based on ‘truly
meshless’ RKPM formulation with PU based numerical inte-
gration (see (14) (15)) using Shephard function, as follows:

ϕi xð Þ ¼ ωd x−xið Þ
∑ jωd x−x j

� � ð16Þ

They computed sensitivities by FDM for convenience and
the technique was applied to optimize fillet geometry for
minimizing area which generated lower objective function
value than the earlier solutions obtained by Bobaru and
Mukherjee (2001) using EFG and Zhao (1991) using BEM
for the same problem. In majority of research, MMs were
coupled with conventional deterministic optimization tech-
niques for achieving optimum shapes, but Zhang et al.
(2005) proposed a novel approach of shape optimization by
combining RKPM with Multi Family Genetic Algorithm
(MFGA) to eliminate computational burden of sensitivity
computation. They employed PUQ technique for numerical
integration (see (14) and (15)) in RKPM framework which
avoided background cells/mesh and results in truly meshless
formulation. The technique employed in optimizing complex
connecting rod geometry for minimizing area and
outperformed the earlier solution obtained with FEM and
GA by Annicchiarico and Cerrolaza (1999). Moreover, it
was observed that MFGA showed high convergence rate
and ease of implementation in the proposed technique.

3.1.1 Coupled FEM-MM approach

It was observed in Bobaru and Mukherjee (2001) and Kim
et al. (2003) that DSA based onMMs produces more accurate
sensitivity information due to higher order differentiability of
displacements and stresses obtained with MMs. However, in-
creased computational efforts of MMs owing to its complex
shape functions involving matrix inversions (e.g. (5)) and
higher order numerical integration schemes remain challeng-
ing. Thus, more rational and beneficial approach in shape
optimization is to couple MMs with FEM in which MMs are
used only in a part of domain where better approximation is
required. Another major gain with the coupled approach will
be the ease of imposing EBCs with coupled technique itself,

thus avoiding any other special technique for imposing EBCs.
Accordingly, Lacroix and Bouillard (2003) proposed coupling
of FEM with EFG to improve sensitivity analysis for structur-
al optimization problems for alleviating evident difficulties
associated with geometry perturbation and updating mesh in
classical FEM. The coupling of two techniques was accom-
plished by introducing interface elements between FE and
EFG domains, where hybrid displacement approximation
was defined using ramp functions, as follows:

~u xð Þ ¼ uFE xð Þ þ R xð Þ uEFG xð Þ−uFE xð Þ� � ð17Þ

where, R(x) is the ramp function defined using FE shape func-
tions in following way,

R xð Þ ¼ ∑
x j∈ΓE

N j
FE xð Þ ð18Þ

The technique eliminated mesh distortion and issue of
imposing EBCs with EFG.Much later, Gong et al. (2009) also
proposed coupled FE-EFG approach, based on isoparametric
quadrangle interface element, for shape optimization of 2D
linear elastic structures in which sensitivities were computed
through DDM of discretized equilibrium equation of interface
elements. The proposed coupled technique was successfully
employed to optimize fillet shape geometry for minimizing
area and offered several advantages including mesh
distortion eliminated completely, ease of imposing EBCs
and improved computational performance.

3.2 Thermoelastic problems

EFG based shape optimization techniques for thermoelastic
problems was firstly proposed by Bobaru and Mukherjee
(2002) wherein sensitivities were computed by FDM for con-
venience and SQP algorithm was used for optimization. The
proposed technique employed in optimizing the triangular
thermal fin geometry for maximizing heat transfer and pro-
duced ‘finger-type’ shape design without any remeshing,
which was missed in earlier solution with FEM by Hou
et al. (1992). Again, the proposed technique surpassed the
FEM solution (Hou et al. 1992) in fixed-fixed beam under
thermomechanical load for minimizing deviation of deformed
top boundary from the straight line. Later, Bobaru and
Rachakonda (2004a) identified the ill-posed problem condi-
tion for the triangular thermal fin shape optimization in
Bobaru and Mukherjee (2002) which indicated the ‘optimal’
fin structure with an infinite number of fins of infinitesimal
thickness closely packed together. To resolve this issue, au-
thors proposed an additional constraint in terms of non-
overlapping thermal boundary layer outside the fin’s convec-
tive boundary to make problem well posed and find optimal
shape of fin geometry. EFG based shape optimization tech-
nique was developed to solve the non-linear constrained
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optimization problem with sensitivity computed through
FDM and optimization through SQP. The optimum fin shape
design was obtained without any remeshing. The work was
further extended by the same authors (Bobaru and
Rachakonda 2004b) to examine the effect of fin materials with
different conductivity parameters i.e. high conductivity mate-
rials like aluminium and copper and low conductivity material
like titanium on optimal shape profiles of fins which produced
sharp pointed thin fin shapes for highly conducting materials
while thicker, rounded fin shapes for low conductivity
materials without any remeshing.

Though EFG implementation found much beneficial in
aforementioned thermoelastic problems, Bobaru and
Rachakonda (2006) identified limitation of the existing tech-
nique in terms of its ability to support extremely large shape
changes which may result in the problem regions with very low
node density or material overlapping due to node movements.
To alleviate this issue, they proposed fixed-grid shape optimi-
zation technique based on EFG and referred it as E(FG)2,
wherein physical domain was projected over a fictitious do-
main and shape changes occurred over a fixed-grid covering
the fictitious domain. The proposed technique was tested in
previously studied fin geometry shape optimization problems
(Bobaru andMukherjee 2002; Bobaru and Rachakonda 2004a,
b) and it was observed that the proposed technique was insen-
sitive to biased grid, thus eliminating the issue of special node
arrangement required in (Bobaru and Rachakonda 2004a, b)
and permitted to enlarge the bounds on the design variables.

3.3 Hyperelastic problems

Numerical simulation and successive shape optimization of
hyperelastic e.g. rubber structures and near incompressible
conditions i.e. Poission’s ratio approaching 0.5 and volumetric
strain nearly 0 present many difficulties owing to its large
deformations which leads to locking issues in conventional
displacement based FEM. In FEM framework, mixed formu-
lations, considering pressure and displacement as unknowns,
are popular in these conditions (Bathe 1996). Alternatively,
MMs are more suitable in these problems as they are free from
mesh distortion and element locking issues. Accordingly,
Grindeanu et al. (1998) and Grindeanu et al. (1999) proposed
continuum based DSA and shape optimization of hyperelastic
structures based on RKPM for the first time. Both, material
and shape design variables were considered with direct differ-
entiation and adjoint variable method in DSAwhich was fur-
ther extended by using a pressure projection method for
avoiding volumetric locking in nearly incompressible mate-
rials. The proposed technique employed to optimize geometry
of the engine mount for minimizing mass using modified fea-
sible designmethod available in the DesignOptimization Tool
(DOT) (Vanderplaats 1997).

3.4 Frictional contact problems

Contact problems, both frictional and frictionless, are of
great significance in many industrial applications, ranging
from gears and bearings to metal forming processes like
stamping and deep drawing, rubber sealing, crash tests per-
formed in cars and biomechanics problems to name a few.
Frictionless contact problems with perfectly smooth elastic
bodies experiencing small deformations are relatively sim-
ple to deal with. Conversely, frictional-contact problems are
path dependent and highly non-linear because contact area
and contact-force intensities are unknown and vary during
the loading time. Many research articles proposed DSA in
linear and non-linear contact problems for path-dependent
and path-independent problems (Spivey and Tortorelli
1994; Antunez and Kleiber 1996), however Kim et al.
(2000a, b) were the first to propose RKPM based continu-
um shape DSA for contact problems of nearly incompress-
ible hyperelastic material with a rigid body with the objec-
tive of eliminating mesh distortion issue. They derived sen-
sitivities by taking material derivative of structural varia-
tional form and external load form. The proposed technique
employed to optimize the door seal geometry and the rigid
door for minimizing the gap opening with SQP algorithm
of commercial optimization tool DOT (Vanderplaats 1997).
The proposed work was further extended for 3D shape
DSA and optimization for a metal punch problem and die
design modification in solid extrusion problem (Kim et al.
2002). The sensitivities were computed by differentiating a
penalty-regularized contact variational equation with re-
spect to the shape design parameter. The technique
employed to optimize two dimensional geometry of engine
rubber gasket for minimizing the gap opening and die
design modifications in solid extrusion process for
minimizing process work without mesh distortion. In
another article, Kim et al. (2001a, b) proposed continuum
based shape DSA and optimization of hyperelastic structure
with multibody frictional contact using RKPM to obviate
mesh distortion issues with conventional FEM. Shape DSA
for hyperelastic material was developed using material de-
rivative of the variational equation while shape DSA for
multibody frictional contact was developed with penalty
method and modified Coulomb friction model. A numerical
case study of windshield wiper blade geometry and glass
was optimized for minimizing area.

Elastoplastic material behavior is often observed in
many industrial applications including aerospace, automo-
tive and metal forming processes which need attention to
design and analyze components for those practical applica-
tions. Many literature explained DSA for elastoplasticity
material behavior using FEM (Lee and Arora 1995; Park
and Choi 1996). However, Kim et al. (2000a, b) proposed
continuum based shape DSA using DDM and optimization
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for elastoplasticity with frictional-contact condition using
RKPM to alleviate mesh distortion issue associated with
FEM. The technique successfully employed to derive shape
DSA in metal punch problem in forming processes and to
optimize metal ring geometry compressed between two
rigid walls for minimizing area using SQP algorithm in
DOT. Another RKPM based shape DSA and optimization
approach was developed by Kim et al. (2001a, b) for metal
forming process i.e. a sheet metal stamping process where-
in die shape DSA and optimization was performed to ob-
tain desired shape of the workpiece by minimize spring-
back effect. They derived design sensitivities by combining
sizing DSA for a structural problem including a large de-
formation elastoplasticity and die shape DSA by taking the
derivative of the contact constraint with respect to the die
shape. The die shape optimization was successfully per-
formed without any remeshing using SQP in DOT to min-
imize the normal distance between the final shape of the
workpiece and the desired shape.

3.5 Structure dynamics problems

Dynamic response of structural system becomes significant
when there are time varying loads and/or boundary condi-
tions. The dynamic response of structural systems is obtain-
ed by direct numerical integration of dynamic equilibrium
equations using explicit or implicit integration schemes.
Several research articles proposed sizing, shape and mate-
rial parameter DSA and optimization in nonlinear transient
dynamics using discrete, semi-discrete or continuum equa-
tions with DDM and adjoint methods with numerical im-
plementation through nonlinear FEM (Stupkiewicz 2001;
Choi and Cho 1998; Arora and Dutta 1997; Cardoso and
Arora 1992; Kulkarni and Noor 1995). However, meshless
based continuum shape DSA and optimization of structural
transient dynamics for the finite deformation elastoplastic
materials under impact with a rigid surface was firstly pro-
posed by Kim and Choi (2001). They used RKPM for
nonlinear analysis and implicit Newmark method for
integration in the time domain. Sensitivities were derived
by material derivative approach with DDM and the vehicle
bumper geometry was optimized for minimizing its area
using SQP in DOT. Much later, Zhang et al. (2008) also
proposed discreteness based DSA using DDM for deriving
natural frequency and dynamic response sensitivities in
structural dynamic shape optimization using RKPM to cir-
cumvent issues like mesh distortion and successive
remeshing with traditional FEM. They considered design
derivative of RKPM shape functions for accurately comput-
ing sensitivities. The proposed technique successfully
employed in dynamic shape design optimization of the
arc geometry and the fillet geometry for minimizing area.

4 Critical observations

The objective of present section is to emphasize some critical
observations of the present review on meshless implementa-
tion in shape optimization which includes somemajor benefits
and some significant numerical aspects.

a) DSA in meshless environment

DSA plays crucial role in gradient-based optimization tech-
niques as it computes the rate of performance measure change
e.g. displacement, stress with respect to design variable alter-
ations by differentiating the structural expression with respect
to design variables. Accurate information of sensitivities im-
prove convergence rate of gradient-based optimization
techniques.

DSA needs careful considerations when performed in
meshless environment. Research on DSA in MMs for static
and dynamic problems can be found in (Zhang et al. 2008;
Zou et al. 2007; Kim et al. 2003; Bobaru andMukherjee 2001;
Grindeanu et al. 1998). In the aforementioned literatures, two
apparently different techniques are adopted for approximating
design sensitivities in MMs. These techniques are discussed
here separately:

1) Considering design derivative of meshless shape func-
tions ϕ (x) and its spatial derivatives ϕ,x(x) with respect
to design variable: The fundamental difference between
FEM and MMs lies in the way shape functions are
constructed. Unlike FEM, where shape functions are
generated locally with the aid of natural (local) co-or-
dinates, meshless shape functions are developed with
global co-ordinates of nodes which are related to shape
design variables in DSA which leads to the additional
requirement of shape function differentiation with re-
spect to design variables. Thus, design derivative of the
meshless shape functions and its spatial derivatives are
required to compute sensitivities in MMs.

For instance, shape DSA in RKPM framework, u: h xð Þ can be
computed by differentiating (11) with respect to design variable,

u ̇
h
xð Þ ¼ ∑

i∈Sn
ϕi xð Þ u ̇i þ ϕ i̇ xð Þ ui
� � ð19Þ

This formulation is much different from FEA wherein
shape functions are independent from design. In (19) the
first term includes displacement sensitivity u: i, while the

second term ϕ
:
i xð Þ represents shape function dependence

on design which is explicit in design velocity V(x). Design

derivative of RKPM shape function ϕ
:
i xð Þ can be comput-

ed by numerical procedure which results in the following
form of expression,
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ϕ ̇i xð Þ ¼ q ̇TH W
⌢ þ qTH ̇W

⌢ þ qTH W
⌢̇ ð20Þ

Similar approach can be adopted for deriving design deriva-
tive of spatial derivatives ϕ,x(x) of shape functions. Zhang et al.
(2008) derived dynamic sensitivities for natural frequency and
dynamic response, Kim et al. (2003) derived stress sensitivities
in linear elastic problems and Grindeanu et al. (1998) derived
stiffness and pressure sensitivities in hyperelastic problems con-
sidering design derivatives of shape functions.

2) Approximation through meshless shape functions: An al-
ternative technique for approximating shape design sen-
sitivities in MMs is through direct approximation using
meshless shape function, as (21), quite like any other
continuous unknown.

u: h xð Þ ¼ ∑
n

i¼1
ϕi xð Þ u:̂ ð21Þ

It must be noticed that u:̂ in (21) is an approximation of
nodal values of displacement sensitivities found from
discretized governing equation. Bobaru and Mukherjee
(2001) and Zou et al. (2007) adopted this approach for deriv-
ing sensitivities in linear elastic problems.

Comparing two techniques i.e. (19) with (21), it appears that
second approach is more convenient in its implementation as it
avoids differentiation of shape functions with respect to design
variables, while the first approach yields more consistent nu-
merical results.

b) Improved sensitivities, reduced computational efforts and
ease of imposing EBCs with coupled FEM-MM:

As sensitivities are derivatives of structural measures,
higher order continuity of displacement and stress fields in
meshless techniques providemore accurate sensitivities which
will improve the convergence rate of structural optimization
process. It was observed that sensitivities calculated with EFG
were more accurate than FEM (Lacroix and Bouillard 2003).
However, MMs have proved computationally expensive due
to complex shape functions involving matrix inversions (5),
special techniques to impose EBCs and higher order numeri-
cal integration schemes for reducing integration errors. Hence,
it is highly desirable to use a coupled approach i.e. FEM-MM
to retain advantages of both the techniques and suppress their
drawbacks in structural optimization problems. The coupled
approach reduces computational effort and time because MM
is employed only over a part of domain where better
approximation is needed and the rest of the domain is
modeled with FEM. This approach also alleviates issue of
imposing EBCs in MM and improves computational
performance of the technique. Lacroix and Bouillard (2003)
and Gong et al. (2009) employed coupled FE-EFG approach

for DSA and shape optimization of two dimensional linear
elastic structures.

c) Numerical integration with background cells/mesh:

In MMs, unlike FEM, field variable approximation and do-
main integration are independent from each other. Meshless
shape functions are developed entirely on a set of nodes
scattered in the domain, while integration is usually performed
by classical Gauss quadrature with background mesh/cells.
Here, approximation being independent from integration, dis-
tortion of integration cells and their deteriorated aspect ratios do
not affect the solution accuracy in MMs as distorted mesh does
in FEM solutions. However, integration cells in MMs have to
be convex and their jacobian must remain positive for success-
ful Gaussian integration by avoiding singularities.

During shape optimization based on MMs, the bound-
ary nodes are allowed to move along with interior nodes
for accommodating shape variations which leads to dis-
tortion of integration cells in MMs. Such conditions are
acceptable in MMs, as discussed above, and don’t impair
the solution accuracy (Bobaru and Mukherjee 2002;
Bobaru and Rachakonda 2004a, b).

d) Numerical integration with PUQ: An alternative numeri-
cal integration technique based on PUQ in MMs (see (14)
and (15)) avoids use of background cells and results in
truly meshless formulation since it uses partition of unity
property of meshless shape functions and its support
domains as quadrature cells. The technique suits to shape
optimization problems because PUQ patches generated
from the support domains of meshless shape functions
would be able to adjust automatically with continuously
changing geometry and corresponding node positions
during shape optimization process and thus provides
adaptivity feature. Zhang et al. (2005) and Zou et al.
(2007) employed truly meshless approach with PUQ inte-
gration technique for solving two dimensional linear elastic
shape optimization problems.

e) Mesh topology: One of the major concern with FEM as a
structural analysis tool in gradient-based shape optimiza-
tion is the requirement of maintaining the same mesh to-
pology for initial and perturbed geometry for computing
design sensitivities and stable optimization process. MMs
have proved much useful in those cases due to absence of
mesh geometry modifications and high degree of continu-
ity in the results obtained for displacement and stress fields
(Lacroix and Bouillard 2003; Grindeanu et al. 1999)

f) Effect of node distribution: As mentioned earlier, conven-
tional grid-based techniques need type ‘r’ refinement for
minimizing computational errors of structural analysis. In
contrast, solution accuracy in MMs is rather insensitive to
node distribution within the domain. Kim et al. (2003)
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compared RKPM based shape optimization results for reg-
ular and irregular node distribution and found them similar.

g) Better solutions in terms of geometry and accuracy: In
shape optimization techniques based onMMs, nodemove-
ments to accommodate shape variations are not restricted
to maintain some specific aspect ratios of integration cells
as in case of classical FEM based shape optimization tech-
niques. Distorted integration cells (with positive Jacobian)
inMMs do not impair the solution accuracywhile distorted
mesh in FEM results in poor solution accuracy. This flex-
ibility in MMs results in better shape designs at the end of
shape optimization process which are much different from
the original shape and possibly missed by FEM (Bobaru
and Mukherjee 2002; Bobaru and Rachakonda 2004a, b)

Improved solution accuracy in terms of higher order conti-
nuity of displacement and stress field due to globally contin-
uous meshless shape functions is another major gain of MMs
which avoids costly and not always accurate post processing
techniques. The continuous stress field obtained with MMs
overcomes the difficulty of imposing point stress constraints
in shape optimization as observed with conventional FEM.
(Bobaru and Mukherjee 2001).

h) Mesh distortion and remeshing: Solution accuracy in
classical FEM is highly influenced by quality mesh i.e.
quality of elements. Aspect ratio, Jacobian ratio, maxi-
mum and minimum edge and face angle are some of the
important parameters for judging quality of elements in
mesh. In FEM based shape optimization, though the ini-
tial mesh quality is good enough but successive shape
variations may not be accommodated without distorting
the initial mesh which will impair the solution accuracy if
successive remeshing is not performed. Thus, remeshing
becomes unavoidable in grid-based techniques in shape
optimization. In contrast, MMs do not use elements for
approximating field variables and hence they eliminate
mesh distortion and remeshing issues completely in shape
optimization process.

5 Future research:

This section attempts to provide promising future research
directions in the field of shape optimization with the emphasis
on role of MMs.

5.1 Coupled approach and parallel implementation

It has been noticed that meshless implementation yields com-
petitive results in different areas of engineering research, in-
cluding structural shape optimization, but the major barrier is

their higher computational cost. Again, shape optimization
needs repetitive structural analysis; hence, it is highly desir-
able to reduce the computational cost of meshless analysis by
various means. Use of coupled technique i.e. FEM-MM has
attracted much attention by researchers to retain potential ben-
efits of both these techniques and to remove their drawbacks.
In shape optimization, coupled approach improves accuracy
of design sensitivities and reduces computational efforts and
time, eliminates mesh distortion and alleviates the issue of
imposing EBCs in MMs (Lacroix and Bouillard 2003; Gong
et al. 2009). Accordingly; coupled approach would be more
rational in shape optimization and there exists ample opportu-
nities for future research in this area. Conversely, many re-
searchers have proposed parallel implementation of MMs to
improve its computational efficiency in solving real and large
scale engineering problems (Karatarakis et al. 2013; Singh
2004; Danielson et al. 2000). However, to the best of our
knowledge, for shape optimization application, parallel imple-
mentation of MMs has remained unexplored.

5.2 Three dimensional structures with ‘truly meshless’
formulation

Most of the research in shape optimization field with MMs
deals with two dimensional structural shape optimization and
employs background cells/mesh for numerical integration
wherein positive Jacobians are essential for successful
Gaussian integration. For three dimensional structural optimi-
zation problems, construction of integration zones/mesh will
become more lengthy and tedious task in meshfree analysis.
In this case, it is highly desirable to develop completely
meshless formulation by adopting nodal integration techniques
like SCNI or PUQ based technique which will eliminate back-
ground integration zones/mesh. In this context, Grindeanu et al.
(2002) employed a CAD tool i.e. Pro/Engineer for defining
integration zones in linear elastic three dimensional problem
of elastic beam while Kim et al. (2003) developed ‘truly
meshless’ RKPM based shape optimization technique with
nodal integration for optimizing linear elastic three dimensional
road arm geometry. It will be of great practical significance to
develop ‘truly meshless’ formulation based shape DSA and
optimization technique for three dimensional problems involv-
ing dynamic conditions and non-linear behavior.

6 Conclusion

The field of structural shape optimization is fairly broad, which
makes it infeasible to discuss many other appealing areas of this
field at the same time. The scope of the present review article is
kept restricted to parametric shape optimization techniques
based on MMs, their associated numerical aspects and their
benefits in shape optimization. As the article emphasizes role
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of structural analysis technique in shape optimization, different
grid-based techniques i.e. FEM, BEM, FG FEM and Eulerian
grid and MMs were discussed for their usefulness in shape
optimization process followed by review of EFG and RKPM
based shape optimization techniques in problems of diverse
fields. Moreover, the article presents some critical observations
based on the review of meshless implementation in shape op-
timization which include meshless shape DSA, numerical inte-
gration with background cells and PUQ technique and benefits
of coupled FEM-MM approach in shape optimization.

This review brings to light the potential benefits of MMs in
structural shape optimization field which are as follows:

a) Mesh distortion and remeshing eliminated completely even
in large shape changes during the optimization process

b) Higher order continuity of field variable approximation in
MMs yield improved sensitivity analysis and higher con-
vergence rate of the optimization process

c) Solution accuracy in MMs is much less sensitive to node
positions in the domain which eliminates type-r refine-
ment for minimizing computational errors

d) MMs do not exhibit any locking while dealing with near
incompressible material model

e) MMs produce better solution accuracy than FEM for sim-
ilar number of degrees of freedom in the problem domain

f) Due to inbuilt flexibility and versatility, MMs generate
optimum shapes even through much simple initial geom-
etries or poor guesses.

In spite of the increased computational burden with
meshless implementation, aforementioned benefits may at-
tract researchers’ attention for future work in the field of shape
optimization using MMs.
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