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Abstract Flow machines are very important to industry,
being widely used on various processes. Thus, perfor-
mance improvements are relevant and can be achieved by
using topology optimization methods. In particular, this
work aims to develop a topological derivative formulation
to design radial flow machine rotors by considering lam-
inar flow. Based on the concept of traditional topology
optimization approaches, in the adopted topological deriva-
tive formulation, solid or fluid material is distributed at
each point of the domain. This is achieved by combin-
ing Navier–Stokes equations on a rotary referential with
Darcy’s law equations. This strategy allows for working
in a fixed computational domain, which leads to a topol-
ogy design algorithm of remarkably simple computational
implementation. In the optimization problem formulation,
a multi-objective function is defined, aiming to minimize
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the energy dissipation, vorticity and power considering a
volume constraint. The constrained optimization problem
is rewritten in the form of an unconstrained optimization
problem by using the Augmented Lagrangian formalism.
The resulting multi-objective shape functional is then min-
imized with help of the topological derivative concept. In
the context of this article, the topological derivative repre-
sents the exact sensitivity with respect to the nucleation of
an inclusion within the design domain and the obtained ana-
lytical (closed) formula can be evaluated through a simple
post processing of the solutions to the direct and adjoints
problems. Both mentioned features allow for obtaining the
optimized designs in few iterations by using a minimal num-
ber of user defined algorithm parameters. All equations and
the derived continuous adjoint equations are solved through
finite element method. As a result, two-dimensional designs
of flow machine rotors are obtained by using this method-
ology. Their performance is analyzed by evaluating velocity
and pressure distributions inside rotor.

Keywords Topological derivative · Laminar flow machine
rotor design · Topology optimization · Navier-Stokes ·
Darcy’s law

1 Introduction

Radial Flow Machines are widely spread over the industry,
being used in several applications from large scale turbines
to small scale pumps.

The performance and robustness improvements of these
machines depend on all parts of the flow machine, such
as the rotor, internal valves, bearings, nozzle and others.
However, it is known that the rotor presents the largest influ-
ence on the overall performance. In an experimental work
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(Yu et al. 2000), estimated losses in the impeller to be
about 35% of total losses. There are other design parame-
ters, such as blade number, blade outlet angle and impeller
outlet diameter, that affect flow machine performance.

In the case of number of blades the intuition suggests
that a higher number of blades increases the fluid interaction
and so it would promote a higher energy transmission. In
fact, the pump pressure head rises as the number of blades
increases, however, the presence of too many blades may
cause an increase in the blockage and skin friction in the
impeller passage decreasing the efficiency. Notwithstand-
ing, a method to increase the efficiency is the addiction of
splitters between the blades (Gölcü et al. 2006). Thus, the
rotor design is an important step of the machine conception.

Flow machine rotor optimization comprehends from
material selection to shape and position definition of the
blades. The performance enhancement of these rotors can
be achieved by a try-and-error approach, involving a num-
ber of sequential numerical analysis where the parameters
of the rotor are manually changed at each step (Jafarzadeh
et al. 2011). However, this methodology is highly time con-
suming and does not result, necessarily, in an performance
optimization. Blade shape optimization has been widely
studied to design flow machine rotors. A initial shape is
given and an algorithm performs local shape changes in
order to improve some characteristic based on the flow
around the blade (Lee et al. 2011; Hansen 2007; Casas et al.
2006). In the literature a number of works have applied
different optimization techniques to design these machines,
obtaining significant efficiency gains (Wen-Guang 2011;
Derakhshan et al. 2013).

The application of topology optimization methods for
viscous fluid flow problems is an active area of research.
The objective of optimization is to distribute fluid or solid
in a design domain to extremize a defined objective func-
tion subjected to some constraints. Following this way, we
can find many works in the literature that apply topology
optimization methods based on a material model defini-
tion to perform optimization of fluid flow channels. We
can cite Borrvall and Petersson (2003) where the dissipated
power is minimized in a flow channel by considering a
2D Brinkman medium. The flow modelling is restricted to
the incompressible Stokes flow, and a porous flow model
is introduced to relax the optimization problem from an
integer (black–white) problem, where either fluid or solid
property is allowed in an element, to a continuous problem
where a continuous (grey) permeability design variable for
each element is defined. Thus, in the optimization problem,
flow and (almost) non-flow regions are obtained by allow-
ing interpolation between the upper and lower values of the
permeability (Gersborg-Hansen 2003, 2007). A first work
applying the topology optimization method to design flow
machine rotors has been developed in Romero and Silva

(2014), where the fluid flow in the machine is modeled as
Navier-Stokes flow with the addition of a rotary reference
system, arising the effects of Centrifugal force and Corio-
lis force. In their work diverse configurations are proposed
for the machine rotor, exploring the influence of the initial
domain and the effects of changes in the boundary condi-
tions. As a result non-intuitive geometries, that differs from
traditional geometries, are obtained.

Another general approach to deal with shape and topol-
ogy optimization design is based on the topological deriva-
tive (Sokołowski and Żochowski 1999). In fact, this rela-
tively new concept represents the first term of the asymp-
totic expansion of a given shape functional with respect to
the small parameter which measures the size of a domain
perturbation, such as hole, inclusion, source-term and crack.
There are two main possible constructions (Novotny and
Sokołowski 2013). The first one concerns singular domain
perturbations associated to nucleation of holes. The sec-
ond case concerns regular perturbation of the differential
operator associated to nucleation of inclusions. The topo-
logical asymptotic analysis has been successfully applied in
the treatment of many problems in engineering. In the field
of fluid flow channel design, a first work was published in
Guillaume and Idris (2004), where the topological sensi-
tivity analysis with respect to the insertion of a small hole
or obstacle inside a domain has been used to perform the
shape optimization considering Stokes equations. This work
was extended in Amstutz (2005) to Navier-Stokes equations
considering an incompressible fluid and a no-slip condition
prescribed on the boundary of an arbitrary shaped obstacle.
See further improvement in Guillaume and Hassine (2008).
For the theoretical development of shape and topology opti-
mization in the context of compressible Navier-Stokes see,
for instance, the book by Plotnikov and Sokołowski (2012).
These previous works are based on the topological deriva-
tive with respect to singular domain perturbation. That is,
the topology is obtained by nucleating and/or removing
holes in the fluid domain, which may create numerical diffi-
culties to deal with the boundary conditions on these holes.
Thus, a recent work Sá et al. (2016) proposed a topological
derivative formulation for fluid flow channel design based
on the concept of traditional topology optimization formu-
lations where solid or fluid material is distributed at each
point of the domain. This is achieved by combining Stokes
or Navier–Stokes equations with Darcy’s law as first pro-
posed in Borrvall and Petersson (2003). By using this idea,
the problem of dealing with the hole boundary conditions
in topological derivatives during the optimization process
is solved. In fact, the asymptotic expansion is performed
with respect to regular domain perturbation associated with
the nucleation of inclusions instead of inserting or remov-
ing holes in the fluid domain. As a result the computational
implementation of the topology design algorithm becomes
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remarkably simple. Finally, in Duan and Li (2015) the
topological derivative is combined with standard level-set
method for the optimal shape design of Stokes flow.

Thus, this work will focus on developing a topological
derivative formulation to design the radial flow machine
rotor by considering laminar flow. Despite our method
is based on the material model formulation used in the
standard topology optimization method, it is free of inter-
polation strategies. In fact, the steepest-decent direction
associated with the topological derivative is continuous
everywhere - including the interface solid/fluid - and does
not require any interpolation scheme to be evaluated, so
that the grey density scale is here naturally avoided. In
addition, the topological derivative represents the exact sen-
sitivity with respect to the nucleation of an inclusion within
the design domain and the obtained analytical (closed) for-
mula can be evaluated through a simple post-processing of
the direct and adjoint solutions. All these features together
leads to a very simple and robust topology design algorithm,
where the topologies with well-defined solid/fluid interfaces
are obtained in few iterations, with a minimal number of
user defined algorithm parameters.

The rotor optimization is obtained by optimizing the
channel shape between two of its blades. Thus, the numer-
ical analysis considers the flow field between two blades
of a rotor without considering the influence of the volute.
Losses due to the interaction between the impeller and the
volute are related to fluid leakage occurring when part of
the fluid exits the impeller outlet and returns to the inlet of
the impeller through the opening in the volute reducing the
pump efficiency. This is a three-dimensional phenomenon
and since in this work a two-dimensional model is adopted,
the axial velocity component can be neglected in compar-
ison to the radial and tangential components, thus, these
specific losses cannot be taken into account. It is assumed
that the flow pattern in all sectors of the impeller is qualita-
tively similar to each other which implies that the interaction
between the volute and the flow inside the impeller chan-
nel may not be significant at the operating point. Based on
previous work Romero and Silva (2014), a general multi-
objective is defined by involving the minimization of the
energy dissipation, the minimization of vorticity, and min-
imization or maximization of power in the case of pump
or turbine design, respectively, considering a volume con-
straint.

Following the original ideas presented in Sá et al. (2016),
in the adopted topological derivative formulation, solid or
fluid material is distributed at each point of the domain to
optimize the cost function and satisfy constraints by com-
bining Navier–Stokes equations with Darcy’s law equations.
These equations and the derived continuous adjoint equa-
tions are solved through finite element method. In contrast
to the work Sá et al. (2016) where only the energy is

considered in a stationary frame, here a multi-objective cost
function taking into account energy, vorticity and power
is considered on a rotary referential. In addition, the con-
strained optimization problem is implemented in the form
of an unconstrained optimization problem by using the Aug-
mented Lagrangian formalism. As a result, two-dimensional
(2D) designs of rotors are presented and compared.

The paper is organized as follows. In Section 2, the lam-
inar flow machine rotor design problem is defined and the
topological derivatives with respect to the nucleation of a
circular inclusion of the energy, vorticity and power shape
functionals associated with the Navier-Stokes systems com-
bined with Darcy’s law equation are obtained in their closed
form. In Section 3, the topology optimization algorithm
is described and in Section 4, its numerical implementa-
tion is presented. In Section 5, some numerical results of
laminar flow machine rotor designs obtained by using topo-
logical derivatives are presented. Finally, in Section 6, some
concluding remarks and perspectives are inferred.

2 Topology optimization problem

Let us consider an open and bounded domain D ⊂ R2

with Lipschitz boundary ∂D. The domain D is split into two
subdomains D \ � and �, with � ⊂ D. In addition, the
boundary ∂D is also split into two disjoint boundaries �in

and �out, such that ∂D = �in ∪ �out. The main constitu-
tive equation is given by the Navier-Stokes system, stated
as: Find (u, p) ∈ U × P , such that∫

D
μ(∇u)s : (∇v)s +

∫
D

ρ(∇u)u · v +
∫
D

αu · v +
∫
D

2ρ(ω × u) · v −
∫
D

p div(v) =
∫
D

b · v ∀v ∈ V ,

∫
D

q div(u) = 0 ∀q ∈ P . (1)

The set U and the space V are given by

U = {ϕ ∈ H 1(D;R2) : div(ϕ) = 0, ϕ|�in
= u0} , (2)

V = {ϕ ∈ H 1(D;R2) : div(ϕ) = 0, ϕ|�in
= 0} , (3)

whereas P is defined as

P = {ϕ ∈ L2(D) :
∫
D

ϕ = 0} . (4)

In addition, b = ρ(b0 − ω × (ω × r)) and

(∇ϕ)s = 1

2
(∇ϕ + (∇ϕ)�). (5)

The coefficient α is the inverse permeability. The viscos-
ity μ and the mass density ρ are assumed to be constant
throughout the domain D. The angular velocity ω is also
constant. The vector r is perpendicular to the axis of rota-
tion. The source b0 is a body force, 2ρ(ω×u) is the Coriolis
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acceleration and ω × (ω × r) is the centripetal accelera-
tion. Therefore, u represents the relative velocity field of the
rotating system and p the pressure. In particular, the inverse
permeability α = α(x) is written as

α(x) :=
{

αU if x ∈ D \ �

αL if x ∈ �
, (6)

where αU and αL are the upper and lower limits for the
inverse permeability. Thus, D \ � and � are used to repre-
sent the solid and fluid phases, respectively. See sketch in
Fig. 1.

The optimization problem we are dealing with is stated
as follows:{

Minimize
�⊂D

J (u),

Subject to |�| ≤ M,
(7)

where M represents a given amount of material and the
shape functional J (u) is defined as

J (u)=we log(E(u))+wv log(V (u)) ± wp log(P (u)), (8)

with ± used to denote minimization/maximization of the
power P (u). The log function is used to reduce the differ-
ence in magnitude order between the objective functions.

The constrained optimization problem (7) can be re-
written in the form of an unconstrained optimization prob-
lem by using the Augmented Lagrangian formalism adapted
to the context of topological derivative-based topology opti-
mization method by Amstutz (2011b), namely:

Minimize
�⊂D

F�(u) := J (u) + λ1h
+ + λ2

2
(h+)2, (9)

where λ1 and λ2 are positive parameters and the function
h+ is defined as

h+ := max{h, −λ1

λ2
} , (10)

Fig. 1 Rotor sketch

with function h given by

h := |�|
M

− 1 . (11)

For the particular case associated with volume constraint in
the form |�| ≤ M , see Campeão et al. (2014).

Some terms in the above minimization problem still
require explanations. The shape functional J (u) takes into
account the contributions of the energy E(u), vorticity V (u)

and power P(u), so that the parameters we, wv and wp, with
we+wv +wp = 1, are the weighting coefficients associated
with energy, vorticity and power, respectively. In addition,
the quantities E(u), V (u) and P(u) are respectively defined
as Romero and Silva (2014)

E(u) =
∫
D

μ(∇u)s : (∇u)s +
∫
D

α‖u‖2 , (12)

V (u) =
∫
D

‖rot(u)‖2 , (13)

P(u) =
∫

�out

(ρ(r × u) · ω)(u · n)

+
∫

�out

(ρ(r × ω × r) · ω)(u · n) , (14)

where u is solution to the Navier-Stokes system stated in
(1) and ‖ϕ‖ := √

ϕ · ϕ is used to denote the point-wise
Euclidean norm of the vector function ϕ.

In order to simplify further analysis, three adjoint prob-
lems are introduced. The first one is stated as: Find
(uE, pE) ∈ V × P , such that

∫
D

μ(∇uE)s : (∇v)s +
∫
D

ρ((∇u)�uE − (∇uE)u) · v +
∫
D

αuE · v −
∫
D

2ρ(ω × uE) · v +
∫

�out

(u · n) uE · v −
∫
D

pE div(v) = 2
∫
D

μ(∇u)s : (∇v)s + 2
∫
D

αu · v ∀v ∈ V ,

∫
D

q div(uE) = 0 ∀q ∈ P , (15)

The second adjoint problem reads: Find (uV , pV ) ∈ V×P ,
such that

∫
D

μ(∇uV )s : (∇v)s +
∫
D

ρ((∇u)�uV − (∇uV )u) · v +
∫
D

αuV · v −
∫
D

2ρ(ω × uV ) · v +
∫

�out

(u · n) uV · v −
∫
D

pV div(v) = 2
∫
D

rot(u) · rot(v) ∀v ∈ V ,

∫
D

q div(uV ) = 0 ∀q ∈ P , (16)
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Finally, the third adjoint problem is stated as: Find
(uP , pP ) ∈ V × P , such that

∫
D

μ(∇uP )s : (∇v)s +
∫
D

ρ((∇u)�uP − (∇uP )u) · v +
∫
D

αuP · v −
∫
D

2ρ(ω × uP ) · v +
∫

�out

(u · n) uP · v −
∫
D

pP div(v) =
∫

�out

(ρ(r × u) · ω)n · v +
∫

�out

(ρ(r × ω × r) · ω)n · v +
∫

�out

(ρ(ω × r) ⊗ u)n · v ∀v ∈ V ,

∫
D

q div(uP ) = 0 ∀q ∈ P , (17)

According to (1), on the inlet �in the velocity is given by
u0 and on the outlet �out the resulting pressure is zero (see
Fig. 1). Note that these conditions induce a homogenous
Dirichlet boundary condition on �in and a Robin bound-
ary condition on �out in the adjoint equations. In particular,
the Robin boundary conditions on �out comes out from the
variational forms (15), (16) and (17), which are respectively
given by

μ(∇uE)s + (u · n)uE = 2 μ(∇u)sn , (18)

μ(∇uV )s + (u · n)uV = 2 rot(u) × n , (19)

μ(∇uP )s + (u · n)uP = (ρ(r × u) · ω)n +
(ρ(r × ω × r) · ω)n + (ρ(ω × r) ⊗ u)n . (20)

The topological derivative of the multi-objective shape
functional F�(u) with respect to the nucleation of a small
inclusion with a contrast on the inverse permeability α is
given by a sum of the topological derivatives of each term
in (9), namely

DT F� = DT J (x) + k(x) max{0, λ1 + λ2 h}, ∀x ∈ D .

(21)

where DT J (x) = DT E(x)+DT V (x)+DT P (x). In partic-
ular, the topological derivatives associated with the energy
DT E(x), vorticity DT V (x) and power DT P (x) can be
deduced following exact the same steps as presented in the
paper Sá et al. (2016). They are given, respectively, by

DT E(x) = w

eu(x) · (uE(x) − u(x)) , (22)

DT V (x) = w

vu(x) · uV (x) , (23)

DT P (x) = ±w

pu(x) · uP (x) , (24)

where the weights w

e , w


v and w

p are defined as

w

e = k(x)we

αU − αL

E(u)
, (25)

w

v = k(x)wv

αU − αL

V (u)
, (26)

w

p = k(x)wp

αU − αL

P (u)
, (27)

with the signal function k(x) defined as

k(x) :=
{ +1 if x ∈ D \ �

−1 if x ∈ �
. (28)

Finally, u is solution to the direct problem (1), whereas uE ,
uV and uP are respectively solutions to the adjoint prob-
lems (15), (16) and (17), all of them associated with the
unperturbed domain D.

3 Topology optimization algorithm

For the sake of completeness, the topology optimization
algorithm proposed in Amstutz and Andrȧ (2006) is pre-
sented. Its basic idea consists in achieve a local optimality
condition for the minimization problem (9), written in terms
of the topological derivative and a level-set domain repre-
sentation function. Therefore, the fluid � as well as the solid
D \ � are characterized by a level-set function ψ ∈ L2(D)

of the form:

� = {ψ(x) < 0, for x ∈ D} (29)

D \ � = {ψ(x) > 0, for x ∈ D}, (30)

where ψ vanishes on the interface ∂�. A local optimal-
ity condition for problem (9), under the considered class
of domain perturbation given by circular inclusions, can be
stated as (Amstutz 2011a)

DT F�
(x) > 0 ∀x ∈ D . (31)

where �
 is a local optimizer for problem (9). Therefore, let
us define the quantity

g(x) :=
{ −DT F�(x), if ψ(x) < 0,

+DT F�(x), if ψ(x) > 0,
(32)

allowing for rewrite the condition (31) in the following
equivalent form{

g(x) < 0, if ψ(x) < 0,

g(x) > 0, if ψ(x) > 0.
(33)

We observe that (33) is satisfied whenever the quantity g

coincides with the level-set function ψ up to a strictly pos-
itive number, namely ∃ τ > 0 : g = τψ , or equivalently
(Amstutz 2011a)

θ := arccos

[ 〈g, ψ〉L2(D)

‖g‖L2(D)‖ψ‖L2(D)

]
= 0, (34)
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which shall be used as optimality condition in the topology
design algorithm, where θ is the angle between the functions
g and ψ in L2(D).

Let us now explain the algorithm. We start by choosing
an initial level-set function ψ0 ∈ L2(D). In a generic itera-
tion n, we compute function gn associated with the level-set
function ψn ∈ L2(D). In order to evaluate gn according to
(21), it is necessary to solve (1) and then the corresponding
adjoint systems (15), (16) and (17) to obtain un, un

E , un
V and

un
P , all of them associated with ψn. Thus, the new level-set

function ψn+1 is updated according to the following linear
combination between the functions gn and ψn

ψ0 ∈ L2(D),

ψn+1 = 1

sin θn

[
sin((1−κ)θn)ψn+sin(κθn)

gn

‖gn‖L2(D)

]
, (35)

where θn is the angle between gn and ψn, and κ is a step size
determined by a line-search performed in order to decrease
the value of the objective function Jn := F�n(un) associ-
ated with ψn, where �n is used to denote the region in D
filled by the fluid and un is solution to the Navier-Stokes
(1) system. The line-search algorithm reduces the value of

Fig. 2 Flow chart of the topological derivative algorithm

Fig. 3 Design domain and boundary conditions

κ until a lower value for the objective function is achieved,
namely Jn+1 < Jn, where Jn+1 := F�n+1(un+1). The
optimization process ends when the condition θn ≤ εθ is sat-
isfied in some iteration, where εθ is a given small numerical
tolerance. In particular, we can choose

ψ0 ∈ S = {ϕ ∈ L2(D) : ‖ϕ‖L2(D) = 1}, (36)

and by construction ψn+1 ∈ S, ∀n ∈ N. If at some itera-
tion n the line-search step size κ is found to be smaller then
a given numerical tolerance εκ > 0 and the optimality con-
dition is not satisfied, namely θn > εθ , then a uniform mesh
refinement of the hold all domain D is carried out and the
iterative process is continued.

Finally, the parameter λ2, which is kept fixed throughout
the optimization procedure, is used to update the parameter
λ1 according to the following rule:

λn+1
1 = max[0, λn

1 + λ2h
n] ∀n ∈ N , (37)

where λn
1 and hn are the values of the parameter λ1 and the

function h evaluated at the iteration n.
Currently, the algorithm solves the governing equations

(Navier-Stokes) every function evaluation which is not so
efficient if a nonlinear governing equation (such as Navier-
Stokes) is considered. This limits the application of this
algorithm for large computational problems. Thus, as a
future work, it can be implemented a onestep approach
where the governing equations and line search would be
solved simultaneously (Othmer 2008; Evgrafov 2015). The
optimization algorithm is illustrated in the flow chart from
Fig. 2.

Fig. 4 Involute blade defined for comparison



Design optimization of laminar flow machine rotors based on the topological derivative concept 1019

(a)

(b)

Fig. 5 Involute blade reference: (a) Relative Velocity Field, (b) Pres-
sure Field

4 Numerical implementation

The FEniCS environment and its Python interface are used
herein. The FEniCS system (Logg et al. 2012) is a free col-
lection of software components for automating the solution
of PDEs by using the finite element method. It has as input
the weak formulation of the problem, in a language very
similar to the math syntax. It is thus, necessary to use a soft-
ware capable of interpreting this high-level language and
to transform it into a numerical routine. This interpretation
software is the FEniCS Form Compiler (FFC), that receives
a discrete form of the weak variational equation given in
Unified Form Language (UFL) (Alnæs et al. 2014), simi-
lar to the mathematical formulation, and generates a C++
code of the finite element assembly in the format of the Uni-
fied Form-Assembly Code (UFC) (Alnaes et al. 2009). This
assembly is an optimised low-level code that evaluates the
local element tensors.

The local tensors are used by DOLFIN (Logg and Wells
2010), a library that handles the communication between
all the FEniCS modules. This library also provides various
data structures to interface meshes, function spaces, func-
tions and solvers. The FEniCS environment allows using
many linear algebra backends, such as PETSc used in this
work.

To solve the Navier-Stokes problem, the FEniCS system
offers pre-installed support to methods such as General-
ized Minimal RESidual (GMRES). However, some external
solvers can be used, and the MUltifrontal Massively Par-
allel Sparse direct solver (MUMPS) (Amestoy et al. 2001)
was chosen here because it offers features such as input of
the matrix in assembled format (distributed or centralized),
error analysis and parallel analysis.

5 Numerical results

The topology optimization method is used by considering
only the flow field between blades, without considering
the volute influence. Even though the fluid in a real flow
machine is three-dimensional, for the case of radial cen-
trifugal impellers, the axial velocity component can be
neglected in comparison to the radial and tangential com-
ponents, hence the flow path can be approximated as a
two-dimensional problem (Romero and Silva 2014).

The rotor is modelled as a half-circumference, given
that the it has a radial symmetry, with the blade geome-
try being repeated in a radial pattern. Thus, for all cases
shown in next sections, the design domain and boundary
conditions presented in Fig. 3 are used. The finite element
problem is implemented by using triangular Taylor-Hood
elements, which have a quadratic degree of interpolation for
the velocity and linear degree for the pressure. Arbitrary
dimensions are used to define the domain, thus, the domain
D has an inner radius of 0.4 and an outer radius of 1.0. The
fluid properties used are density equal to 1.0 and viscos-
ity equal to 0.1. The angular velocity ω used is 500rpm,
unless specified other value. The external force b0 is equal
to zero (1). According to Borrvall and Petersson (2003),
the inverse permeability α is set as αU = 2.5μ/0.012 and
αL = 2.5μ/1002 for all the examples. Note that the limit
cases αL → 0 and αU → ∞ have to be justified. Since it

Fig. 6 Topology optimization
results for energy dissipation
functional considering as initial
guess: (a) Solid domain, (b)
Straight blade and (c) Involute
blade

(a) (b) (c)
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(a) (b) (c)

Fig. 7 Corresponding relative velocity fields for topology optimization results of Fig. 6

is out of the scope of this work, we refer to Amstutz et al.
(2014), where these limit cases are discussed together with
the concept of degenerated topological derivative.

Finally, the thresholds for the external topology opti-
mization and internal line search loops, described in the
algorithm of Section 3, are respectively given by εθ = 0.1◦
and εκ = 10−4. These parameters were fixed after some tri-
als allowing to represent a good compromise between the
quality of the results and the computational cost. The vol-
ume ratio is defined as the fraction of the fluid volume
relative to the total domain volume, namely |�|/|D|.

The results presented in the following sections are com-
puted with a Linux machine with an Intel Core i7 (3.7GHz)
processor and 64Gb of memory.

Different initial guesses are used for the optimization
process such as: a domain entirely fluid, a domain com-
posed of solid material, a straight blade and an involute
blade. However, for effect of comparison the involute blade
is used as a benchmark, in order to evaluate the objective
functions values (energy dissipation, vorticity and power).
The involute blade is shown in Fig. 4, in which the gray
domain is fluid and the black region is solid. The corre-
sponding velocity and pressure fields are shown in Fig. 5,
respectively.

5.1 Energy dissipation

The first set of results consider the pump optimization and the
energy dissipation functional for minimization, i.e., we = 1.0

and focus on the difference between the initial guesses: an
entire solid, a straight blade and an involute blade. The rota-
tion of 500 [rpm] is used. The final topologies are shown in
Fig. 6. The corresponding velocity fields for the optimized
blades are shown in Fig. 7 and the corresponding entire
rotors are shown in Fig. 8. The pressure fields are quite simi-
lar to the field shown in Fig. 5, thus, they are not shown. The
sequential steps of the optimization for the straight blade
case is illustrated in Fig. 9, and the respective convergence
curve is shown in Fig. 10. The convergence curves for other
results are similar to these curves, thus, they are not shown.
This case took 5 hours to complete. The starting mesh has
3,000 elements and it is refined until 72,000 elements as
the algorithm progresses. In addition, 221 FEM system and
76 adjoint computations are performed. The values of the
objective functions are shown in Table 1.

The small peaks in the convergence curve occur when
the mesh is refined by the algorithm during the line-search
operation. During the refinement, the interpolator, which
defines the material distribution for the new mesh, deforms
the topology, causing a deterioration in the functional value
and an increase of θ value for convergence.

The results from Fig. 6 are quite similar to the results
presented in Romero and Silva (2014). These results also
shown a decrease in the vorticity value, even though it is
not included in the objective function. The power value has
slightly increased for all of them. The result from Fig. 6b
presents a blade splitter concept to increase the efficiency
which has already been realized in Gölcü et al. (2006).

Fig. 8 Corresponding entire
rotors for topology optimization
results of Fig. 6

(a) (b) (c)
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Table 1 Functional values results by considering a solid and fluid ini-
tial guesses for energy dissipation functional and rotation of 500[rpm]

Reference Initial Guess

Involute blade Solid Straight blade Involute blade

Fig. 4 Fig. 6a Fig. 6b Fig. 6c

|�|/|D| 0.29 0.30 0.28 0.30

E(u) 5.19 2.83 3.32 3.30

V (u) 71.62 39.1 29.16 52.07

P (u) 821.56 843.75 844.61 829.88

To reduce the energy dissipation the optimization tries to
reduce the flow path between inlet and outlet. This happens
in results shown in Fig. 6a and b and it is less pronounced
in Fig. 6c, however, the fluid path for Fig. 6c is still smaller
than the involute blade reference. The short channel also
contributes to reduce the vorticity, and this effect is more
pronounced with the blade splitter concept (Fig. 6b) because
it reduces also the space for recirculation. In the case of
Fig. 6c the optimization generates a more straight chan-
nel than the involute blade reference design and creates
a blade splitter which reduces the velocity in one of the
sub-channels as mentioned before, and these both effects
contribute to decrease the vorticity. The increase of power
is related to the increase of the outlet velocity component
parallel to the normal of outlet section. Thus, the higher this
component, the higher the power, and the result from Fig.
6b has the outlet velocity most parallel to the outlet section
normal among the three results.

5.2 Energy dissipation and vorticity

The second set of results considers the energy dissipa-
tion and vorticity functionals for minimization. Two initial
guess, one of entire solid domain and other of entire fluid

Fig. 9 Topology changes during optimization process with straight
blade initial guess and energy dissipation functional

Table 2 Functional values results by considering pump optimiza-
tion with energy dissipation and vorticity functionals and rotation of
500[rpm]

Reference Initial Guess

Involute blade Solid Fluid

Fig. 4 Fig. 11a Fig. 12a

|�|/|D| 0.29 0.26 0.26

we – 0.7 0.7

wv – 0.3 0.3

E(u) 5.19 4.67 4.42

V (u) 71.62 22.34 22.68

P (u) 821.56 851.75 850.19

domain, are considered with a rotation 500 [rpm]. The
volume ratio is adjusted to 0.25. The weights for the multi-
objective function are defined as we = 0.7 and wv = 0.3
for energy dissipation and vorticity, respectively. The results
are shown in Figs. 11 and 12. Also, the corresponding veloc-
ity field and entire rotor are shown in the same figures. The
pressure field is quite similar to the field shown in Fig. 5,
thus, it is not shown. The values of the objective functions
are shown in Table 2. The convergence curves for these
examples are similar to the curves shown in (Fig. 10).

The vorticity and energy dissipation values are smaller
and larger, respectively, than values from the results pre-
sented in Table 1, as expected. The power values are larger
than the reference values. The result from Fig. 11 is quite
similar to the result obtained in Romero and Silva (2014),
however, the grayscale presented in their result was substi-
tuted by a non smooth boundary in the upper part. Essen-
tially, the strategy to reduce the vorticity values even more in
relation to previous example is to keep channels straight and
to increase the energy dissipation (losses) which decreases
the velocity.

Fig. 10 Convergence curve for optimization process with straight
blade initial guess and energy dissipation functional



1022 L.F.N. Sá et al.

Fig. 11 Topology optimization
results for energy dissipation and
vorticity functionals considering
solid domain as initial guess: (a)
Topology, (b) Relative Velocity
Field and (c) Entire rotor

(a) (b) (c)

Fig. 12 Topology optimization
results for energy dissipation and
vorticity functionals considering
fluid domain as initial guess: (a)
Topology, (b) Relative Velocity
Field and (c) Entire rotor

(a) (b) (c)

Fig. 13 Topology optimization
results for energy dissipation and
power functionals considering
fluid domain as initial guess: (a)
Topology, (b) Relative Velocity
Field and (c) Entire rotor

(a) (b) (c)

Fig. 14 Topology optimization
results for energy dissipation
and power functionals
considering straight blade
domain as initial guess: (a)
Topology, (b) Relative Velocity
Field and (c) Entire rotor

(a) (b) (c)
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Table 3 Functional values results by considering pump optimiza-
tion with energy dissipation and power functionals and rotation of
500[rpm]

Reference Initial Guess

Involute blade Fluid Straight b.

Fig. 4 Fig. 13a Fig. 14a

|�|/|D| 0.29 0.34 0.32

we – 0.7 0.7

wp – 0.3 0.3

E(u) 5.19 3.16 2.65

V (u) 71.62 49.3 38.58

P (u) 821.56 825.73 840.01

5.3 Energy dissipation and power

This set of results considers a pump model and the energy
dissipation and power minimization. The initial guesses of
entire fluid domain and straight blade are considered with
a rotation 500 [rpm]. The volume ratio is adjusted to 0.33.
The weights for the multi-objective function are defined as
we = 0.7 and wp = 0.3 for energy dissipation and power,
respectively. The results are shown in Figs. 13 and 14. Also,
the corresponding velocity field and entire rotor are shown
in the same figures. The pressure field is quite similar to
the field shown in Fig. 5, thus, it is not shown. The val-
ues of the objective functions and a comparison with the
values of involute blade and optimized for energy dissipa-
tion results are shown in Table 3. The convergence curve
for the straight blade initial guess is shown in Fig. 15. This
case took 7.5 hours to complete. The starting mesh has
9,000 elements and it is refined until 74,000 elements as the
algorithm progresses. In addition, 201 FEM system and 75
adjoint computations are performed.

Comparing with the values for energy dissipation and
power consumption presented in Table 1, the current results
present smaller energy dissipation and power consumption,

Fig. 15 Convergence curve for optimization process with straight
blade initial guess and a combination of energy dissipation and power
functionals

Fig. 16 Design domain and boundary conditions for turbine

with the exception of the involute initial guess where the
power from results of Table 3 are larger, however, the energy
dissipation values are smaller. Comparing with the refer-
ence values of Table 3, the optimized results present a
smaller energy dissipation with a slightly increase of power
consumption.

The reasons for decreasing the energy dissipation are
the same as discussed in the first example, calling atten-
tion that the optimization makes use of the blade splitter
concept which is more pronounced in the result shown in
Fig. 14. The blade splitter decreases the velocity in one of
it sub-channels which contributes to the power decrease in
relation to results of first example. The maximum velocity is
higher in relation to previous examples which contributes to
increase the vorticity, however is still smaller than involute
blade reference value. Finally, the power decrease in relation
to previous examples because the outlet velocity component
parallel to the normal of outlet section is smaller in relation
to these examples, however not enough to beat the involute
blade reference design. Reminding that the optimization has
prioritize more to minimize energy dissipation than power
due to specified weights (0.7 and 0.3, respectively). The
result from Fig. 13 is quite similar to result from Fig. 6c.

5.4 Turbine optimization for power

The fourth set of results considers the turbine domain and
only the power functional for maximization. For this exam-
ple only the flow direction is changed on the inlet boundary
condition, i.e. the flow now exits the domain at the smaller
arc, as shown in Fig. 16. The initial guess of the involute
blade is considered with rotations of 100 and 300 [rpm].
The volume ratio is adjusted to 0.3. The final topologies are
shown in Figs. 17 and 18. Also, the corresponding veloc-
ity field and entire rotor are shown in the same figures. The
pressure field is quite similar to the field shown in Fig. 5,
thus, it is not shown. The values of the objective functions
are shown in Tables 4 and 5. As expected, vorticity and
power values increase with angular rotation.

These results are quite similar to the results obtained in
Romero and Silva (2014). Essentially, the method decreases
the cross section area which increases the flow speed,
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Fig. 17 Corresponding rotors
for topology optimization results
for turbine power maximization
considering involute blade as
initial guess and 100[rpm]: (a)
Topology, (b) Relative Velocity
Field and (c) Entire rotor

(a) (b) (c)

Fig. 18 Corresponding rotors
for topology optimization results
for turbine power maximization
considering involute blade as
initial guess and 300[rpm]: (a)
Topology, (b) Relative Velocity
Field and (c) Entire rotor

(a) (b) (c)

Table 4 Functional values
results for turbine by
considering power
maximization with rotation of
100[rpm]

Reference Involute b.
(Turbine) Fig. 4

Initial Guess Involute b.
Fig. 17a

|�|/|D| 0.29 0.3

E(u) 3.54 12.22

V (u) 56.87 67.68

P (u) 37.46 38.55

Table 5 Functional values
results for turbine by
considering power
maximization with rotation of
300[rpm]

Reference Involute b.
(Turbine) Fig. 4

Initial Guess Involute b.
Fig. 18a

|�|/|D| 0.29 0.3

E(u) 4.67 11.23

V (u) 71.62 104.25

P (u) 318.34 338.622
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changes its direction, and tries to make the inlet velocity as
parallel as possible to the inlet section normal. These com-
binations are quite effective to increase the generated power.
However, the two first actions also contribute to increase the
vorticity and energy dissipation.

6 Conclusions

In this work, we have developed a topological derivative for-
mulation for flow machine rotor design based on the concept
of traditional topology optimization formulations, where
solid or fluid material are distributed at each point of the
domain, instead of inserting or removing holes. This strat-
egy allows for working in a fixed computational domain,
which leads to a topology design algorithm of remarkably
simple computational implementation.

The problem is posed as optimizing the channel between
the blades of pump and turbine rotors under volume constraint
and considering a multi-objective shape functional defined
by the energy dissipation, the vorticity, and the power
generated or absorbed for turbines and pumps, respectively.

Results obtained by considering Navier-Stokes equations
for two spatial dimensions are presented and compared. The
influence of initial guess, weighting coefficients, and angu-
lar velocity values in the optimized results are analysed,
confirming the generality of the method.

An advantage of using the proposed method to design
flow machine rotors is that the topological derivative rep-
resents the exact sensitivity with respect to the nucleation
of an inclusion within the design domain and the obtained
analytical (closed) formula can be evaluated through a sim-
ple post-processing of the direct and adjoint solutions. In
addition, the steepest-decent direction associated with the
topological derivative is continuous everywhere - including
the interface solid/fluid - and does not require any interpo-
lation scheme to be evaluated, so that the grey density scale
is here naturally avoided. Thus, all these features together
leads to a very simple and robust topology design algorithm,
where the topologies with well-defined solid/fluid interfaces
are obtained in few iterations, with a minimal number of
user defined algorithm parameters.

As future work, authors suggest to consider flow
with high Reynolds number, turbulence models, and non-
Newtonian fluid flows.
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Sá LFN, Amigo RCR, Novotny AA, Silva ECN (2016) Topologi-
cal derivatives applied to fluid flow channel design optimization
problems. Struct Multidiscip Optim 54(2):249–264

Sokołowski J, Żochowski A (1999) On the topological derivative in
shape optimization. SIAM J Control Optim 37(4):1251–1272

Wen-Guang L (2011) Inverse design of impeller blade of centrifugal
pump with a singularity method. Jordan J Mech Indust 5(2):119–128

Yu S, Ng B, Chan W, Chua L (2000) The flow patterns within the
impeller passages of a centrifugal blood pump model. Med Eng
Phys 22(6):381–393


	Design optimization of laminar flow machine rotors based on the topological derivative concept
	Abstract
	Introduction
	Topology optimization problem
	Topology optimization algorithm
	Numerical implementation
	Numerical results
	Energy dissipation
	Energy dissipation and vorticity
	Energy dissipation and power
	Turbine optimization for power

	Conclusions
	Acknowledgments
	References


