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Abstract The gray problem of displacement constrained
topology volume minimization under multiple load cases
still is an opening topic of research. A series of topol-
ogies with clear profiles generated from an optimization
process are very beneficial to method engineering appli-
cations. In this paper, a novel displacement constrained
optimization approach for black and white structural to-
pology designs under multiple load cases, is proposed to
obtain a series of topologies with clear profiles. Firstly,
a distribution feature of constraint displacement deriva-
tives is investigated. Secondly, an adaptive adjusting
approach of design variable bounds is proposed, and
an improved approximate model with varied constraint
limits and a volume penalty objective function are con-
structed. Thirdly, an improved density-based optimiza-
t ion method is proposed for the displacement
constrained topology volume minimization under multi-
ple load cases. Finally, several examples are given to
demonstrate that the results obtained by the proposed
method provide a series of topologies with clear profiles

during an optimization process. It is concluded from
examples that the proposed method is effective and ro-
bust for generating an optimal topology.

Keywords Structural topology optimization . Feasible
domain adjustment . Trust region .Multiple constraints .

Dual algorithm

1 Introduction

Now, the SIMP (Solid Isotropic Material with Penalty) meth-
od is a well-known major topology optimization method
(Sigmund and Maute 2013, Deaton and Grandhi 2014). One
of its major difficulties is the presence of intermediate densi-
ties or gray-scale material in density-based structural topology
optimization. Black-and-white solutions are often sought, that
is, one (such as Sigmund 2007) expects that the final design
includes either elements with full material or no material, ex-
cluding gray areas. In past works, researchers usually ensured
continuous design variables to be forced toward a black and
white solution by applying the SIMP model or the Rational
Approximation for Material Properties (RAMP) model and
their variants (Sigmund and Maute 2013, Deaton and
Grandhi 2014). These models are prone to lead to the check-
erboard, the mesh dependence and one-point hinge connec-
tion problems (Fujii and Kikuchi 2000, Deaton and Grandhi
2014). Some restriction methods, such as the perimeter meth-
od (see Haber 1996), the local gradient method (see, e.g.
Petersson and Sigmund 1998) and mesh in-dependency filters
(see, e.g. Sigmund and Peterson 1998 and etc.) were proposed
to deal with these problems.

But gray bands could thus appear around the topological
boundary again. Then, Heaviside projections (Guest et al.
2004; Xia et al. 2012 and etc.) were proposed to deal with
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the aforementioned problems. Another method is to employ a
specified threshold value to obtain elements with normalized
densities equivalent to either 1.0 or 0.0 (see, e.g. Kikuchi et al.
1998). However, it is not evident how to choose the threshold
value appropriately in these works.

In the SIMP method, Olhoff et al. (1991) proposed a two-
stage approach in which initially the intermediate densities are
largely suppressed, with a second-stage design procedure gen-
erating the desired solid/empty solution. To achieve the
solid/empty target in density-based optimization, Fuchs et al.
(2005) introduced a new constraint that is labeled the sum of
the reciprocal variables (SRV). Based on the work of Zhou
and Rozvany (1991), Guedes and Taylor (1997), and Rietz
(2001), Bruns (2005) introduced a penalty into the volume
constraint, which does result in more predominantly black-
and-white solutions. Groenwold and Etman (2009) de-
veloped a simple heuristic approach for the gray-scale
suppression. Wood and Groenwold (2010) showed that
the non-convex topology problem resulting from the ap-
plication of the SIMP-like volumetric penalization can
be solved by adopting the Falk dual. A method combin-
ing a separable constraint and a post-processor based on
the sequential linear integer programming was proposed
by Werme (2008). In addition to the above methods,
other methods include the methods with filtering tech-
niques based on image processing (Sigmund 2007,
Wang and Wang 2005) , a method based on a
complex-shaped beam element and graph-based optimi-
zation (Sauter et al. 2008), and hybrid methods combin-
ing simulated annealing and SIMP (Garcia-Lopez et al.
2011), or standardized elements (Jang et al. 2009).

To the best of our knowledge, the gray problem of displace-
ment constrained topology volume minimization under mul-
tiple load cases still is an opening topic of research. Moreover,
a series of topologies with clear profiles can not be obtained
by the aforementioned density-based methods during an opti-
mization process. The goal of this paper is to develop a new
density-based optimization method in an approximate binary
fashion of density variables, and provide a different procedure
obtaining an optimal topology, so that it can be adopted to
easily obtain a predominantly black-and-white optimal topol-
ogy and a series of topologies with clear profiles during an
optimization process.

Recently, by introducing a series of varied constraint limits,
a new structural topological optimization method with dis-
placement constraints, was proposed by Rong and Yi (2010),
Rong et al. (2011). However, the scheme of the varied con-
straint limits can not guarantee that the feasible domain of an
approximate optimization model at each later iteration step of
an optimization process, was completely coincided with the
feasible domain of the original model. And because reciprocal
topology variables, which may vary between 1.0 and 10,000.0,
were selected as design variables in the method, there still

existed a lot of elements with topology variables between
0.15 and 0.001 in each topology obtained during an optimiza-
tion process. Then, a strategy was adopted to heuristically re-
move these elements with small topology variable values.

Although the displacement constrained optimization prob-
lem is related with stiffness optimization problems to a large
extent, the stiffness optimal design is not the same as the
optimal displacement design. The stiffness optimization in-
creases the structural overall stiffness and thus the displace-
ments are roughly reduced as an indirect effect. Despite vast
researches on stiffness optimization, the displacement
constrained continuum topology optimization is found in rel-
atively less literature (see, Liang et al. 2001, Yin and Yang
2001, Huang and Xie 2010, Liu et al. 2011, Zuo et al. 2012,
Zuo and Xie 2014, Deng and Suresh 2015). A basic feature
during the process of obtaining a series of topologies with
clear profiles, is that the topology variables of only a few of
elements are allowed to change within a large range at each
iteration step. However, a lot of simulations demonstrate that
Lagrange multipliers of the conventional approximate SIMP
model (Yin and Yang 2001) all are zeros at the many
beginning steps in this kind change fashion of design
variables (i.e., relative density variables), if the maxi-
mum design domain filled with solid material is select-
ed as its initial design. At this case, design variable
changes of the conventional approximate model are not
affected by the static equations at the many beginning
iteration steps because of the Karush-Kuhn-Tucker
(KKT) condition action (Nocedal and Wright 1999).
Therefore, in view of the fact, the displacement
constrained optimization problem basically is different
from the maximization problem of a structural overall
stiffness subject to the volume constraint. Moreover, for
some structures such as an aircraft wing, the displace-
ments of the exterior surface should remain within a
certain limit in order to maintain the aerodynamic per-
formance (Sobieski and Haftka 1997).

To obtain a predominantly black-and-white optimal topol-
ogy along the approximate binary path of the structural topol-
ogy optimization, an improved displacement constrained to-
pology optimization method of continuum structures is pro-
posed. The structure of this paper is organized as follows. In
Section 2, a feature of constraint displacement derivatives is
introduced and analyzed. In Section 3.1 and 3.2, an
improved approximate model with constraint limit ad-
justments and a volume penalty objective function, is
proposed for the displacement constraint problem under
multiple load cases. In Section 3.3, an adaptive ap-
proach of adjusting design variable bounds is proposed
and integrated into the approximate model with varied
constraint limits. In Section 4, a smooth dual algorithm
of the approximate problem is developed. And a filter-
ing scheme, a stabilization operation, and a stopping

866 Rong et al.



iteration criterion are given in Sections 5 and 6. The
numerical results, analyses and a conclusion of the pro-
posed method are given in Sections 7 and 8.

2 A feature of displacement derivatives

In this paper, the binary topological variable ρi(i.e., relative
density) is replaced by the continuous topological variable ρi
that varies between ρmin

i ¼ 0:00001 and 1. The volume and
stiffness matrix expressions of a structural element are given
as follows:

Vi ¼ f v ρið ÞV0
i ; Ki ¼ f k ρið ÞKi

0 ð1Þ

where Vi andK
i are the volume and stiffness matrices of the

ith element, respectively. And V0
i and Ki

0 are the original
volume and stiffness matrices of the ith element, respectively.
ρi is the topology variable of the ith element. And fv(ρi) and
fk(ρi) denote the interpolation (identification or penalty) func-
tions of the volume and stiffness matrices of the ith element,
respectively.

Being referred to the RAMP model (Stolpe and Svanberg
2001a), interpolation functions fk(ρi) = ρi/(1 + υ(1 − ρi)) and
f v ρið Þ ¼ ραv

i are selected. Being referred to (18) of Wood
and Groenwold (2010), αv ≤ 1.0 denotes the penalty parame-
ter, and a penalty is introduced into the volume objective
function. Some references(Stolpe and Svanberg 2001a,
Wood and Groenwold 2010 and etc.)showed that υ = 6.0 and
αv = 0.8 are appropriate for obtaining an optimal topology.
And υ = 6.0 and αv = 0.8 are also used in this paper examples.

Figure 1 gives a cantilever beam under a plane stress con-
dition. The left hand side of the beam is fixed. A vertical load
of 3kN is applied at the middle point of the free end. The
dimension of the beam is 0.32 m × 0.16m × 0.001m. The
Young’s modulus E = 200GPaand Poisson’s ratio ν = 0.33
are specified. The maximum design domain is divided
into a mesh of 64×32 with 2048 equal-size four-node
square plane stress elements. Displacement constraints
are imposed on the vertical displacement ua y(ρ) at the
middle point of the free end and the vertical displacement uq
y(ρ) at the point of interest ‘q’ located in the middle of the top
edge of the beam in Fig. 1, respectively. Where ρ is a topo-
logical variable vector.

A displacement derivative with respect to the topological
variable ρi can be expressed as

∂ ua y ρ 0ð Þ
� ���� ���.∂ρi ¼ lim

ρ→ρ 0ð Þ
ua y ρð Þ�� ��− ua y ρ 0ð Þ

� ���� ���� �.
ρi−ρ

0ð Þ
i

� �
¼ lim

ρ→ρ 0ð Þ
u2a y ρð Þ−u2a y ρ 0ð Þ

� �� �.
ρi−ρ

0ð Þ
i

� �� �
.

lim
ρ→ρ 0ð Þ

ua y ρð Þ�� ��þ ua y ρ 0ð Þ
� ���� ���� �

¼ 2ua y ρ 0ð Þ
� �

∂ua y ρ 0ð Þ
� �.

∂ρi
� �.

2 ua y ρ 0ð Þ
� ���� ���� �

¼ sign ua y ρ 0ð Þ
� �� �

∂ua y ρ 0ð Þ
� �.

∂ρi

ð2Þ

where ua y(ρ
(0)) ≠ 0.0.

Therefore, ∂|ua y(ρ(0))|/∂ρi easily is obtained by using
the second expression of (1), seeing the paper provided
by Huang and Xie (2010). In this paper, a sensitivity
filtering approach similar to it proposed by Sigmund
(2001), is adopted to deal with numerical instabilities
(Sigmund and Peterson 1998) in topology optimization.
Fig. 2a gives a topology variable distribution of the
beam. And Fig. 2b and Fig. 2c depict the logarithmic
distributions of the ratios between the absolute values of
filtered constraint displacement derivatives and the ab-
solute values of corresponding displacements at the con-
straint directions of the structure in Fig. 2a, respectively.
Here, filtered constraint displacement derivatives mean
that the constraint displacement derivatives are modified
by use of the filtering approach.

It is found from Fig. 2b, c that there are huge dif-
ferences between the maximums and corresponding min-
imums of the absolute values of these displacement de-
rivatives within all the structural elements in the struc-
tures of Fig. 2b and Fig. 2c, respectively. For example,
the ratios of these maximums and corresponding mini-
mums, obtained by numerical computations, are 3.80 ×
106 and 4.54 × 107 in the structures of Fig. 2b and Fig.
2c, respectively. And for some constraint structural dis-
placement under a load case, there also exist some
structural regions including elements that possess rela-
tive small absolute values of displacement derivatives
with respect to their maximum. Here, the aforemen-
tioned huge difference and some structural regions with
relative small absolute values of displacement deriva-
tives in a structure, are thought as a feature of structural
displacement derivatives.

The load case in Fig. 1 is replaced by another load
case, in which a uniform distributed load of 600kN/m is
applied on the free end of the beam along the vertical
direction. The logarithmic ln(|∂|ua y(ρ)|/∂ρi|/|ua y(ρ)|) dis-
tribution of the ratios between the absolute values of

Fig.1 A single-load problem with displacement constraints for a
cantilever beam
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filtered constraint displacement derivatives and the ab-
solute value |ua y(ρ)| of the vertical displacement at the
middle point of the free end of the beam under the
uniform distributed load case, is shown in Fig.3. The
physical feature in Fig. 2 also occurs in Fig. 3.
Generally, the constraint displacement function |ua y(ρ)|
in Fig. 2 or Fig. 3 can approximately be expressed as
an one-order Taylor series expansion, namely

ua y ρð Þ�� ��≈ ua y ρ k−1ð Þ
� ���� ���

þ ∑
Q

q¼1

∂ ua y ρ k−1ð Þ� ��� ��
∂ρnq

ρnq−ρ
k−1ð Þ
nq

� �
ð3Þ

where,Q is the number of the designable elements, and the
designable element numbering may be represented by nq , q =
1 , 2 , ⋯ ,Q. It is assumed that a few (such as n ¼ 0:015Q,
i.e. a small value with respect to Q) elements with the mini-
mum absolute values of one-order displacement derivatives
within the elements whose topology variables are bigger than
0.1 in Fig. 2 or Fig. 3, are selected. And their topology vari-
ables are denoted by ρnql ; l ¼ 1; 2;⋯; n. Where,

nql; l ¼ 1; 2;⋯; n
	 


is a subset of {nq, q = 1, 2, ⋯ ,Q}. It

is assumed that there exist big changes (such as ρnql from

ρ k−1ð Þ
nql to ρmin

nql ¼ 0:00001 ) of the topology variables

ρnql ; l ¼ 1; 2;⋯n, and topology variables of other elements

in the structure are kept as constants. From (3), one total
change quantity of the displacement function can approxi-
mately be estimated as follows.

Δ ua y ρð Þ�� ���� ��≈ ∑
n

l¼1
ρmin
nql −ρ

k−1ð Þ
nql

� � ∂ ua y ρ k−1ð Þ� ��� ��
∂pnql

������
������≤2:0

� ∑
n

l¼1

∂ ua y ρ k−1ð Þ� ��� ��
∂pnql

�����
����� ð4Þ

From Fig. 2 and Fig. 3, it can easily be known that
the term at the right-hand side of (4) is a very small
quantity with respect to |ua y(ρ)|. Therefore, big changes
of topology variables of these elements have a little
effect on the structural constraint displacement |ua y(ρ)|.
In view of volume minimizing, if a small quantity ad-
dition (such as 0.01|ua y(ρ)|) on the constraint point dis-
placement value |ua y(ρ)| of the current design, is
allowed, these n elements will be removed, and topolo-
gy variables of other elements will not be changed.
Namely, if a small quantity addition on the constraint
point displacement value |ua y(ρ)|of the current design is
imposed on the optimization model, it may explanatively be
justified that this element change way approximately follows
the binary path of the structural topology optimization at the
current iteration. It also may empirically be justified from Fig.
2 and Fig. 3 that the aforementioned feature of displacement
derivatives just is the essential foundation of the success of the
ESO and BESO methods.

Fig. 3 The logarithmic ln(|∂|ua y(ρ)|/∂ρi|/|ua y(ρ)|) distribution of the
ratios between the absolute values of filtered constraint displacement
derivatives and the absolute value |ua y(ρ)| of the vertical displacement
at the middle point “a” of the free end of the beam, where topology
variables all are equal to 1.0

(a) (b) (c)

Fig. 2 A topology variable distribution, and the logarithmic distributions
of the ratios between the absolute values of filtered constraint
displacement derivatives and the absolute values of corresponding
vertical displacements, respectively, at the middle point “a” of the free
end and the “q” point of the top side of the beam in Fig.1, corresponding
to Fig.2a: (a) topology variable distribution; (b) derivatives logarithmic
ln(|∂|ua y(ρ)|/∂ρi|/|ua y(ρ)|)distributions with respect to topology variables;
(c) derivatives logarithmic ln(|∂|uq y(ρ)|/∂ρi|/|uq y(ρ)|) distributions with
respect to topology variables. Note: In Fig.2a and color topology
variable distributions of the consequent sections, the greenest elements
denote elements whose topology variable values all are between 0.95 and

1.0; the dark green elements denote elements whose topology variable
values all are between 0.9 and 0.95;the yellow elements denote elements
whose topology variable values all are between 0.7 and 0.9; the blueish
elements denote elements whose topology variable values all are between
0.5 and 0.7; the red elements denote elements whose topology variable
values all are between 0.3 and 0.5; the dark red elements denote elements
whose topology variable values all are between 0.1 and 0.3; the darkish
elements denote elements whose topology variable values all are between
0.001 and 0.1; the silver white elements denote elements whose topology
variable values all are below 0.001. |• | denotes the absolute value of •
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3 A structural optimization model and its novel
approximate model

3.1 Problem statement

In this study, a fixedmaximum finite element mesh is adopted.
Structural elements can be categorized into two kinds: (a)
designable elements and (b) non-designable elements.
The non-designable element numbering may be
expressed as ip , p = 1 , 2 , ⋯ , P, its topological variables
ρip ; p ¼ 1; 2;⋯;P do not change during the optimization

process, and P is the number of the non-designable
elements. The designable element numbering may be rep-
resented by nq , q = 1 , 2 , ⋯ ,Q, and Q is the number of the
designable elements. The displacement constrained optimiza-
tion problem is formulated as follows.

min V ¼ ∑
Q

q¼1
ραv
nq V

0
nq þ ∑

P

p¼1
ραv
ip V

0
ip

s:t: ulNC j
ρð Þ

��� ���≤U j; j ¼ 1; 2;⋯; J ;

K ρð Þ ul ρð Þ ¼ Fl

ρmin
nq ≤ρnq ≤1; q ¼ 1; 2;⋯;Q

8>>>>>><>>>>>>:
l ¼ 1; 2;⋯;L ð5Þ

where V is the structural volume, and V0
nq and V0

ip are the

original volumes of the nq-th element and the ip-th element,
respectively. K(ρ) is the structural total stiffness matrix, Fl is
the lth load acting on the structure, and ul(ρ) is the displace-
ment vector under the lth load case. And L is the number of the
load cases. ulNC j

ρð Þ is the displacement at theNCj-th degree of

freedom of the structure under the lth load case. And Uj is the
constraint limit of the jth displacement constraint.J is the num-
ber of the displacement constraints for each load case. ρnq is

the qth topological variable, and ρmin
nq is its lower limit, and

ρmin
nq ¼ 0:00001 is used in the examples of this paper. In order

to deal with the checkerboard problem of topology optimiza-
tion, a displacement sensitivity filtering approach is adopted to
modify displacement sensitivities.

3.2 An improved approximate model with varied
constraint limits

In engineering structural optimization, an objective function
or/and constraint functions (including structural mechanics
behaviors) are nonlinear functions of design variables, and
also are implicit functions of design variables. Generally
speaking, at each iteration of an optimization process, an ap-
proximate optimization model replaces its original structural
optimization model, in which approximate explicit functions
replace their original implicit objective and constraint func-
tions (Nocedal and Wright 1999, Sigmund and Maute 2013,
and Deaton and Grandhi 2014). An approximate optimization
model should approximately be equivalent to the original
structural optimization model in a certain domain of the cur-
rent design point. The original structural optimization model
possesses at least two performances: (a) the change require-
ments of its objective function and constraint functions can
strongly control the change domain of design variables; (b)
design variable changes within a small domain, can make that
the objective function and constraint functions change in a
small quantity way. Moreover, if a series of topologies with
clear profiles must be obtained during an optimization pro-
cess, the proposed optimization method should possess a fea-
ture. This feature is that the topology variables of only a few of
elements are allowed to change within a large range at each
iteration step. Namely, this feature requirement must be im-
posed on its approximate model or its algorithm at most iter-
ation steps. A lot of simulations demonstrate that varied dis-
placement limits are beneficial to big changes of topology
variables of only a few of elements at each iteration step. At
same time, these limits also can make that Lagrange multi-
pliers of the approximate model possess at least one non-zero
value in the case of approximate binary changes of only a few
of design variables to a certain extent, even if at many begin-
ning iteration steps when the maximum design domain filled
with solid material is selected as its initial design.

An approximate optimization model with varied displace-
ment constraint limits, is constructed as follows:

min ∑
Q

q¼1
ραv
nq V

0
nq

.
V 0ð Þ

s:t: ~u
l

NC j
ρð Þ

���� ����. ul; 0ð Þ
NC j

��� ���≤ ~U
kð Þ
j

.
ul; 0ð Þ
NC j

��� ���; j ¼ 1; 2;⋯; J ; l ¼ 1; 2;⋯; L; k ¼ 1; 2;⋯

ρmin
nq ≤ρnq ≤1; q ¼ 1; 2;⋯;Q

8>>>>><>>>>>:
ð6Þ

where ~ulNC j
ρð Þ

��� ��� denotes a one-order Taylor series expan-
sion of ulNC j

ρð Þ
��� ��� at ρ k−1ð Þ

nq ; q ¼ 1; 2;⋯;Q, and ul; 0ð Þ
NC j

��� ��� is its
initial value, and V

(0)
is the initial design structural volume.

The varied displacement limit ~U
kð Þ
j at the kth iteration is

A novel displacement constrained topology optimization approach 869



introduced and expressed as

~U
kð Þ
j ¼ U

kð Þ
j ; j ¼ 1;⋯; J ; k ¼ 1 ð7Þ

~U
kð Þ
j ¼

max U
kð Þ
j ;U

kð Þ
j

� �
; if max

l¼1;2;⋯;L
ul; 0ð Þ
NC j

��� ���� �
≤U j

min U
kð Þ
j ;U

kð Þ
j

� �
; if max

l¼1;2;⋯;L
ul; 0ð Þ
NC j

��� ���� �
> U j

8>><>>: ; j ¼ 1;⋯; J ; k ¼ 2; 3;⋯ ð8Þ

where, U
kð Þ
j and U kð Þ

j are given by use of following formulas.

U
kð Þ
j ¼

min max
l¼1;2;⋯;L

ul; k−1ð Þ
NC j

��� ���� �
þ β1η jU j

� �
;U j

� �
; if max

l¼1;2;⋯;L
ul; 0ð Þ
NC j

��� ���� �
≤U j

max max
l¼1;2;⋯;L

ul; k−1ð Þ
NC j

��� ���� �
−β1η jU j

� �
;U j

� �
; if max

l¼1;2;⋯;L
ul; 0ð Þ
NC j

��� ���� �
> U j

8>><>>: ; j ¼ 1;⋯; J ; k ¼ 1; 2;⋯ ð9Þ

U
kð Þ
j ¼

min ~U
k−1ð Þ
j þ β1η jU j

� �
; U j

� �
; if max

l¼1;2;⋯;L
ul; 0ð Þ
NC j

��� ���� �
≤U j

max ~U
k−1ð Þ
j −β1η jU j

� �
; U j

� �
; if max

l¼1;2;⋯;L
ul; 0ð Þ
NC j

��� ���� �
> U j

8>><>>: ; j ¼ 1;⋯; J ; k ¼ 2; 3;⋯ ð10Þ

η j ¼ min
min

l¼1;⋯;L
U j−
�� ��ul; 0ð Þ

NC j

� �
min

l¼1;⋯;L; j¼1;2;⋯; J
U j−
�� ��ul; 0ð Þ

NC j

� � ; 1:5
8><>:

9>=>;; j ¼ 1;⋯; J

ð11Þ

where ul; k−1ð Þ
NC j

is the displacement at the NCj-th degree of

freedom of the structural topology obtained at the (k-1)th outer
loop iteration step under the lth load case. ηj is a displacement
limit ratio factor, and ηj ≥ 1.0 for j = 1 , 2 , ⋯ , J. β1 is a
displacement limit empirical parameter, and one value
of [0.002,0.012] is selected as β1 in the examples of
this paper. Here, the varied displacement limit scheme
given by (7‑11) is different from the varied limit
scheme proposed by Rong and Yi (2010), Rong et al.
(2011). For example, for approximate optimization mod-

el (6) with max
l¼1;2;⋯;L

ul; 0ð Þ
NC j

��� ���� �
≤U j, j = 1 , 2 , ⋯ , J, there al-

ways exists a limited integer number k0 (k0 ∈ {1, 2, ⋯ , k ,
⋯}, and k0 is a constant for the prescribed β1 and displace-
ment limits Uj , j = 1 , 2 , ⋯ , J) so that the following (12, 13)
can be guaranteed by adopting the varied displacement limit

~U
kð Þ
j in (7, 8) and (9, 10).

U j ¼ ⋯ ¼ ~U
k0þ1ð Þ
j ¼ ~U

k0ð Þ
j ≥⋯ > ~U

kþ1ð Þ
j > ~U

kð Þ
j

> ~U
k−1ð Þ
j > ⋯ > ~U

2ð Þ
j > ~U

1ð Þ
j ; j ¼ 1;⋯; J ð12Þ

Ω f d ¼ ⋯ ¼ Ω k0þ1ð Þ

¼ Ω k0ð Þ⊃⋯⊃Ω kþ1ð Þ⊃Ω kð Þ⊃Ω k−1ð Þ⊃⋯⊃Ω 2ð Þ⊃Ω 1ð Þ ð13Þ

where Ω(k) (k ≥ 1) denotes the feasible domain of the ap-
proximate optimization model (6) at the kth iterative step in
Fig. 4.

Now, the feature of the model (6) is introduced. Fig. 4 gives
a simple interpretation of optimization iteration solutions for

the model (6) when max
l¼1;2;⋯;L

ul; 0ð Þ
NC j

��� ���� �
≤U j, j = 1 , 2 , ⋯ , J.

ρ(k − 1), ρ(k) andρ(k + 1) , k ≥ 2 in Fig. 4, respectively, represent
the solutions obtained by adopting the proposed method at the
(k-1)th, kth and (k+1)th iteration steps. And Ωfd and

Fig. 4 A simple illustration of optimization iteration solutions for the
model (6)

870 Rong et al.



ρoptrepresent the feasible domain and an optimal solution of
the original optimization model (5) in Fig. 4, respectively.

The feasible domainΩf d of the original optimization model
(5) may be divided into a feasible domain Ω(k) and a non-
feasible sub-domain (Ωf d −Ω(k))of the approximate model
(6) at the kth iteration step because (12, 13) is satisfied.
Namely, a feasible sub-domain (Ωf d −Ω(k))of the original
model (5) may become a non-feasible sub-domain of the ap-
proximate model (6) at the kth iteration step. And a non-
feasible sub-domain (Ω(k + 1) −Ω(k)) of the approximate model
(6) at the kth iteration step may become a feasible sub-domain
of the approximate model (6) at the (k+1)-th iteration step.

Therefore, the varied displacement limit parameter β1 of
the (7‑11) may be manipulated to make that the model (6)
possesses a smaller feasible domainΩ(k) shown in Fig. 4 than
the model (5). The optimal solution within Ω(k) and the next
iteration solution ρ(k)of the model (6) will fall in a smaller
local feasible domain (Ω(k) −Ω(k − 1)) shown in Fig. 4 at the
kth iteration step because of the volume minimizing require-
ment, the varied displacement limits in (7‑11), and the features
of Section 2. It is found from simulations that the approximate
model (6) with more tight displacement constraints at all iter-
ation steps, the smaller local feasible domain Ω(k), and the
features of Section 2, can provide very strong effect to en-
hance the robustness of an optimization process and black/
white distributions of a series of topologies obtained.

Moreover, for max
l¼1;2;⋯;L

ul; 0ð Þ
NC j

��� ���� �
≤U j or max

l¼1;2;⋯;L
ul; 0ð Þ
NC j

��� ���� �
> U j, it can easily be found from (6–13) that the feasible
domain of an approximate optimization model after a limited
iteration step (such as k0) of an optimization process, is
completely coincided with the feasible domain of the original
model. If a mathematical programming algorithm is adopted
to solve the models (6), the convergence of the algorithm for
the approximate model (6) may completely be determined by
the algorithm performance. The scheme of the (7, 8) and (9,
10), is a modification of the varied limit scheme proposed by
Rong and Yi (2010), Rong et al. (2011).

3.3 An adaptive approach of adjusting design variable
bounds

3.3.1 The case of at least one non-zero Lagrange multiplier

Gradient-based optimization algorithms that rely on nonlinear
but convex separable quadratic approximation functions, have
been proven to be very effective for large-scale structural op-
timization (see, e.g. Groenwold and Etman 2009; Groenwold
et al. 2009). Fleury (1989) proposed a SQP(Sequential qua-
dratic programming)method that uses diagonal Hessian infor-
mation only. The conservative convex separable approxima-
tion (CCSA) framework proposed by Svanberg (1987) may be
used to ensure a global convergence and termination. Wood
and Groenwold (2010) investigated the topology optimization
problem with SIMP-like volumetric penalization, in which
minimum compliance is sought subject to a single concave
constraint on the volume. They showed that it is sometimes
possible to solve non-convex problems directly using a dual
method. They also concluded that the presence of the concave
constraint may increase the difficulty of the problem dramat-
ically if one employs a method based on strictly convex ap-
proximations. Their numerical results exhibited large-scale
oscillatory behaviors of physical quantities during an optimi-
zation process unless an additional external move limit was
applied.

Moreover, ∂2 ulNC j
ρð Þ

��� ��� =∂ ρnq

� �2
at some design points

with partial small topology variable values, may be negative.

Namely, the quadratic Taylor series expansion of ulNC j
ρð Þ

��� ���
with respect to topology variables may be a non-convex func-
tion in a small region of some design point with partial small
topology variable values. If separable strict convex quadratic

approximations of the constraints ulNC j
ρð Þ

��� ��� = ul; 0ð Þ
NC j

��� ��� ≤ ~U
kð Þ
j =

ul; 0ð Þ
NC j

��� ��� replace displacement constraints of the model (6),

(13) can not be guaranteed by these approximation

(a) Outer loop iteration 5 (b) Outer loop iteration 15 (c) Outer loop iteration 25 (d) Outerloop iteration 40

(i) Outer loop iteration 70 (j) Outer loop iteration 80 (k) Outer loop iteration 88 (l) Outer loop iteration 90,

the optimal topology extracted

Fig. 5 The topology distribution optimization history of the cantilever beam, which is obtained by the proposed method for the volume penalty
parameter αv=1.0, and da=1.5 and dq=1.5. Note: In Fig. 5 (l), the white elements denote elements whose topology variable values are equal to 0.00001
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constraints, when a lot of elements of the optimized structure
possess small topology variable values.

Here, topology variables are selected as design variables,
and the varied constraint limit scheme of the (7‑11), and one-
order Taylor series expansions of displacement constraints are
adopted in the approximate model (6). Namely, the approxi-
mate model (6) replaces the model (5) at each iteration step.
However, the approximate displacement constraint functions
and the objective function of the model (6) do not possess
strong controlling ability of the topology variable changes.
Some simulations also demonstrate that the approximate mod-
el (6) still do not completely possess the two performances
aforementioned (at least one non-zero Lagrange multiplier in
(14)), and also can not satisfy the requirement aforementioned
in Section 3.2 at the most iteration steps.

L ρ;λð Þ ¼ ∑
Q

q¼1
ραv
nq V

0
nq

.
V 0ð Þ

þ ∑
L

l¼1
∑
J

j¼1
λ l−1ð Þ� Jþ j ~u

l

NC j
ρð Þ

���� ����− ~U kð Þ
j

� �.
ul; 0ð Þ
NC j

��� ���
ð14Þ

Therefore, in order to simply obtain a series of topologies
with clear profiles during an optimization process, except that
the approximate model (6) is adopted, change restrictions of
the design variables are given so that the approximate model
(6) possesses the two performances and the requirement

aforementioned in Section 3.2 at the most iteration steps.
Generally speaking, the change region xLi ; x

U
i

� �
of any design

variable xi in trust region optimization methods, may be de-
termined by using the objective and constraint function values
and their derivative values at continuous several iteration steps
(Tang 2014). Here, in order to effectively and simply construct
trust regions of a lot of design variables, a novel trust region
scheme being different from that of the paper published by
Rong et al. (2016),is proposed.

(a) The basic characteristics of an optimal solution

It is assumed that {n1, n2, ⋯ , nq, ⋯ , nQ} is denoted by a
set Q. When a structural optimization solution has evolved its
optimal state, (15) should approximately be satisfied according
to the KKT condition, and the approximate model (6) should
possess at least one non-zero Lagrange multiplier (because of a
non-zero volume derivative for any element with a topology
variable value being close to 1.0). Therefore, increasing the
topology variables of some design elements with the most min-

imum values of ∂L ρ;λð Þ=∂ρnq
��� ��� in (15) withinQ, and reducing

the topology variables of some design elements with the most

minimum values of ∂Lca ρ;λð Þ=∂ρnq
��� ��� in (16) withinQ, will be

beneficial to obtaining the optimal topology .

∂L ρ;λð Þ
.
∂ρnq≈0:0; nq∈Q ð15Þ

∂Lca ρ;λð Þ
.
∂ρnq≈ ∑

L

l¼1
∑
J

j¼1
λ l−1ð Þ� Jþ j ∂ ulNC j

ρ k−1ð Þ
� ���� ���.∂ρnq� �.

ul; 0ð Þ
NC j

��� ���
ð16Þ

where, L(ρ, λ) is the Lagrange function of the model (6),
and Lca(ρ, λ) is called as the Lagrange penalty function of the
model (6).

(b) A novel trust region scheme

When there exists at least one non-zero Lagrange multiplier
at the previous iteration step, i.e. the (k-1) iteration step, λ(l − 1) ×
J + j , j = 1 , 2 , ⋯ , J ; l = 1 , 2 , ⋯ , L in the (15, 16) are re-
placed by the Lagrange multipliers λ l−1ð Þ �J þ j k−1ð Þ (j =
1, 2, ⋯ , J; l = 1, 2, ⋯ , L) obtained at the (k-1)th iteration step.

At first, a small empirical parameter δ1 is prescribed, and a
value of [0.003,0.012] is adopted as δ1. At each iteration step,

Fig. 6 The volume fraction, black and white fraction and displacement
ratio optimization histories of the cantilever beam, which is obtained by
the proposed method for the volume penalty parameter αv=1.0, and
da=1.5 and dq=1.5

Table 1 The characteristic data
corresponding to the topologies in
Fig.5

Numbering (a) (b) (c) (d) (e) (f) (g) (h)

|ua y(ρ
(k))|/ |ua y(ρ

(0))| 1.034 1.098 1.161 1.258 1.511 1.515 1.516 1.494

|uq y(ρ
(k))|/ |uq y(ρ

(0))| 1.010 1.061 1.127 1.208 1.405 1.458 1.510 1.501

Volume fraction 0.894 0.799 0.735 0.662 0.537 0.532 0.531 0.526

Black-white fraction 0.945 0.922 0.895 0.872 0.870 0.874 0.876 1.000
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the set Q with Q design elements, is divided into following
four sub-sets:

(1) Constructing a design element subset Q1 with
int(δ1 ×Q) elements

Topology variables of elements in the subset Q1 all are
bigger than 0.01, and will be reduced, and these int(δ1 ×Q)
elements possess the most minimum values of

∂Lca ρ;λð Þ=∂ρnq
��� ��� in (16) within Q.

(2) Forming a design element subset Q2 with int(δ1 ×Q)
elements

Topology variables of elements in the subset Q2 all are
between 0.01 and 0.999, and will be increased, and these
int(δ1 ×Q) elements possess the most minimum values of

∂L ρ;λð Þ=∂ρnq
��� ��� in (15) within (Q −Q1).

(3) Constructing another design element subset Q3

All elements in the subsetQ3 belong to the subset (Q −Q1

−Q2), their topology variables all are below 0.999, and will be
changed.

(4) Forming the fourth element subset Q4

Q4 ¼ Q− ∪
3

i¼1
Qi is set, and topology variables of elements

in the subsetQ4 all are held as constants at the current iteration
step.

At least one of Q1,Q2 and Q3 is a non-empty set, and
anyone of these three subsets may be an empty set at each
iteration step. And following relations are satisfied.

Q ¼ ∪
4

i¼1
Qi; Qi∩Q j ¼ 0; i; j ¼ 1; 2; 3; 4; i≠ j ð17Þ

where ∩ and ∪ represent the intersect set and sum set op-
erators of several sets, respectively.

It is assumed that nq; q ¼ 1; 2;⋯;Qred is the element num-
bering of the subset Q1, and Qred is equal to int(δ1 ×Q); ~nq; q
¼ 1; 2;⋯;Qinc is the element numbering of the subset Q2,

and Qinc is less than and equal to int(δ1 ×Q); enq; q ¼ 1; 2;⋯
;Qcha is the element numbering of the subset Q3, and Qcha is
its element number. In this paper, the topology variables ρnq
for any nq∈Q1, ρ~nq for any ~nq∈Q2 and ρenq for any enq∈Q3 are

temporarily selected as design variables, and the topology
variable ρnq for any nq∈Q4 is set as a constant at each iteration

step.
Following formulas are directly adopted by use of the

aforementioned scheme.

1:0� 10−5 ¼ ρL
nq
≤ρ

nq
≤ρU

nq
¼ 1:0; nq∈Q1 ð18Þ

1:0� 10−5 ¼ ρL
~nq
≤ρ

~nq
≤ρU

~nq
¼ 1:0 ; ~nq∈Q2 ð19Þ

(a) Outer loop iteration 5 (b) Outer loop iteration 15 (c) Outer loop iteration 25 (d) Outer loop iteration 40

(i) Outer loop iteration 60 (j) Outer loop iteration 70 (k) Outer loop iteration 82 (l) Outer loop iteration 84,

the optimal topology extracted

Fig. 7 The topology distribution optimization history of the cantilever beam, which is obtained by the proposed method for the volume penalty
parameter αv=0.8, and da=1.5 and dq=1.5

Fig. 8 The volume fraction, black andwhite fraction and displacement ratio
optimization histories of the cantilever beam, obtained by the proposed
method for the volume penalty parameter αv=0.8, and da=1.5 and dq=1.5
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max ρ k−1ð Þ
neq

−Δ

 !
; 1:0� 10−5

( )
¼ ρL

neq

≤ρ
neq

≤ρU
neq

¼ min ρ k−1ð Þ
neq

þΔ

 !
; 1:0

( )
; neq∈Q3 ð20Þ

where, Δ may be treated as an empirical parameter, and a
value of [0.01,0.02] can be selected as Δ according to small
variable region requirements in general trust region optimiza-
tion methods (Nocedal and Wright 1999). Δ=0.015 is
adopted, and is not a sensitive parameter in all examples of
this paper. Based on (18‑20) and the aforementioned change
scheme of design variables, the approximate model (6) may be
transferred into the approximate model (21):

min ∑
q¼1

Qred

ραv

nq

V0

nq

þ ∑
q¼1

Qinc

ραv

~nq

V0

~nq

þ ∑
q¼1

Qcha

ραve
nq

V0e
nq

0@ 1A.V 0ð Þ

s:t: ~u
l

NC j
ρð Þ

���� ����. ul; 0ð Þ
NC j

��� ���− ~U kð Þ
j

.
ul; 0ð Þ
NC j

��� ���� �
≤0:0

ρ
nq

∈ ρL
nq

; ρU
nq

" #
; nq∈Q1

ρ
~nq

∈ ρL
~nq

; ρU
~nq

" #
; ~nq∈Q2

ρe
nq

∈ ρLe
nq

; ρUe
nq

24 35; e
nq∈Q3

;
j ¼ 1;⋯; J ; l ¼ 1; 2;⋯; L;

k ¼ 1; 2;⋯

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

ð21Þ

3.3.2 The case of zero Lagrange multipliers

Some simulations show that the case of zero Lagrange multi-
pliers of the model (21), will occur at a few of outer iteration
steps during the early process of an optimization iteration solv-
ing, when a big value of β1 in (9‑11) is adopted. For the case of
that Lagrange multipliers all are zero at the end of the (k-1)th
iteration step (for example, the first iteration step), firstly setting

g*1 ρ k−1ð Þ
� �

¼ ~u
ls

NC js
ρ k−1ð Þ
� ����� ����. uls; 0ð Þ

NC js

��� ���− ~U kð Þ
js

.
uls; 0ð Þ
NC js

��� ���� �
ð22Þ

where, ls and NC js satisfy following equation.

~u
ls

NC js
ρ k−1ð Þ
� ����� ����. uls; 0ð Þ

NC js

��� ���− ~U kð Þ
js

.
uls; 0ð Þ
NC js

��� ���� ����� ����
¼ min

l ¼ 1; 2;⋯; L
j ¼ 1; 2;⋯; J

~u
l

NC j
ρ k−1ð Þ
� ����� ����. ul; 0ð Þ

NC j

��� ���− ~U kð Þ
j

.
ul; 0ð Þ
NC j

��� ���� ����� ����
ð23Þ

For another prescribed small parameter δ2, if (24) is satis-
fied, the displacement constraint function at the NCj-th degree
of freedom of the structure under the lth load case will be
considered as a potential tight constraint.

~u
l

NC j
ρ k−1ð Þ
� ����� ����. ul; 0ð Þ

NC j

��� ���− ~U kð Þ
j

.
ul; 0ð Þ
NC j

��� ���� ����� ����− g*1 ρ k−1ð Þ
� ���� ������� ����≤δ2

ð24Þ

where, any value of an empirical parameter δ2 within
[0.03,0.06] does not affect the final optimization solution
and solving speed of the proposed method, because the pro-
posed methodmakes that the objective function and constraint
functions change in a small quantity way at each iteration step,
and the case of zero Lagrange multipliers of the model (21)
scarcely occurs at outer iteration steps.

It is assumed that, except the (ls − 1) × J + js-th displace-
ment constraint of (22, 23), there exist (m-1) potential tight
constraints in the model (6), which satisfy (24), and they are

represented by g*r ρ k−1ð Þ� �
; r ¼ 2;⋯;m. Therefore, when

Table 2 The characteristic data
corresponding to the topologies in
Fig. 7

Numbering (a) (b) (c) (d) (e) (f) (g) (h)

|ua y(ρ
(k))|/ |ua y(ρ

(0))| 1.036 1.112 1.205 1.382 1.523 1.523 1.523 1.498

|uq y(ρ
(k))|/ |uq y(ρ

(0))| 1.010 1.077 1.223 1.439 1.518 1.518 1.521 1.496

Volume fraction 0.894 0.788 0.699 0.584 0.523 0.523 0.523 0.527

Black-white fraction 0.957 0.950 0.945 0.940 0.958 0.960 0.960 1.000
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Lagrange multipliers of the optimization model (21) all are
zeros at the end of the (k-1)-th iteration step, the design ele-
ment subsets Q1, Q2 and Q3 are easily determined by using

the ∂g* ρ k−1ð Þ� �
=∂ρnq

��� ��� of (25). Namely, all int(δ1 ×Q) ele-

ments in Q1 possess the most minimum values of

∂g* ρ k−1ð Þ� �
=∂ρnq

��� ��� within Q, and their topology variables all

are bigger than 0.01. And all int(δ1 ×Q) elements in Q2 pos-

sess the most maximum values of ∂g* ρ k−1ð Þ� �
=∂ρnq

��� ��� in (25)

within (Q −Q1), and their topology variables all are between
0.01 and 0.999 . Q3 and Q4 are similarly determined by the
approach of Section 3.3.1.

∂g* ρ k−1ð Þ� �
∂ρnq

¼ ∏
m

r¼1
g*r ρ k−1ð Þ
� �� �

∑
m

r¼1

∂g*r ρ k−1ð Þ� �.
∂ρnq

g*r ρ k−1ð Þð Þ

0@ 1A ð25Þ

Therefore, the optimization model (6) at the kth iteration
step can approximately be transferred into the model (21) by

considering the subsetsQ1,Q2,Q3andQ4, and (18‑20), when
Lagrange multipliers of the optimization model (21) all are
zeros at the (k-1)-th iteration step.

4 A smooth dual solving method of the approximate
problem

Although the optimization model (21) is a linear optimization
problem, it is an approximate model of the nonlinear optimi-
zation problem (5), and possesses a lot of design variables. If
there exist a lot of design variables and only several con-
straints in an optimization problem, the dual solving method
can dramatically reduce the computational quantity (Nocedal
and Wright 1999). In order to robustly obtain the solutions of
the model (21), following the approach proposed by Svanberg

(1987), an artificial variable vector y ¼ y1; y2;⋯; ymλ

� �T
is

introduced into the problem (21), and xq ¼ ρnq ; nq∈Q1,

xQredþq ¼ ρ~nq ; ~nq∈Q2 and xQredþQincþq ¼ ρenq ;enq∈Q3 are set at

Table 4 Constraints and their results obtained by Deng and Suresh (2015) for the problem in Fig. 1

Table 3 Constraints and their results obtained by adopting the proposed method for the problem in Fig. 1
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each iteration step. The following enlarged approximate prob-

lem at the initial point x 0ð Þ
q ¼ ρ k−1ð Þ

nq
; nq∈Q1, x

0ð Þ
Qredþq ¼ ρ k−1ð Þ

~nq ;

~nq∈Q2 and x 0ð Þ
QredþQincþq ¼ ρ k−1ð Þenq ;enq∈Q3, is given for the dis-

placement constrained optimization problem under multiple
load cases.

min f 0 xð Þ þ ∑
v¼1

mλ

cvyv þ
1

2
dvy2v

� �
s:t: gv xð Þ−yv≤0; v ¼ 1; 2;⋯;mλ

x∈x kð Þ; y≥0

8>><>>: ð26Þ

where mλ = J × L

f 0 xð Þ ¼ ∑
q¼1

Qred

xαv

nq
V0
nq

þ ∑
q¼1

Qinc

xαv
qþQredð ÞV

0
~nq
þ ∑

q¼1

Qcha

xαv
qþQredþQincð ÞV

0enq

 !
=V 0ð Þ

gv xð Þ ¼ ulNC j
ρ k−1ð Þ
� �

− ~U kð Þ
j

� �
= ul; 0ð Þ

NC j

��� ���þ ∑
QredþQincþQchað Þ

i¼1

∂ ulNC j
ρ k−1ð Þ
� ���� ���=∂xi= ul; 0ð Þ

NC j

��� ���� �
xi−x

0ð Þ
i

� �
;

v ¼ l−1ð Þ � J þ j; j ¼ 1; 2;⋯; J ; l ¼ 1; 2;⋯; L

ð27Þ

x kð Þ ¼ xijxi∈ xLi ; x
U
i

� �
; i ¼ 1; 2;⋯; Qred þ Qinc þ Qchað Þ	 


ð28Þ

Being referred to the paper published by Svanberg (1987),
c1 = 1000 and d1 = 1.0 are selected in the examples of this

paper. At the beginning of the sub-optimization iterations, it
is necessary to choose x(0), and then to compute y(0), and
obtain an initial feasible estimate (x(0), y(0))T of the problem
(26). Considering only the main constraints, since the simple
box and the non-negativity constraints of the artificial vari-

ables y ¼ y1; y2;⋯; ymλ

� �T
will be incorporated in the mini-

mization process, the Lagrange function corresponding to the
problem (19) may be given by

~L x;λð Þ ¼ f 0 xð Þ þ ∑
v¼1

mλ

λv gv xð Þ−yvð Þ þ ∑
v¼1

mλ

cvyv þ
1

2
dvy2v

� �
ð29Þ

The programming problem (26) can be transferred into
following dual programming problem by the dual theory.

max : ϕ λð Þ
s:t: λ≥0:0 ð30Þ

where, ϕ λð Þ ¼ min
x;y

~L x; y;λð Þ; xi∈ xLi ; x
U
i

� �
; y≥0

	 

.

To obtain an iteration solution of (26) by adopting an iter-
ation solution of Lagrange multipliers in the model (30), the
function relations of the design variables with respect to the
Lagrange multiplier vector must approximately be given.
Based on the KKT condition (Nocedal and Wright 1999),
following equation may be gotten.

∂~L x;λð Þ
∂xi

¼ ∂ f 0 xð Þ
∂xi

þ ∑
v¼1

mλ

λv
∂gv xð Þ
∂xi

¼ 0:0; i

¼ 1; 2;⋯; Qred þ Qinc þ Qchað Þ ð31Þ

Table 5 Two topologies satisfying the allowable constraints (da=10. and dq=1.5.) of the problem in Fig. 1 and their characteristic data

(a) A MBB beam (unit thickness; plane stress) (b) half design domain and its initial

Fig. 9 The load case and the
support condition of a MBB
beam, and an initial structural
model for its analysis and
optimization
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Multiplying (31) by x rð Þ
i λð Þ, following equation can be

obtained.

− ∑
v¼1

mλ

λv
∂gv xð Þ
∂xi

∂ f 0 xð Þ
∂xi

¼
− ∑

v¼1

mλ

λv
∂gv xð Þ
∂xi

x rð Þ
i λð Þ

∂ f 0 xð Þ
∂xi

x rð Þ
i λð Þ

¼ 1 ;

i ¼ 1; 2;⋯; Qred þ Qinc þ Qchað Þ

ð32Þ

where x rð Þ
i λð Þ denotes the ith design variable at the kth

outer iteration and the rth sub-iteration.
From (32), an iteration formula can be built as follows:

x* rþ1ð Þ
i λð Þ ¼

− ∑
v¼1

mλ

λv
∂gv x 0ð Þ� �

∂xi
∂ f 0 x 0ð Þ� �

∂xi

x rð Þ
i λð Þ ð33Þ

where x* rþ1ð Þ
i λð Þ denotes the ith design variable obtained

by using the KKT condition at the kth outer iteration and the

(r+1)-th sub-iteration, and x(0) denotes the design variable
vector at the beginning sub-iteration of the kth outer iteration.

A so-called fixed point iteration method has widely been
used in solving the roots of a nonlinear equation. In order to
ensure iteration convergence, a scalar relaxation parameter
γ(Burden and Faires 1985; Du and Taylor 2002) is introduced
into (33), and the (33) becomes

x* rþ1ð Þ
i λð Þ ¼ γ

− ∑
v¼1

mλ

λv
∂gv x 0ð Þ� �

∂xi
∂ f 0 x 0ð Þ� �

∂xi

x rð Þ
i λð Þ þ 1−γð Þx rð Þ

i λð Þ ð34Þ

Really, the change quantities of design variables can be
appropriately adjusted by a change of γ, and γ will affect all
design variables and ensure iteration convergence. And a val-
ue of [0.02, 0.12] is selected as γ in the examples of Burden
and Faires (1985)and Du and Taylor (2002) and this paper.
From (34), following equation may be derived

∂x* rþ1ð Þ
i λð Þ
∂λv

¼ −γ
∂gv x 0ð Þ� �.

∂xi

∂ f 0 x 0ð Þð Þ
.
∂xi

0@ 1Ax rð Þ
i λð Þ ð35Þ

Considering the upper and lower limits of the design vari-

ables, the design variable x rþ1ð Þ
i λð Þ and the artificial variable

y rþ1ð Þ
v λð Þ can be calculated by

x rþ1ð Þ
i λð Þ ¼ max xLi ;min xUi ; x

* rþ1ð Þ
i λð Þ

n on o
; i

¼ 1; 2;⋯; Qred þ Qinc þ Qchað Þ ð36Þ

y rþ1ð Þ
v λvð Þ ¼ max 0:0;

λv−cv
dv

� �
; v ¼ 1; 2;⋯;mλ ð37Þ

Note that x rþ1ð Þ
i λð Þ : Rmλ→R and y rþ1ð Þ

v λvð Þ : R→R are
continuous functions of the Lagrange multiplier vector λ, but

not differentiable at the point λ that x rþ1ð Þ
i λð Þ ¼ xLi or x rþ1ð Þ

i

λð Þ ¼ xUi for i = 1 , 2 , ⋯ , (Qred +Qinc +Qcha) and λv = cv
for v = 1 , 2 , ⋯ ,mλ.

(a) Outer loop iteration 5 (b) Outer loop iteration 10 (c) Outer loop iteration 15 (d) Outer loop iteration 20

(e) Outer loop iteration 25 (f) Outer loop iteration 45 (g) Outer loop iteration 99 (h) Outer loop iteration 101,

the optimal topology extracted

Fig. 10 The topology distribution optimization history of the half MBB beam, which is obtained by using the SIMP method for the initial structural
model with topology variables all being 0.8

Fig. 11 The volume fraction, black and white fraction and total
compliance optimization histories of the half MBB beam, which are
obtained by using the SIMP method for the initial structural model with
topology variables all being 0.8
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Rong et al. (2016) investigated continuum structural topo-
logical optimization with stress constraints based on an active
constraint technique and reciprocal topology variables. In the
method, a strategy with two optimization phases and a phase
transferring step, and a smooth dual solving approach were
proposed to heuristically remove a lot of elements with
topology variables between 0.15 and 0.001 at some
iterations. Here, the smooth dual solving method proposed
by Rong et al. (2016) is adopted to solve the approximate

sub-problem. x rþ1ð Þ
i λð Þ and y rþ1ð Þ

v λvð Þ in (36) and (37) may
be approximately transformed into the following smoothing

functions ~x rþ1ð Þ
i λð Þ and ~y rþ1ð Þ

v λvð Þ.

~x
rþ1ð Þ
i λð Þ ¼ xLi þ p1ln 1þ e

z rþ1ð Þ
i λð Þ

.
p1

 !
; i

¼ 1; 2;⋯; Qred þ Qinc þ Qchað Þ ð38Þ

~y
rþ1ð Þ
v λvð Þ ¼ p1ln 1þ e

λv−cvð Þ
.

p1dvð Þ
 !

; v

¼ 1; 2;⋯;mλ ð39Þ

where z rþ1ð Þ
i λð Þ ¼ xUi −xLi

� �
−p2ln 1þ e −x* rþ1ð Þ

i λð ÞþxUið Þp2� �
,p1 and p2 are two small positive parameters. At the rth sub-

iteration step, the p1 and p2 of the (38, 39) are replaced by p
rð Þ
1

and p rð Þ
2 .

Therefore, an approximate quadratic programming model
of the dual programming problem (30) can easily be obtained
by adopting (29, 30, 34–39), combining the approach of

Section 4.2 in Rong et al. (2016). And the detail approach of
the approximate quadratic programming model and its simple
solving approach are referred to Section 4.2 of the paper pub-
lished by Rong et al. (2016).

5 A filtering scheme and a stabilization
of the optimization process

To circumvent numerical instabilities, such as checkerboard
patterns and mesh-dependency, a sensitivity filtering scheme
being similar to that of Sigmund and Peterson (1998), is
adopted. The defined filtering function is based on a filtering
length scale rmin that does not change with its mesh refine-
ment. A circle of a radius rmin, centered at the centroid of the

eth element, and the circular sub-domain Ωe may be generat-

ed. Elements, whose centroids are located inside Ωe, contrib-
ute to the computation of the improved sensitivity of the eth
element as

∂ u
l

NC j
ρ k−1ð Þ
� ����� ����.∂ρe
¼

∑
Q

q¼1
w re nq

� �
ρ k−1ð Þ
nq

� �α
∂ ulNC j

ρ k−1ð Þ� ���� ���.∂ρnq
ρ k−1ð Þ
e

� �α
∑
Q

q¼1
w re nq

� � ;

e∈Q; j ¼ 1; 2;⋯; J ; l ¼ 1; 2;⋯; L

ð40Þ

(a) Outer loop iteration 5 (b) Outer loop iteration 10 (c) Outer loop iteration 15 (d) Outer loop iteration 20

(e) Outer loop iteration 25 (f) Outer loop iteration 45 (g) Outer loop iteration 99 (h) Outer loop iteration 101,

the optimal topology extracted

Fig. 12 The topology distribution optimization history of the half MBB beam, which is obtained by using the SIMP method for the initial structural
model with topology variables all being 1.0

Table 6 The characteristic data corresponding to the topologies in Fig.10

Numbering (a) (b) (c) (d) (e) (f) (g) (h)

Total compliance 127.13 186.50 87.788 43.474 35.668 33.457 33.019 32.804

Volume 1.5000 1.0200 1.0200 1.0200 1.0200 1.0200 1.0200 1.0201

Black-white fraction 0.0000 0.0000 0.2509 0.6469 0.8479 0.9451 0.9743 1.0000

Displacement 508.51 746.02 351.15 173.89 142.67 133.83 132.08 131.29
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The convolution operator (weight factor) w re nq

� �
is writ-

ten as

w re nq

� � ¼ rmin−re nq ; re nq < rmin

0:0; re nq ≥rmin

�
ð41Þ

where re nq is the distance between the centre of the eth
element and the centre of the nq-th element, and the value
selection of re nq is discussed in many references (Sigmund

2001, Wood and Groenwold 2010 and etc.). α of (40) is an
empirical parameter, and its value is between 0.15 and 0.25.
To further improve the sensitivity accuracy, the simple way
provided by Huang and Xie (2007) is adopted, and its formula
is expressed as:

∂ u
l

NC j
ρ k−1ð Þ
� ����� ����.∂ρe ¼ 1−χsð Þ∂ u

l

NC j
ρ k−2ð Þ
� ����� ����.∂ρe

þ χs∂ u
l

NC j
ρ k−1ð Þ
� ����� ����.∂ρe; e∈Q

ð42Þ

Then, ∂ ulNC j
ρ k−1ð Þ� ���� ��� =∂ρe in (15,16) and (27) is replaced

by ∂ ulNC j
ρ k−1ð Þ� ���� ��� =∂ρe in (42). χs is another empirical pa-

rameter, and 0.7 is selected as its value in examples of this
paper according to the suggestion of Huang and Xie (2007).

6 A stopping iteration criterion and a black
and white fraction

The outer loop finishes successfully whenever the following
two conditions all are satisfied.

min
j¼1;2;⋯; J ; l¼1;2;⋯;L

U j− ulNC j
ρ kð Þ
� ���� ���� �.

U j

n o
≤ε1 ð43Þ

V kð Þ−
V k−1ð Þ þ V k−2ð Þ

2

� �.
V kð Þ

���� ����≤ε1 ð44Þ

where, ε1 is an allowable small convergence parameter.
ε1 = 0.001 often was adopted in examples of papers published
by many authors, such as Huang and Xie (2007), Xia et al.
(2012) and Zuo and Xie (2014), and also is adopted in the
examples of this paper.

Similarly, the elemental ‘black and white fraction φB&W’
in Groenwold et al. (2009) and Wood and Groenwold (2010),
is adopted. Its expression is given as follows:

φB&W ¼ N 0½ � þ N 1½ �
� �.

N ð45Þ

where N[0] and N[1], respectively, represent the element
number of the subset { i |ρi ≤ 0.001}, and the element number
of the subset { i |ρi ≥ 0.999}. And N denotes the total number
of the structural elements in the fixed design domain.

7 Numerical examples

7.1 Optimization designs of the classic 2-D cantilever beam

Two displacement constraints in Fig. 1 (Deng and Suresh
2015) are imposed: one at the point of force application, and
the other at a point of interest ‘q’ located in the middle of the
top edge in Fig. 1:

ua y ρð Þ�� ��−da ua y ρ 0ð Þ
� ���� ���≤0

uq y ρð Þ�� ��−dq uq y ρ 0ð Þ
� ���� ���≤0 ð46Þ

Here, the filtering length scale rmin = 2Δmin = 0.01m (Δmin

is the minimum side length of all structural elements) being
the same as that of Deng and Suresh (2015), is adopted. And

Table 7 The characteristic data corresponding to the topologies in Fig.12

Numbering (a) (b) (c) (d) (e) (f) (g) (h)

Total compliance 73.569 207.05 76.989 40.089 35.629 33.708 33.497 39.235

Volume 1.8000 1.0200 1.0200 1.0200 1.0200 1.0200 1.0200 1.0196

Black-white fraction 0.000 0.000 0.3721 0.7232 0.8717 0.9521 0.9753 1.0000

Displacement 294.28 828.20 307.96 160.35 142.52 134.83 133.99 156.94

Fig. 13 The volume fraction, black and white fraction and total
compliance optimization histories of the half MBB beam, obtained by
using the SIMP method for the initial structural model with topology
variables all being 1.0

A novel displacement constrained topology optimization approach 879



the empirical parameters β1=0.004, δ1 = 0.1, and γ=0.1 are
adopted. Other five parameters are selected according to the
suggestion values in corresponding sections of this paper.
Here, the empirical parameters δ1,γ and β1 are treated as im-
portant empirical parameters, and are determined according to
a small change principle of structural characteristic quantities.
Really, β1 is the most active and important empirical parame-
ter. δ1 means that the topology variables of only certain num-
ber elements are allowed to change within a large range at
each iteration step. γ and β1 mean that certain change quanti-
ties of design variables are allowed, and β1 is a total control
quantity of design variable changes. When small values of γ
and β1 are given, the quantity of δ1 will affect the gray distri-
bution and its optimization iteration numbers. A small value
of δ1 will lead to very good black/white distributions and
many iteration numbers required. A big value of δ1 will lead
to poor black/white distributions. The empirical parameter
value δ1 is easily determined by a trial calculation and a
black/white distribution requirement. A lot of simulations
demonstrate that if a value of [0.003,0.012] is adopted as δ1,
a series of topologies with good black/white distributions and
convergence, can be guaranteed before about 120 iteration
steps. The empirical parameter values γ and β1 are easily
determined by a trial calculation and the requirement of at
least one non-zero Lagrange multiplier of the approximate
model at most iteration steps for any example.γ and β1 must
be increased before structural optimization when the optimi-
zation solution needs too many iteration numbers. And γ and
β1 must be reduced before structural optimization when there
exist some bad topological configurations during an optimi-
zation process. A value of [0.03, 0.12] may be selected as γ,
and a value of [0.002, 0.008] may be selected as β1.

Figure 5 gives the topology distribution optimization his-
tory of the cantilever beam, which is obtained by adopting the
proposed method for the allowable constraint parameters
da=1.5 and dq=1.5, and the volume penalty parameter
αv=1.0, when topology variables of the initial structural model
all are 1. Fig. 6 gives the volume fraction, the black and white
fraction and displacement ratio optimization histories of the
cantilever beam, corresponding to Fig. 5. The structural

topology characteristic data in Fig. 5, are given in Table 1.
Its computational time employed by adopting the computer
with CPU 2.66G is 283s.

It is seen from Fig. 5 that although the topologies obtained
at all iterative steps include gray elements, the number of the
elements whose topology variables are below 0.001, increases
with an increase in outer iteration number; and there only are a
few of the gray elements, whose topology variables are be-
tween 0.001 and 0.95. It is found from its optimization process
that at least one displacement constraint is an active constraint
at almost all iteration steps. Fig. 6 and the Table 1 also show
that black and white fractions of all topologies are bigger than
0.85. Fig. 6 shows that constraint displacements and the struc-
tural volume stably and smoothly change, and the black and
white fraction changes in a way of very small fluctuations
during the optimization process.

If the volume penalty parameter αv=0.8 and the previous
other conditions are adopted, optimization results obtained by
using the proposed method are shown in Fig. 7, Fig. 8 and
Table 2. Fig. 7, Fig. 8 and Table 2 show that a series of topol-
ogies obtained, possess a more predominant black-and-white
distribution than topologies in Fig. 5. Fig. 7 also depicts that

(a) Outer loop iteration 5 (b) Outer loop iteration 10 (c) Outer loop iteration 15 (d) Outer loop iteration 20

(e) Outer loop iteration 25 (f) Outer loop iteration 45 (g) Outer loop iteration 95 (h) Outer loop iteration 97, the

optimal topology extracted

Fig. 14 The topology distribution optimization history of the half MBB beam, which is obtained by using the proposed method for the initial structural
model with topology variables all being 1.0

Fig. 15 The volume fraction, black and white fraction and total
compliance optimization histories of the half MBB beam, obtained by
using the proposed method for the initial structural model with topology
variables all being 1.0
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the results obtained after several iterations provide a series of
topologies with clear profiles.

If the volume penalty parameter αv=0.8 and the aforemen-
tioned other empirical parameter values are adopted, the results
obtained by using the proposed method for the problem in
Fig. 1 and corresponding different values for the allowable
relative displacements at both constraint points of interest, are
listed in Table 3. Table 4 gives constraints and relative results
obtained by Deng and Suresh (2015) for the problem.
Comparing Table 3 and Table 4, it is concluded that two more
optimal topologies with different configurations andmore 4.5%
reductions of the objective function than the results of the Deng
and Suresh method (2015), are obtained by using the proposed
method for this example with the allowable relative parameters
da=1.5 and dq=10., and da=1.5, and dq=1.5, respectively .

For the allowable relative parameters da=10. and dq=1.5.,
although the convergent optimal solution of the problem in
Fig. 1 is not obtained by adopting the proposed method, two
topologies satisfying the allowable constraints (da=10. and
dq=1.5.) of the problem in Fig. 1, are obtained by use of the
proposed method, and are shown in Table 5. Comparing
Table 3, Table 4 and Table 5, it is concluded that the proposed
method can obtain a more optimal topology than the Deng and
Suresh method (2015) for a reasonable displacement con-
straint model of Fig. 1. Table 5 (b) also shows that although
the topology with a bigger volume reduction, satisfies the
allowable constraints (da=10. and dq=1.5.) of the problem in
Fig. 1, the constraint displacement point q is disconnected
from the support. Therefore, there exists a reasonable dis-
placement constraint modeling problem or a disconnected
constraint point problem in the proposed method. In view of
the fact that the topology of Table 5(a) possesses a smaller
volume than that of Table 4 (c), a reasonable displacement
constraint modeling problem or a disconnected constraint
point problem (which is similar to an ill load optimization
problem) will be a problem to be investigated.

7.2 A classic MBB beam design subjected to one
concentrated load

To further estimate the proposed method, the SIMP method
(Sigmund 2001) combined with the simple heuristic approach
for the gray-scale suppression (Groenwold et al. 2009), is
programmed in Fortran. And the compliance minimization

problem of the well-known MBB beam in Fig. 9 with a vol-
ume ratio limit 0.34 is solved by the SIMP method Fortran
code to obtain the vertical displacement value at the loading
point and the optimum topological configuration. Here, the
SIMP penalty parameter p=3 and the gray-scale suppression
parameter q=2 (Groenwold et al. 2009), a move limit param-
eter 0.1 and a convergence error 0.001 are adopted. Then, the
vertical displacement value at the loading point of the opti-
mum topology is taken as a displacement constraint value of
the proposed model, and the MBB beam design is solved by
the proposed method.

Considering the symmetries of the structure and the load, only
half design domain in Fig. 9b is to be optimized. And the prob-
lem settings are as follows: a finite element mesh model with
150 × 50 equal-size four-node plane stress elements and a linear
sensitivity filter with radius rmin = 4Δmin = 0.08 are adopted.

The topology variable distribution optimization history of
the half MBB structure is presented in Fig. 10, which is ob-
tained by adopting the SIMP method (Groenwold et al. 2009)
for the initial structural model with topology variables all be-
ing 0.8. Fig. 11 gives the volume fraction, black and white
fraction and total compliance optimization histories of the half
MBB beam. Numerical characteristic results corresponding to
the topologies in Fig. 10, are presented in the Table 6. Its
computational time employed by adopting the computer with
CPU 2.66G is 1455s. It is found from Fig. 10 and Fig. 11 that
there exist some big jumps in the compliance at the beginning
iteration steps.

The results of the halfMBB beam optimization are present-
ed in Fig. 12, Fig. 13 and Table 7, which are obtained by
adopting the SIMP method when topology variables of the
initial structural model all are 1. Here, all empirical parameter
values are the same as that adopted in Fig. 10. Fig. 10h and
Fig. 12h show that the SIMP method can obtain an optimal
topology with a predominantly black-and-white distribution

Table 8 The characteristic data corresponding to the topologies in Fig.16

Numbering (a) (b) (c) (d) (e) (f) (g) (h)

Displacement 66.004 68.044 70.722 73.418 75.977 91.448 133.827 131.12

Volume 2.6648 2.4510 2.2701 2.1217 1.9895 1.5606 0.9881 0.9906

Black-white fraction 0.9276 0.9415 0.9375 0.9439 0.9467 0.9484 0.9685 1.0000

Total compliance 16.501 17.011 17.681 18.355 18.994 22.862 33.457 32.730

Fig. 16 The initial structural model of an arch structure
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for each of two different initial topologies, but the optimal
topology obtained by adopting the SIMPmethod for the initial
topology with topology variables all being 1.0, possesses one-
point hinge connection elements and a bigger compliance.

Here, the displacement value 131.30 abstracted from Fig.
10h and Table 6(h), is taken as a displacement constraint value
of the proposed model for Fig. 9. Here,rmin = 4Δmin = 0.08
being the same as that of the SIMP method, and empirical
parameters β1=0.003, δ1 = 0.08 and γ=0.05 are adopted. The
results of the half MBB beam optimization are presented in
Fig. 14, Fig. 15 and Table 8, which are obtained by adopting
the proposed method when topology variables of the initial
structural model all are 1.0. It is seen from Fig. 15 that the
black and white fraction, the volume fraction and the con-
straint displacement stably and smoothly change with an in-
crease in outer iteration number. It is found from Fig. 10h,
Table 6h, Fig. 14h and Table 8h that the proposed method
can obtain an optimal topology with a smaller volume and a
basic same black and white fraction than the SIMPmethod for
the same vertical displacement of the applied load point.

7.3 An arch bridge example under multiple load cases

Figure 16 shows the two-dimensional design domain of an
arch bridge, where the most left and most right sides in the

range of 0.6 m at the bottom of the bridge, and the upper ends
in the range of 0.4 m at its left hand and right hand sides,
respectively, are fixed. A uniform distributed load of ρ1 =
30kN/m is acting on the top side of a non-designable deck
layer (its thickness is 0.4 m) of the bridge. And another load
case with a uniform distributed load of ρ2 = 460kN/m being
applied on the partial top side with a 0.8 m interval centered at
point A of the bridge top, is considered. Here, points A, B and
C are uniformly distributed at the top side of the bridge. And
the third load case with three same uniform distributed loads
of ρ3 = 270kN/m being applied on three partial top sides with
three same 0.8 m intervals centered at points A, B and C of the
bridge, respectively, is given. The gravity load is not

(a) Outer loop iteration 5 (b) Outer loop iteration 10

(c) Outer loop iteration 15 (d) Outer loop iteration 20

(e) Outer loop iteration 30 (f) Outer loop iteration 50

(g) Outer loop iteration 153 (h) Outer loop iteration 155,

the optimal topology extracted

Fig. 17 The topology
distribution optimization history
of an arch bridge structure, which
is obtained by using the proposed
method

Fig. 18 The volume fraction and black-white fraction histories of the
bridge structure, obtained by using the proposed method
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considered in the structural analyses and optimization. The
bridge is assumed to be constructed by reinforced concrete.
The Young’s modules E0 = 4.25MPa and Poisson’s ratio ν =
0.2 are specified in the analyses.

The structural maximum domain is modeled by adopting a
finite element mesh model with 152×50 equal-size four-node
plane strain elements, its two-dimension size is 30.4m× 10m,
and its thickness is 10m. And a linear sensitivity filter with radius
rmin = 4Δmin = 0.8m is adopted. The thickness of the bridge desk
is 0.4m and the bridge desk is defined as a non-design domain.

A prescribed displacement 14.9um is taken as the vertical
displacement constraint values of A, B and C points under the
three load cases for the model (5) of Fig. 16. Here, empirical
parameters β1=0.003, δ1 = 0.06 and γ=0.04 are adopted. The
results of the bridge optimization are presented in Fig.
17 and Fig.18, which are obtained by the proposed
method when topology variables of the initial structural
model all are 1. The initial and final structural volumes
are 3040m3and 877.0m3, respectively. Table 9 gives the
constraint direction displacement data of the initial and
final topologies. Fig. 18 shows that the black and white frac-
tion changes in a way of fluctuations during the optimization
process. When components disappear at some iteration steps
(Fig. 17), there are several big jumps in the black and white
fraction curve of Fig. 18. The aforementioned good feature
can be found in Figs.17-19.

8 Conclusions

A novel displacement constrained optimization approach for
black and white structural topology designs under multiple
load cases, is proposed. Some examples are given to demon-
strate that the feasibility and effectiveness and features of the
proposed method. The following conclusions can be drawn:

(1) Two improved schemes dealing with trust regions and
adjustments of constraint limits, respectively, are pro-
posed. The proposed approximate optimization model
possesses a tight constraint feature and can approximate-
ly adhere to the binary change nature requirement of
structural topology optimization.

(2) An improved optimization method for a displacement
constrained topology optimization problem is proposed,
which possesses convergence and the robustness of the
optimization process.

(3) The proposed method can obtain an optimal topology
with a predominantly black-and-white distribution, and
a series of topologies with clear profiles during an opti-
mization process for the topology optimization problem
under multiple load cases.

(4) The disconnected constraint point problem and the
solid/empty solving issue of topology optimization with
more structural behavior constraints under multiple load

Fig. 19 The vertical
displacement optimization
histories of the bridge constraint
points, obtained by using the
proposed method

Table 9 The constraint direction displacement data of the initial and final topologies

The initial structural displacements The final structural displacements

Constraint point numbering A B C A B C

Displacements of load case 1 / um 3.954 5.390 3.954 14.78 14.05 14.78

Displacements of load case 2 / um 2.115 5.186 2.115 3.968 14.91 3.968

Displacements of load case 3 / um 4.144 5.527 4.144 14.86 13.47 14.86
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cases, require further mathematical and scientific
developments.
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