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Abstract A design problem of finding an optimally stiff
membrane structure by selecting one–dimensional fiber
reinforcements is formulated and solved. The membrane
model is derived in a novel manner from a particular three-
dimensional linear elastic orthotropic model by appropriate
assumptions. The design problem is given in the form of two
minimization statements. After finite element discretiza-
tion, the separate treatment of each of the two statements
follows from classical results and methods of structural
optimization: the stiffest orientation of reinforcing fibers
coincides with principal stresses and the separate selection
of density of fibers is a convex problem that can be solved
by optimality criteria iterations. Numerical solutions are
shown for two particular configurations. The first for a stat-
ically determined structure and the second for a statically
undetermined one. The latter shows related but non-unique
solutions.
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2 Department of Mechanical Engineering, Jönköping
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1 Introduction

A finite element membrane shell model was recently
derived by Hansbo and Larson (2014) using tangential dif-
ferential calculus, meaning that the problem is set in a Carte-
sian three dimensional space as opposed to a parametric
plane, thereby generalizing the classical flat facet element
shell model to higher order elements. The present study
further extends this membrane model by allowing for non-
isotropic materials. In particular, one–dimensional fibers are
added to a base material, modeling, e.g., the reinforcements
seen in modern racing boat sails. The plane stress property,
as well as the membrane property of complete out-of-plane
shear flexibility, is shown to be exact consequences of cer-
tain material parameter selections for a three-dimensional
transversely isotropic base material. This together with
a displacement assumption reduces the three dimensional
model to the surface model. Based on this finite element
model we formulate a design problem where we seek to find
the best fiber reinforcements of the membrane, meaning that
we find the stiffest structure by both rotation and sizing
of the fibers. The formulation consists of two minimiza-
tion statements. Since these two statements relate to rotation
and sizing of the fibers, respectively, such a formulation ties
directly to the sequential iterative treatment suggested for
similar problems previously (Bendsøe and Sigmund 2002).
The optimal rotation is found by identifying the material
as a so-called low shear material, implying that the optimal
orthotropic principal directions coincides with the principal
stress directions (Pedersen 1989, 1991), while the optimal
thickness distribution is found by a classical optimality cri-
teria iteration formula. On a more general level the approach
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is reminiscent of so called block coordinate descent methods
(Bertsekas 1999; Beck and Tetruashvili 2013).

2 The model

We consider a material that is a mixture of a transversely
isotropic linear elastic base material and n reinforcing fibre
materials. The transversely isotropic material has material
constants that satisfy the plane stress assumption as well
as the membrane behaviour of having complete flexibility
when sheared perpendicularly to the membrane surface.

2.1 Geometry

The geometry of the membrane is defined by an orientable
smooth surface � with normal vector field n. For any point
x ∈ R

3 we denote the signed distance function relative to �

by ζ(x). The membrane with thickness t then occupies

�t = {x ∈ R
3 : |ζ(x)| < t/2}.

Note that ∇ζ(x) = n for x ∈ �. For a sufficiently small
t , the orthogonal projection point p(x) ∈ � of x ∈ �t is
unique and given by

p(x) = x − ζ(x)∇ζ(x).

Moreover, for x ∈ �t , the linear projection operator of
vectors onto the tangent plane of � at p(x) is

P � = I − n ⊗ n,

where I is the identity tensor and ⊗ denotes exterior prod-
uct. In the sequel we will also need the projection operator
onto the one-dimensional subspace spanned by n, i.e.,

N� = n ⊗ n.

Note that P �N� = N�P � = 0. The directions of the
reinforcing fibers are given by vector fields si , i = 1, . . . , n,
such that si · n = 0. Projections onto these directions are
then defined by

Si = si ⊗ si .

Clearly P �Si = SiP � = Si .

2.2 The material

The base material is transversely isotropic with respect to
an axis defined by n. Such a material can be described
by an elasticity tensor expressed in terms of five material

constants δ1, δ2, δ3, γ and μ according to Lubarda and Chen
(2008) and Nardinocchi and Podio-Guidugli (1994), so that
the fourth order tensor of elastic moduli of the base material
E

base can be written

E
base = δ1N� ⊗ N� + δ2(N� ⊗ P � + P � ⊗ N�)

+μ(P �⊗P � + P �⊗P �) + δ3P � ⊗ P � +
+γ

2
(N�⊗P � + N�⊗P �

+ P �⊗N� + P �⊗N�). (1)

Here dyadic products of second order tensors are defined by
their action on a third second order tensor, i.e.,

(A ⊗ B)C = (B : C)A, (A⊗B)C = ACBT ,

(A⊗B)C = ACT BT ,

where a double dot indicates inner product of second order
tensors.

The reinforcing fibers have elasticity tensors of the form

E
fiber
i = αiSi ⊗ Si , 1 = 1, . . . , n, (2)

where αi are Young type elasticity coefficients.
The constitutive law of the membrane material is now

taken as being composed of a constrained mixture of base
material and reinforcing material. The amount of each mate-
rial is defined by fractions tb and ti , i = 1, . . . , n, of
the membrane thickness t . The total constitutive tensor is
assumed as

E = tb

t
E

base +
n∑

i=1

ti

t
E

fiber
i , t = tb +

n∑

i=1

ti , (3)

and the linear constitutive law is then

σ = E[ε], (4)

where σ and ε are the stress and strain tensors, respec-
tively. The linear mixing rule (3), widely used in composite
mechanics (Jones 1975; Thomsen 1991), corresponds to the
so-called Voigt upper bound on the effective elastic mod-
ulus tensor of two-phase materials. More precise bounds
of the Hashin-Shtrikman type are given in Parnell and
Calvo-Jurado (2015).

2.3 Membrane stress assumptions

We define a membrane material by the requirements that
it is always in a state of plane stress and no shear stress
perpendicular to the membrane surface exists, i.e.,

N�σN� = 0, P �σN� = N�σP � = 0. (5)
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The zero bending stiffness behaviour of membranes will be
a result of a kinematic assumption introduced subsequently.
Inserting (4) into (5) gives

N�σN� = tb

t
[δ1N�(N� : ε) + δ2N�(P � : ε)]

= 0, (6)

P �σN� = tb

t
[γP �εN�] = 0. (7)

Thus, we conclude that the constitutive constant γ needs to
be zero and that the strain perpendicular to the membrane is
controlled by the in-plane strain as

N� : ε = −δ2

δ1
P � : ε. (8)

Moreover, the in-plane stress can be calculated from (4) as
follows:

P �σP � = tb

t
[ δ2P �(N� : ε) + δ3P �(P � : ε)

+2μP �εP �] +
n∑

i=1

ti

t
αiSi (Si : ε),

and when using (8) we get

P �σP � = tb

t
[δP �(P � : ε) + 2μP �εP �]

+
n∑

i=1

ti

t
αiSi (Si : ε), (9)

where

δ = δ3 − δ2
2

δ1
.

The elasticity coefficient μ equals the in-plane shear mod-
ulus, while δ is a plane stress Lamé coefficient. The two
elasticity moduli δ and μ can be expressed in terms of
in-plane Young and Poisson moduli E and ν as

δ = νE

1 − ν2
, μ = E

2(1 + ν)
.

The volumetric specific strain energy can, due to (5) be
written as

Ws = 1

2
σ : ε = 1

2
(P �σP �) : ε.

Inserting (9) we get

Ws = 1

2

(
E

memb[ε]
)

: ε,

where the membrane elasticity tensor is defined by

E
memb = tb

t
[δP � ⊗ P � + μ(P �⊗P � + P �⊗P �)]

+
n∑

i=1

ti

t
αiSi ⊗ Si .

2.4 Potential energy

The strain is derived as usual as the symmetrized gradient
of the displacement vector u:

ε = ε(u) = 1

2
(∇ ⊗ u + (∇ ⊗ u)T).

Therefore, we can regard the volume specific strain energy
as a function of the displacement field, i.e., Ws = Ws(u).

We now introduce the basic kinematic assumption that all
material points in �t that lie along a normal to the surface
� have the same displacement vector, i.e.,

u(x) = u(p(x)), x ∈ �t .

This kinematics imply that bending of the membrane is
essentially eliminated and no bending stiffness, despite the
finite thickness, is present.

The total strain energy, which is the volume integral of
Ws can then be written:

W =
∫ t/2

−t/2

∫

�

Ws(u(p(x)) d�ζ dζ,

where d�ζ is an area element for a surface parallel to � at
the distance ζ , which reads

d�ζ = d�(1 + ζH + ζ 2K),

where d� is the area element of �, and H and K are the
mean curvature and Gaussian curvature, respectively. For a
membrane that is thin compared to its curvature we can use
the approximation

d�ζ ≈ d�.

The total potential energy is now taken as

	 = t

2

∫

�

Ws(u(x)) d� − 〈F , u〉�,

where the force F is a member of the dual space of
displacement fields on � and 〈·, ·〉� is a duality paring.

3 Equilibrium

We define the membrane forces (per unit length) as

M = tP �σP �.

Stationarity of the potential energy gives the following
principle of virtual work:
∫

�

M : ε(v) d� = 〈F , v〉�, (10)

for all kinematically admissible fields v. Such fields will
generally be restricted in the tangential direction on a subset
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of ∂�. We will assume that loading on the membrane can
be written as

〈F , v〉� =
∫

�

f · v d� +
∫

S

p · v dS,

where f is a force per area over �, and p is a force per unit
length over the part S of ∂� where the displacement is not
prescribed. Using now Lemma 2.1 of Gurtin and Murdoch
(1975), i.e., an integral theorem for surfaces, we obtain the
equilibrium equations

−div� M = f , (11)

Mν = p, (12)
where div� is the surface divergence, and ν is a unit vec-
tor of ∂�, tangential to �. Since Mν will also be a vector
tangent to � we conclude that p can have no component
perpendicular to the surface.

4 Design problem

From now on we will consider the special case of an
orthotropic material consisting of two orthogonal families
of fibers, consisting of the same material, i.e., α1 = α2 = α.
We use the notation s = s1 and s⊥ = s2.

The orientation of the fibers in the tangent plane of the
membrane, i.e., s and s⊥, can be defined by an angle θ

belonging to

� = {θ | 0 ≤ θ ≤ 2π}.
This angle will be a design variable in the optimal design
problem. Other such design variables are t1 and t2, i.e., the
fiber contents in the two orthogonal directions. The field
t = (t1, t2) belongs to the set

T =
{
t = (t1, t2)| tα ≤ tα ≤ tα, α = 1, 2,

∫

�

(t1 + t2)d� ≤ V
}
,

where tα and tα are non-negative upper and lower bounds
and V is a limit for the total amount of material that can be
used for the fibers.

The potential energy is seen as a function

	 : V × T × � → R,

where V is the set of kinematically admissible displace-
ments. Minimizing 	 with respect to the first argument
gives the equilibrium displacement as a function of the
design variables, i.e., u = u(t, θ). As a measure of stiffness
we use the so called compliance

C(t, θ) := 1

2
〈F , u(t, θ)〉� = −	(u(t, θ), t, θ)

= − min
v∈V

	(v, t, θ).

Our design goal is to find a design that minimizes the com-
pliance. We choose to split this into two parts as follows:
find t∗ ∈ T and θ∗ ∈ � such that

(P)

{
C(t∗, θ∗) = mint∈T C(t, θ∗)
C(t∗, θ∗) = minθ∈� C(t∗, θ).

The splitting into two minimization statements is partly
motivated by the numerical treatment, where the two sub-
problems are solved in sequence, reminiscent of a block
coordinate descent method, Bertsekas (1999) and Beck and
Tetruashvili (2013). However, it is also motivated by the
fact that each of the two problems are well-posed in the
sense that existence of solutions can be proved, as discussed
below.

The second sub-problem of (P), i.e., finding an optimal
orientation for an orthotropic material, has been exten-
sively discussed by Pedersen (1989, 1991) and Hammer
(1999), where it is treated in its present form, using θ

as variable. However, the problem can also be rewritten
in terms of so-called lamination parameters, see Hammer
et al. (1997) and Bendsøe and Sigmund (2002). Such a
rewriting gives an objective that is linear, making a proof of
existence of solutions possible and thereby indicating that
regularization, e.g., by filters, is not necessary. However,
checkerboard-like patterns were found in the finite element
scheme used in Thomsen and Olhoff (1990) and Thom-
sen (1991) for a particular choice of material, interpreted
as having one fiber direction only. Such anomalies have
not been seen in our calculations and following Pedersen
(1989, 1991) the second sub-problem of (P) is solved
locally, i.e., the orientation of the material is determined
by the local stress state only, and in particular the orienta-
tion of principal stresses and strains. Due to the plane stress
assumption there are only two possibly non-zero principal
components of the stress tensor σ , denoted σI and σII , such
that |σI | ≥ |σII |. The corresponding principal directions
(eigenvectors) are tangent to the membrane plane. Obvi-
ously, these facts also holds for the principal components of
M , i.e., MI and MII , such that |MI | ≥ |MII |. For a so-
called low shear orthotropic material, the solution θ∗ of the
second sub-problem of (P) represents an orientation where
the orthotropic principal directions coincide with the princi-
pal stress or membrane force directions, which are also the
principal strain directions. Moreover, the orthotropic prin-
cipal direction having the highest stiffness should be in the
direction corresponding to σI and MI . In the Appendix we
show that the particular orthotropic material defined above,
having two families of fibers in orthogonal directions s and
s⊥, is indeed a low shear material and, therefore, the opti-
mal directions of s and s⊥ are in the directions of principal
stress. Moreover, if t1 > t2 then s is in the direction of σI .

The first sub-problem of (P) is a classical stiffness opti-
mization problem, albeit having two design fields, one for
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each fiber orientation. This is a convex problem that can
be proved well-posed (see, e.g., Petersson 1996) and reg-
ularization by filters is not needed. It can be solved by
satisfying the optimality conditions, leading to a fixed point
iteration formula. The surface elasticity tensor S

memb =
t E memb is regarded as a function of the design, i.e.,
S

memb = S
memb(t, θ). The optimality conditions of the first

sub-problem of (P) become (Bendsøe and Sigmund 2002;
Christensen and Klarbring 2009):

∂S memb

∂tα
[ε(u)] : ε(u) = � + λ+

α − λ−
α , α = 1, 2, (13)

� ≥ 0, �

(∫

�

(t1 + t2)d� − V

)
= 0, (14)

λ+
α ≥ 0, λ−

α ≥ 0, λ−
α (tα − tα) = 0,

λ+
α (tα − tα) = 0, α = 1, 2, (15)

where �, λ+
α and λ−

α are Lagrangian multipliers, t ∈ T and
u = u(t, θ) is the displacement solution, i.e., the minimum
field with respect to v of 	(v, t, θ).

Note that

∂S memb

∂tα
= αSα ⊗ Sα.

Concerning existence of solutions to the full problem (P),
this, as well as proof of convergence of the iterative treat-
ment, seems to be open questions. However, experience in
similar problems, e.g., in Bendsøe and Sigmund (2002) and
Thomsen and Olhoff (1990), indicates that the approach is
viable.

5 Discretization and algorithm

For the numerical treatment of (P) we need to introduce a
discrete approximation. The discretization of the state prob-
lem, i.e., the problem of finding the minimum displacement
u ∈ V of the potential energy 	 for a given design θ ∈ �

and t ∈ T , follows Hansbo and Larson (2014). This implies
introducing a triangulation of � resulting in a discrete sur-
face, with corresponding discrete normal vector field and
projections. The displacement field is approximated using
the same triangulation but is possibly of different order.

In addition to the approximation of the state problem
we also need to approximate the design fields t ∈ T and
θ ∈ �. This is achieved by using point values: these are
denoted t i = (t1i , t2i ) and θi for point i. In particularly, we
use superconvergence points of the finite elements (Barlow
1976). Such a discretization means that (13) and (15) are
imposed at these evaluation points and the integral in (14) is
replaced by a sum.

Let

Ak
αi =

(
∂S memb

∂tα
[ε(uk)] : ε(uk)

)

i

,

be the left hand side of (13) evaluated at point i and for a
displacement field uk . Also, let Bk

αi = (�k)−1Ak
αi where

�k is a current iterate of the Lagrangian multiplier �. For a
given displacement iterate uk and rotation θk the following
fixed point iteration formula is suggested by the optimality
conditions (13) through (15):

tk+1
αi =

⎧
⎪⎪⎨

⎪⎪⎩

tαi if tkαi(B
k
αi)

η ≤ tαi

tαi if tkαi(B
k
αi)

η ≥ tαi

tkαi(B
k
αi)

η otherwise,

(16)

where tαi and tαi are point values of the upper and lower
bounds and 0 < η ≤ 1 is a damping coefficient.

The following algorithmic steps, the convergence of
which gives satisfaction of a discrete version of the optimal-
ity conditions of (P), are now suggested:

1. For a given design θk and tk , solve the state prob-
lem, i.e., find the minimum displacement field of
	(v, tk, θk) so as to obtain the current displacement
iterate uk .

2. Obtain new fiber thickness distributions by the optimal-
ity criteria formula (16) where

– �k is determined such that

∑

i

(tk+1
1i + tk+1

2i ) d� ≤ V.

A local iteration is needed for this.

3. For each integration point, calculate principal stresses
(and/or principal membrane forces). Take s to corre-
spond to the main material direction, i.e., to t1i , such
that t1i ≥ t2i , and chose θk+1 so that this s aligns with
the main principal stress direction.

4. Let k = k + 1 and return to the first step.

Steps 1 and 2 can be iterated several times before continu-
ing with calculation of fiber directions in Step 3. In fact, in
the examples the fixed point iteration (16), for newly calcu-
lated displacement uk , is repeated until convergence before
continuing with the fiber directions in Step 3.

Note that step 3 assumes distinct principal stresses.
Numerically coalescence of such stresses occur with close
to zero probability but may show up as non-convergence
issues. For statically determined structures, i.e., when M is
uniquely determined by (11) and (12), this may be of par-
ticular concern. For such cases that have distinct principal
stresses, step 3 above needs to be performed only once since
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these principal stresses are independent of t . Such prob-
lems essentially become convex since the first part of (P)

is a convex problem. The first problem of Section 6 is stat-
ically determinate but has not everywhere distinct principal
stresses.

Clearly other algorithms than the optimality criteria algo-
rithm are available for solving the first part of problem (P).
General purpose sequential convex approximation meth-
ods (Christensen and Klarbring 2009) like the Method of
Moving Asymptotes (MMA) (Svanberg 1987) could be
directly applied. A variable thickness sheet problem, that has
the same structure and convexity property as the first part of
(P) was solved by MMA in Christensen and Klarbring
(2009), generally needing more iterations than the optimal-
ity criteria algorithm. However, since convergence prop-
erties could be sensitive to parameter values it is hard to
draw general conclusions based on this experience. More-
over, the optimality criteria algorithm can in fact itself be
seen as a particular first order sequential convex approx-
imation method (Christensen and Klarbring 2009) and,
thereby, shows similar properties as MMA. In Thomsen and
Olhoff (1990) and Thomsen (1991) the first part of (P) was
solved by the CONLIN method, see, e.g., Christensen and
Klarbring (2009), which is yet another first order method.
The same range of number of iterations as in this paper were
needed for convergence. Again indicating that essentially
any first order method shows similar behaviour.

A distinctively different algorithmic treatment of (P) is
to solve both types of variables - rotation and sizing - simul-
taneously by a general purpose method. However, such an
approach would not utilize that the second part of (P) has
a known solution in terms of given stresses, and, in par-
ticularly, would not use the special property of statically
determinate problems. Moreover, an explicit parametriza-
tion of the rotation is needed for calculation of sensitivities.
Such a parametrization would involve a cyclic variable,
which together with non-convexity may make a simultane-
ous approach more likely to end up in local minima.

6 Examples

6.1 Oblate spheroid

An oblate spheroid, where � is defined by

x2 + y2 + (2z)2 = 1,

was solved by different finite elements and triangulations in
Hansbo and Larson (2014). Here we treat the same geom-
etry but use an internal pressure p as loading. We seek for
optimal fiber distribution as described in previous sections.
The data are E = 1, ν = 0.3, tb = 0.005, p = 10,
V = 0.01, t1 = t2 = 0.004, t1 = t2 = 0 and α = 1. The

Fig. 1 Optimal fiber distribution of an oblate spheroid, loaded by
internal pressure

initial fiber thickness is uniform and chosen so as to satisfy
the volume constraint as an equality. We use 3072 bilinear 4-
node fully integrated isoparametric elements, implying one
superconvergent point per element and, thus, three design
variables per element. Symmetry is utilized and only half
of the spheroid is modeled. The problem converged in 36
optimality criteria updates and 7 updates of the fiber orien-
tations. As convergence criteria an objective value change
below 0.001% and a change �θ of θ such that cos �θ >

0.999 are used. Note that the problem is statically deter-
minate, but at the poles of the spheroid symmetry implies
that the principal stresses coincide for an exact solution.
This is the reason for the need of several updates of fiber

Fig. 2 Zoomed optimal fiber distribution for the oblate spheroid in
Fig. 1
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Fig. 3 Optimal fiber distribution for a rectangular membrane using
two different initial fiber directions

orientations before convergence, despite the problem being
statically determinate.

What concerns the general features of the solution one
finds, on examination of Figs. 1 and 2, that close to the equa-
tor both fiber families are present, with a compressive stress
in the latitudinal direction. As we move towards the poles
only the longitudinal fiber family is present, while at the
very poles the principal stresses coincide and the direction
of fibers becomes indeterminate.

Fig. 4 Zoomed optimal fiber distribution for the upper rectangular
membrane in Fig. 3

Fig. 5 Iteration history for the upper rectangular membrane in Fig. 3.
Relative objective function values are shown on the y-axis and iteration
numbers are shown on the x-axis

6.2 Membrane strip

A rectangular membrane of shape 1 × 0.5 is fixed along one
of its short sides and loaded by a force q per unit length on a
part of length 0.1 of the other short side, as shown in Fig. 3.
The date are E = 1, ν = 0, tb = 0.005, q = 0.001, V =
0.01, t1 = t2 = 0.008, t1 = t2 = 0 and α = 2. As in the
previous example, the initial fiber thickness is uniform and
chosen so as to satisfy the volume constraint as an equality.

The upper solution of Fig. 3 (see also Fig. 4) is found
using initial fiber directions defined by the rectangle sides.
The lower solution, on the other hand, uses initial direc-
tions defined by principal stress directions found in an initial
calculation where fibers are excluded. The upper problem
converged, using the same tolerances as in the previous
problem, in 28 optimality criteria iterations and 12 updates
of the fiber directions. The lower problem converged in 15
optimality criteria iterations and 6 updates of the fiber direc-
tions. The slightly difference between the two solutions is
likely the result of a possible non-uniqueness of the solution
of problem (P). However, the objective function values for
the two cases are essentially the same.

The iteration history for the upper the solution in Fig. 3 is
shown in Fig. 5. The marked jumps in the curve correspond
to updates of the fiber directions. Note that such updates
may result in higher objective function values since fiber
fractions are not optimal for these new fiber orientations.

7 Conclusions

The classical facet approach to membrane shells was
recently extended to curved elements by Hansbo and Larson
(2014). Here we make a further extension by showing how
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orthotropic material, of fiber type, can be treated in a similar
way, partly inspired by exact plate theory of Nardinoc-
chi and Podio-Guidugli (1994). Based on this orthotropic
membrane shell theory we formulate a stiffness design prob-
lem, where we seek an optimal structure by both rotation
and sizing of reinforcing fibers. The two design variables
- representing rotation and sizing - naturally split the for-
mulation into two minimum statements, which suggests a
sequential numerical treatment, previously used for simi-
lar problems (Bendsøe and Sigmund 2002). This type of
formulation also makes clear the distinct character of stat-
ically determined problems, which occur for large classes
of membrane shells (Ciarlet 2000). For such problems, the
material independent stress state implies that the two min-
imization statements of (P) become decoupled, and the
full problem then means solving a convex sizing problem
and separated local orientation problems, each with known
analytical global minima.

The approach presented in this paper has several intrigu-
ing extensions, that would be important for applications such
as the design of racing boat sails. Inclusion of pre-stress and
wrinkling states related to negative stresses are examples of
this. Extension to large deformations, based on the model of
Hansbo et al. (2015), should also be of clear interest.

It may also be noted that, while the large design free-
dom allowed when optimizing orientation and thickness
independently at each point may seem unrealistic from
a manufacturability point of view, restrictions involving
patches of equal designs can easily be added to the for-
mulation. However, new manufacturing methods, like 3D
printing, constantly reduces the need for such constraints.
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Appendix

As a special case of the fiber material defined by E
memb,

consider the orthotropic material consisting of two orthogo-
nal families of mechanically equal fibers, i.e., α1 = α2 = α.
We will represent the constitutive law of such a material in
the orthogonal base {s, s⊥, n}, where s = s1 and s⊥ = s2.

The non-zero part of the stress tensor is P �σP � and in the
indicated base we have:

σ11 := s · (P �σP �)s = S : (P �σP �) = Aε11 + Bε22,

(17)

σ22 := s⊥ · (P �σP �)s⊥ = Cε22 + Bε11, (18)

σ12 := s · (P �σP �)s⊥ = D(ε12 + ε21) = 2Dε12, (19)

where

ε11 = s · (εs) = S : ε, ε22 = s⊥ · (εs⊥),

ε12 = s · (εs⊥), ε21 = s⊥ · (εs)

and

A = tb

t
(δ + 2μ) + t1

t
α, B = tb

t
δ,

C = tb

t
(δ + 2μ) + t2

t
α, D = tb

t
μ.

Since there is no coupling between normal and shear
stresses, one concludes that the principal material directions
are given by s and s⊥. Moreover, the condition defining a
so-called low shear material is that the constant β below is
non-negative, which is indeed the case:

β = A + C − 2B − 4D = t1 + t2

t
α ≥ 0.

Moreover, A ≥ C obviously follows from t1 ≥ t2.
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