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Abstract In this paper, we propose a new likelihood-based
methodology to represent epistemic uncertainty described by
sparse point and/or interval data for input variables in uncer-
tainty analysis and design optimization problems. Aworst-case
maximum likelihood-based approach is developed for the rep-
resentation of epistemic uncertainty, which is able to estimate
the distribution parameters of a random variable described by
sparse point and/or interval data. This likelihood-based ap-
proach is general and is able to estimate the parameters of any
known probability distributions. The likelihood-based repre-
sentation of epistemic uncertainty is then used in the existing
framework for robustness-based design optimization to achieve
computational efficiency. The proposed uncertainty representa-
tion and design optimization methodologies are illustrated with
two numerical examples including a mathematical problem and
a real engineering problem.

Keywords Interval data . Maximum likelihood . Epistemic
uncertainty . Robust design

1 Introduction

Robustness-based design optimization considers uncertainty in
the objective function and constraints that arises from three
types of sources: natural or physical variability (aleatory

uncertainty), data uncertainty (epistemic), and model uncertain-
ty (epistemic). In recent years, many methods have been devel-
oped for robust design optimization. Some of these methods
can only handle aleatory uncertainty (e.g., Parkinson
et al. 1993; Du and Chen 2000; Doltsinis and Kang 2004;
Huang and Du 2007), while others can handle both aleatory
and epistemic uncertainty (e.g., Dai and Mourelatos 2003;
Youn et al. 2007; Zaman et al. 2011a).

The efficiency of design optimization methods largely de-
pends on how different sources of uncertainty are represented
and included in the design optimization framework. An effi-
cient robust design methodology should be able to treat all
types of uncertainty in a unified manner, thus reducing the
computational effort and simplifying the optimization prob-
lem. This paper focuses on the handling of sparse point and/or
interval data in a manner that facilitates efficient algorithms
for reliability analysis or design optimization. The developed
uncertainty representation method is then used to propose a
new and efficient approach for robustness-based design opti-
mization under epistemic uncertainty.

Epistemic uncertainty regarding input or design variables
can be viewed in two ways. It can be defined with reference to
a stochastic quantity whose distribution type and/or distribu-
tion parameters are not precisely known (Baudrit and Dubois
2006), or with reference to a deterministic quantity whose
value is not precisely known (Helton et al. 2004). This paper
focuses on handling the first definition of epistemic uncertain-
ty, i.e., epistemic uncertainty with reference to a stochastic
quantity, whose distribution type and/or parameters are not
precisely known due to sparse and/or imprecise data; thus
the uncertainty in such quantities is a mixture of aleatory
and epistemic uncertainty.

Most existing methods under epistemic uncertainty assume
that only sparse point data or interval data are available for an
input random variable. However, it is also possible that the

* Kais Zaman
kaiszaman@yahoo.com

1 Bangladesh University of Engineering and Technology,
Dhaka, Bangladesh

2 Dhaka University of Engineering and Technology,
Gazipur, Bangladesh

Struct Multidisc Optim (2017) 56:767–780
DOI 10.1007/s00158-017-1684-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-017-1684-6&domain=pdf


information on an input random variable is available as a mix-
ture of both sparse point data and interval data. In this paper, we
propose an efficient likelihood-based approach for representa-
tion of epistemic uncertainty described by both sparse point and
interval data.

Interval data are encountered frequently in practical engi-
neering problems. Several such situations where interval data
arise are discussed in Du et al. (2005), Ferson et al. (2007) and
Zaman et al. (2011b), for example, a collection of expert opin-
ions, which specify a range of possible values for a random
variable. There exists an extensive volume of literature that
presents efficient probabilistic as well as non-probabilistic
methods to treat interval data in uncertainty analysis and de-
sign optimization problems.

Some studies within the context of probability theory have
focused on representing interval uncertainty by a p-box (e.g.,
Ferson et al. 2007), which is the collection of all possible empir-
ical distributions for the given set of intervals. Other research has
focused on developing bounds on cumulative distribution func-
tions (CDFs) (e.g., Hailperin 1986). Zaman et al. (2011b) pro-
posed a probabilistic approach to represent interval data for input
variables in reliability and uncertainty analysis problems, using
flexible families of continuous Johnson distributions. Zaman
et al. (2011c) developed both sampling and optimization-based
approaches for uncertainty propagation in system analysis, when
the information on the uncertain input variables and/or their dis-
tribution parameters may be available as either probability distri-
butions or simply intervals (single or multiple). The Bayesian
approach has also been used for reliability modeling with episte-
mic uncertainty (Zhang and Mahadevan 2000; Youn and
Wang 2008). One non-probabilistic approach for repre-
sentation of interval data is evidence theory (Shafer 1976).
Evidence theory has been used with interval data for
reliability-based design optimization (Mourelatos and Zhou
2006) and multidisciplinary systems design (Agarwal
et al. 2004). Du (2008) proposed a unified uncertainty
analysis method based on the first-order reliability meth-
od (FORM), where he modeled aleatory uncertainty
using probability theory and epistemic uncertainty using
evidence theory. Other approaches for epistemic uncertainty
quantification based on evidence theory include Guo and
Du (2007) and Guo and Du (2009). A discussion on differ-
ent solution approaches (e.g., interval analysis, fuzzy anal-
ysis) to uncertainty quantification problems with imprecise
data can be found in Zaman et al. (2011b, 2011c).

There is now an extensive volume of methods available for
representation of epistemic uncertainty. However, several of
these existing non-probabilistic methods, when used in the
framework for uncertainty propagation and design optimiza-
tion, can be computationally expensive. One reason is that for
every combination of interval values, the probabilistic analy-
sis for aleatory variables has to be repeated, which results in a
computationally expensive nested analysis (Zaman et al.

2011c). Also, the current probabilistic methods that result in
a family of distributions can be computationally expensive
due to the use of a double-loop sampling strategy.

Sankararaman and Mahadevan (2011) developed a
likelihood-based methodology for representation of epistemic
uncertainty due to both sparse point data and interval data,
where they used the full likelihood function to calculate the
entire PDF of the distribution parameters, instead of maximiz-
ing the likelihood. The uncertainty in the distribution param-
eters is then integrated to calculate a single PDF for the ran-
dom variable, which they referred to as the “averaged PDF” or
the “weighted sum PDF”. In the context of uncertainty prop-
agation, the single PDF approach is computationally efficient
as it eliminates the need for a double-loop sampling strategy
required by the family of distributions-based approach.
However, the implementation of this single PDF approach is
not straightforward as it involves Bayesian updating to ac-
count for uncertainty in distribution parameters and numerical
integration to obtain unconditional PDF for the random vari-
able of interest. Also, this single PDF approach cannot gener-
ate the same probability distribution that the random variable
was previously assumed to follow; the resulting PDF is non-
parametric. However, a parametric distribution is a convenient
choice as it lends itself to easy transformation to a standard
normal space, which then can be conveniently applied in well
known reliability analysis and reliability-based design optimi-
zation methods. Therefore, methods to efficiently represent
and propagate epistemic uncertainty (or a mixture of aleatory
and epistemic uncertainty) in the context of design optimiza-
tion and reliability analysis are yet to be developed.

This paper develops and illustrates a new approach for the
representation of epistemic uncertainty available in the form
of sparse point and/or multiple interval data based on the max-
imum likelihood principle. The proposed methodology solves
a nested optimization formulation to find the worst-case max-
imum likelihood estimates of the distribution parameters of a
random variable described by sparse point and/or multiple
interval data. This worst-case maximum likelihood estimation
(WMLE) approach is general and is able to estimate the pa-
rameters of any known probability distributions. The pro-
posed likelihood-based representation of epistemic uncertain-
ty is then used in the framework for robustness-based design
optimization to achieve computational efficiency.

As mentioned earlier, there exist a few methods for robust
design optimization that can handle both aleatory and
epistemic uncertainty. Zaman et al. (2011a) proposed two for-
mulations for robustness-based design optimization under
both aleatory and epistemic uncertainty, namely nested and
decoupled formulations. In this approach, the uncertainty
analysis for the epistemic variables is carried out inside the
design optimization framework, which makes these methods
computationally expensive. In addition, this approach results
in an overly conservative design. Lee and Park (2006)
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developed a nominal the best type robust design optimization
method using incomplete data (i.e., both fully and partially
observed data) on a random variable to calculate the optimal
operating conditions for the process based on a dual response
approach. The efficiency of this surrogate based optimization
method is highly dependent on the accuracy of surrogate
modeling. In addition, this method has the following limita-
tions. First, this method requires that the underlying random
variable be normal. Second, this method is not applicable to
all kinds of multiple interval data. In particular, this method is
not suitable for the case, where there exists a common region
of overlap among the intervals. Third, this approach underes-
timates input uncertainty.

Most existing methods of robust design are computation-
ally expensive and result in an overly conservative or overly
optimistic design. In this paper, a single-loop formulation is
proposed to completely separate the epistemic analysis from
the design optimization framework to achieve computational
efficiency. In the context of interval uncertainty, the proposed
likelihood-based single-loop approach generates realistic so-
lutions as the resulting design is not too optimistic or too
conservative. In order to investigate the efficiency of the pro-
posed method, the robust optimization method (i.e.,
decoupled formulation) developed in Zaman et al. (2011a) is
also studied in this paper. We have also studied and modified
the robust optimization method developed in Lee and Park
(2006) to include non-normal random variables. The proposed
method is illustrated by using a mathematical example and an
engineering example (the conceptual level design process of a
two-stage-to-orbit (TSTO) vehicle).

The rest of the paper is organized as follows. Section 2 de-
scribes the proposed methodology for representation of episte-
mic uncertainty using maximum likelihood principle. Section 3
proposes a robustness-based design optimization framework
that considers sparse point and/or interval data for the random
variables. In Section 4, we illustrate the proposed methods for a
mathematical example and an engineering example. Section 5
provides conclusions and suggestions for future work.

2 Likelihood-based approach to epistemic
uncertainty representation

This section discusses the proposed likelihood-based ap-
proach that estimates the distribution parameters of random
variables described by sparse point and/or multiple interval
data. A brief background on maximum likelihood principle
is provided first.

2.1 Maximum likelihood approach

Likelihood-based approach has been applied particularly to
the estimation of the distribution parameters, when only point

data are available. Let f(x| p) be a conditional distribution
(probability density or mass function) for the random variable
X given the unknown parameters p. For the observed data,
X = x, the function L(p) ∝ f(x|p), conditioned on the parameters
p, is called the likelihood function (Edwards 1972; Pawitan
2001). For n independent and identically distributed observa-
tions of X, the likelihood function of the whole sample can be
written as follows.

L pð Þ∝ ∏
n

i¼1
f xi pjð Þ ð1Þ

The maximum likelihood estimate is then given by

p̂ ¼ argmax
p∈P

∏
n

i¼1
f xi pjð Þ ð2Þ

For computational convenience, instead of maximizing the
likelihood function, we often maximize the log-likelihood
function as given in Eq. (3).

ln L pð Þ∝log ∏
n

i¼1
f xi pjð Þ ð3Þ

Note that the likelihood function expressed in Eq. (1) as-
sumes that point data are available for the random variable X.
However, our focus in this paper is to estimate the unknown
distribution parameters of a random variable X, which is de-
scribed by sparse point and/or interval data. The definition of
the likelihood function is not immediately obvious when the
information on a random variable is available as intervals.
There have been several attempts to extend likelihood beyond
its usual use in inference with point data to inference with inter-
val data, which include Gentleman and Geyer (1994), Meeker
and Escobar (1995), and Sankararaman andMahadevan (2011).

Gentleman and Geyer (Gentleman and Geyer 1994) con-
structed the likelihood function for interval censored data
using the cumulative distribution function (CDF) of the ran-
dom variable. A similar formulation is presented in Meeker
and Escobar (1995) as given in Eq. (4).

L pð Þ∝ ∏
n

i¼1
∫biai f xi pjð Þ ¼ ∏

n

i¼1
F bi pjð Þ−F ai pjð Þ½ � ð4Þ

where the random variable X is described by n intervals and ai
and bi are the lower and upper bounds of the ith interval data,
respectively.

Sankararaman and Mahadevan (2011) modified this for-
mulation to include both point data and interval data in the
likelihood function as follows.

L pð Þ∝ ∏
n

i¼1
f xi pjð Þ

� �
∏
n

i¼1
F bi pjð Þ−F ai pjð Þ½ �

� �
ð5Þ

In Eq. (5), the random variable X is described by a combi-
nation ofm point data and n intervals. Note that in Eq. (5), the
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likelihood function is constructed as the joint probability den-
sity function (PDF) for sparse point data and the joint
cumulative distribution function (CDF) for interval data.
This multiplication may not be justified due to the fact
that the PDF is a measure of relative probability, where-
as the CDF is a measure of probability. Note that a similar
approach can be found in Lee and Park (2006), where
they used Eq. (4) to estimate the distribution parameters for
normal random variables using partially observed observa-
tions. For both partially and fully observed observations, they
used Eq. (5).

Sankararaman and Mahadevan (2011) suggests that the
maximum likelihood estimates of the parameters p can be
obtained by maximizing the expression in Eq. (5) in the pres-
ence of both point data and interval data. However, instead of
maximizing Eq. (5), they used a full likelihood estimate to
construct the PDF of the distribution parameters p. This
likelihood-based approach has the following additional
shortcomings:

First, their maximum likelihood-based approach is not ap-
plicable to all kinds of interval data. For a special case of
overlapping interval data, where there is a region of overlap
common to all intervals, the maximum likelihood estimate of
the variance is zero (Sankararaman and Mahadevan 2011).
Zaman et al. (2011b) proposed moment bounding algorithms
to calculate the bounds on the first four moments for interval
data and showed that the lower bound on the variance for
overlapping interval data having a common region of
overlap is zero. Therefore, it is evident that the maximum
likelihood estimate of variance proposed by Sankararaman
and Mahadevan (2011) is actually the lower bound variance
proposed by Zaman et al. (2011b). This implies that this max-
imum likelihood-based approach underestimates uncertainty.
Second, as mentioned earlier in Section 1, their approach can-
not generate the same probability distribution that the random
variable was previously assumed to follow; the resulting PDF
is non-parametric.

Our focus in this paper is not to calculate the full likelihood
estimate, however, to propose a new approach to estimate the
distribution parameters in the presence of sparse point and/or
interval data which, unlike existing approaches, does not un-
derestimate or overestimate input uncertainty. In the following
section, a maximum likelihood-based approach is proposed
for variable X described by sparse point and/or multiple inter-
val data.

2.2 Proposed worst-case maximum likelihood estimation
(WMLE) approach

For a random variable X described by multiple interval
data, the use of Eq. (2) to find the maximum likelihood
estimates of the parameters, p is not straightforward. Consider
a set of intervals given as lbi ≤ xi ≤ ubi, i = {1,..., n} where n is

the number of intervals. Estimating the parameters p involves
identifying a configuration of scalar points (xi, i = {1, ..., n}),
(where xi indicates the true value of the observation
within the interval) within the respective intervals and
then solving Eq. (2) with this configuration of scalar
points. Therefore, the presence of interval data requires
that the maximum likelihood formulation in Eq. (2) be
solved using every possible configuration of scalar points,
with each configuration resulting in a different estimate for
the same parameter. Theoretically, infinitely many different
estimates of the parameters can be obtained from the given
interval data.

In this paper, we solve this problem as a nested optimiza-
tion problemwith the objective of the outer optimization prob-
lem being maximization of the likelihood function (Eq. (1))
and the objective of the inner optimization problem being
minimization of the likelihood with the data points
constrained to fall within each of the respective intervals.
The maximum likelihood estimation problem under interval
uncertainty can now be formulated with the following gener-
alized statement, where the objective is to maximize the worst
case likelihood (i.e., lower bound of the likelihood, which is
due to the epistemic uncertainty):

max
p

min
x

f x pjð Þ ¼ log L p; xð Þð Þð Þ
� �

s:t: lbi≤xi≤ubi for i ¼ 1; 2; :::; n

ð6Þ

where the decision variables x of the inner loop optimi-
zation problem are the configurations of multiple interval data
(x = [x1x2x3… xn]), which are constrained to fall within the
respective intervals ([lb ub]).

Note that in this formulation, the outer loop decision vari-
ables p are the parameters of the distribution described by the
PDF f(x|p). The outer loop optimization is a classical maxi-
mum likelihood estimation (MLE) problem, where an
MLE is carried out for a fixed configuration of scalar
points. The inner loop optimization is due to the presence of
epistemic uncertainty, where the optimizer searches among
the possible configurations of interval data to calculate the
lower bound of the objective function value. The rationale
behind this minimization problem is to obtain a conservative,
i.e., worst-case estimate of parameters in the presence of epi-
stemic uncertainty.

The proposed worst-case maximum likelihood approach
presented in Eq. (6) can be extended to include both interval
data and sparse point data on a random variable X. Given that
a random variable X is described by m sparse point data and n
intervals and that the data are obtained from independent
sources, the likelihood function for this mixed data type can
now be written as follows. For notational convenience, we
order the observations so that the first m observations are the
point data fixed at the respective point values (c) and the next
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n observations are the interval data restricted to lie within the
respective intervals ([lb ub]).

L pð Þ∝ ∏
m

i¼1
f xi ¼ ci pjð Þ

� �
∏
mþn

i¼mþ1
f xi pjð Þ

� �
ð7Þ

Therefore, the worst-casemaximum likelihood formulation
under this mixed data type can now be expressed as follows.

max
p

min
x

f x pjð Þ ¼ log L p; xð Þð Þð Þ
� �

s:t: lbi≤xi≤ubi for i ¼ mþ 1;mþ 2; :::;mþ n
ð8Þ

The optimization problem in Eq. (8) is solved with the
objective of the outer optimization problem being maximiza-
tion of the likelihood function in Eq. (7) and the objective of
the inner optimization problem beingminimization of the like-
lihood with the first m observations (sparse data points) being
fixed at the respective point values (c) and the next n obser-
vations (interval data) being constrained to fall within each of
the respective intervals.

The proposed maximum likelihood approach is general and
capable of handling different types of data (i.e., interval data or a
mixture of sparse point and interval data) and any known prob-
ability distribution. However, in the following section, we intro-
duce the Johnson family of distributions to fit interval data.

2.3WMLE approach with Johnson family of distributions

The Johnson family is a generalized four-parameter family of
distributions that can represent normal, lognormal, bounded, or
unbounded distributions. Because of their flexibility, Johnson
distributions can be used as a probabilistic representation of the
interval data when the underlying probability distribution is not
known. The Johnson family is a convenient choice among
other four-parameter distributions, because it lends itself to
easy transformation to a standard normal space, which can then
be conveniently applied in well known reliability analyses and
reliability-based design optimization methods.

Zaman et al. (2011c) argued that only bounded probability
distributions are suitable to fit interval data. The use of a
bounded distribution guarantees that the proposed approach
does not estimate distribution parameters that yield realiza-
tions of random variables beyond the actual interval data set
and thereby does not yield overly conservative design. In this
paper, we have used the bounded Johnson distribution to fit
interval data. For a complete description of interval uncertain-
ty, it is required that an interval variable be described using
higher order moments, in addition to the first two moments.
Therefore, a four-parameter distribution (e.g., bounded
Johnson) that uses four moments to estimate the distribution
parameters is a rational choice, as it enables a rigorous, yet
efficient implementation of epistemic uncertainty analysis.

If X follows bounded Johnson distribution and y ¼ X−ξ
λ

� �
,

then its PDF can be written as follows (Johnson 1949):

p yð Þ ¼ δffiffiffiffiffiffi
2π

p � 1

y 1−yð Þ � exp −
1

2
γ þ δlog

y
1−y

� �2( )
; ξ < X < þξ þ λ

ð9Þ

In this paper, we estimate the parameters (δ, γ, ξ and λ) of
the bounded Johnson distribution using the proposed WMLE
approach as follows. Consider the likelihood function for n
independent observations of the random variable X for bound-
ed Johnson distribution,

L δ; γ; ξ;λð Þ ¼ ∏
n

i¼1

δffiffiffiffiffiffi
2π

p � 1
xi−ξ
λ

	 

1−

xi−ξ
λ

	 


� exp −
1

2
γ þ δlog

xi−ξ
λ−xi þ ξ

� �2( )
ð10Þ

As discussed earlier, for computational convenience, in-
stead of maximizing the likelihood function in Eq. (10), we
often deal with the log-likelihood function as given in
Eq. (11) below.

log L δ; γ; ξ;λð Þð Þ ¼ nlogδ−nlog
ffiffiffiffiffiffi
2π

p
− ∑

n

i¼1
log

xi−ξ
λ

	 

− ∑

n

i¼1
log

λ−xi þ ξ

λ

	 


−
1

2
∑
n

i¼1
γ þ δlog

xi−ξ
λ−xi þ ξ

	 
� �2
ð11Þ

The log-likelihood function in Eq. (11) is used in the nested
optimization formulations in Eqs. (6) and (8) to estimate the
worst-case maximum likelihood estimates of the parameters
(δ, γ, ξ and λ) of the bounded Johnson distribution for multiple
interval data and mixed data, respectively.

Note that as opposed to commonly used family of distribu-
tions approach (Zaman et al. 2011b) to represent interval un-
certainty, the proposed method generates a single PDF for a
random variable in the presence of interval uncertainty, which
then can be conveniently used in any existing algorithms for
uncertainty propagation and design optimization.

In the following section, we propose a new methodology
for robustness-based design optimization using the proposed
likelihood-based representation of epistemic uncertainty.

3 Robustness-based design optimization
under epistemic uncertainty

3.1 Existing methods

The robustness-based design optimization problem under
aleatory uncertainty alone can be formulated as follows
(Zaman et al. 2011a):
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min
d

w� μ f d;μz

� �þ v� σ f d;σx;μz;σz
� �� �

s:t: LBþ kσgi d;σx;μz;σz
� �

≤μgi
d; x; zð Þ≤UB−kσgi

d;σx;μz; σz
� �

for all i lbi þ kσxi ≤di≤ubi−kσxi for i ¼ 1; 2; :::;

nrdv lbi≤di≤ubi for i ¼ 1; 2; :::; nddv

ð12Þ

where μf and σf are the mean value and standard deviation of
the objective function, respectively; d is the vector of deter-
ministic design variables as well as the mean values of the
uncertain design variables x; nrdv and nddv are the numbers
of the random design variables and deterministic design vari-
ables, respectively; and z is the vector of non-design input
random variables, whose values are kept fixed at their mean
values μz as a part of the design. w ≥ 0 and v ≥ 0 are the
weighting coefficients that represent the relative importance
of the objectives μf and σf in Eq. (12); gi(d, x, z) is the ith
constraint; μgi

d; x; zð Þ is the mean and σgi d;σx;μz;σz
� �

is
the standard deviation of the ith constraint. LB and UB are
the vectors of lower and upper bounds of constraints gi

's; lb
and ub are the vectors of lower and upper bounds of the design
variables;σxis the vector of standard deviations of the random
variables and k is some constant. The role of the constant k is
to adjust the robustness of the method against the level of
conservatism of the solution.

In the robustness-based design optimization formulation
given in Eq. (12), the performance functions considered
are in terms of the model outputs. The means and stan-
dard deviations of the objective and constraints are estimated
by using a first-order Taylor series approximation (Haldar and
Mahadevan 2000).

The implementation of Eq. (12) requires that variances of
the random design variablesX and the means and variances of
the random non-design variables Z be precisely known, which
is possible only when a large number of data points are avail-
able. However, in practice, only a small number of data points
may be available for the non-design input variables Z. In other
cases, information about random input variables Z may only
be specified as intervals, as by expert opinion. Zaman et al.
(2011a) proposed two formulations for robustness-based de-
sign optimization, namely nested and decoupled formulations,
to take this data uncertainty into account. Their nested formu-
lation does not often guarantee to converge and is computa-
tionally very expensive, because for every iteration of the
epistemic analysis, the design optimization problem under
aleatory uncertainty has to be repeated. Therefore, they pro-
posed decoupled formulations that un-nest the design optimi-
zation problem from the epistemic analysis to achieve some
computational efficiency. However, this is an iterative ap-
proach, where a design problem and an uncertainty analysis
problem for epistemic variables are solved iteratively until

convergence.We can achieve further computational efficiency
if the uncertainty analysis for the epistemic variable is carried
out outside the design optimization framework. In the follow-
ing section, we propose such an efficient single-loop approach
for robustness-based design optimization under both aleatory
and epistemic uncertainty.

3.2 Proposed likelihood-based robust design optimization

In the proposed robustness-based design optimization frame-
work, the uncertainty analysis of the epistemic variables is
done outside the design optimization framework using the
proposed WMLE approach. The resulting single-loop formu-
lation is equivalent to a design formulation under aleatory
uncertainty alone, which completely eliminates the need for
a nested analysis or an epistemic uncertainty analysis within
the design optimization framework. Therefore, the pro-
posed robustness-based design optimization methodolo-
gy can solve the design problem with a marginally in-
creased computational effort than a design formulation under
aleatory uncertainty alone, where the increased computational
cost is due to the worst-case maximum likelihood estimates of
epistemic uncertainty.

The proposed single-loop formulation for the likelihood-
based robust design optimization can be expressed as:

d* ¼ argmin
d

w� μ f d;μ*
z

� �þ v� σ f d;σx;μ
*
z ;σ

*
z

� �� �
s:t: LBþ kσgi d;σx;μ

*
z ;σ

*
z

� �
≤μgi

d; x; zð Þ≤UB−kσgi

d;σx;μ
*
z ;σ

*
z

� �
for all i lbþ kσx≤d≤ub−kσx

ð13Þ

In Eq. (13), μz
* and σz

* are the worst-case maximum like-
lihood estimates of the mean values and standard deviations,
respectively, of the non-design epistemic variables z obtained
through the proposed likelihood-based approach discussed in
Section 2. Note that unlike the nested and decoupled formu-
lations discussed in Section 3.1 where the mean values of the
non-design epistemic variables are used as optimization deci-
sion variables, in the proposed robustness-based design opti-
mization formulation in Eq. (13), the mean values of the epi-
stemic variables are kept fixed at μz

*.
Since the optimization formulation in Eq. (13) is solved

with a fixed set of non-design epistemic variables, Eq. (13)
is equivalent to a robust design formulation under aleatory
uncertainty alone. Unlike the nested formulation, the proposed
formulation does not suffer from any convergence issues. The
proposed formulation also does not require any epistemic
analysis within the design optimization framework.

Note that the decoupled approach was developed in
Zaman et al. (2011a) to account for epistemic uncertainty in
robustness-based design optimization. Since this method uses
the upper bound variances of the epistemic variables and
searches among the possible mean values of epistemic
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variables to find optimal solution where the objective being
maximization of the cost function, the resulting solution is
overly conservative. This approach selects a distribution that
has the largest variance from a family of distributions.
However, it does not assert that any one CDF in the family
is more or less likely to be the true CDF than the others. On the
other hand, the robustness-based design optimization method
proposed in this paper uses the worst-case maximum likeli-
hood estimates of the mean and variance for the epistemic
variable. Selecting the distribution parameters by minimizing
the maximum likelihood ensures that the robust design prob-
lem is solved using the worst-case most probable estimate of
the variance. However, unlike for the approach developed in
Zaman et al. (2011a), the resulting design is not overly con-
servative as discussed later in Section 4.

As mentioned earlier, the mean valuesμz
* and the standard

deviationsσz
* of the epistemic variables are obtained from the

worst-case maximum likelihood estimates of the distribution
parameters. For some known distributions (e.g., normal dis-
tribution), the moments and the distribution parameters are
identical. Hence, the mean (μz) and standard deviation (σz)
of the non-design epistemic variables for the normal distribu-
tion can be directly calculated by the proposed maximum
likelihood approach. For some other distributions (e.g., log-
normal distribution), closed-form formulas are available to
estimate moments from distribution parameters and vice-
versa. However, in this paper, we use bounded Johnson dis-
tribution to model interval uncertainty for which no closed-
form formulas for correspondence between moments and dis-
tribution parameters are available.

In the following discussion, we present a numerical
method to calculate the first two moments (i.e., mean and
variance) of bounded Johnson distribution from the parame-
ters (δ, γ, ξ and λ) obtained through the proposed likelihood-
based approach. The moments, thus calculated, are then used

in Eq. (13) to solve the robustness-based design optimization
problem under epistemic uncertainty.

3.2.1 Estimation of moments from the bounded Johnson
distribution parameters

The numerical integration-based procedure presented below is
not a part of the likelihood-based parameter estimation
methodology presented in Section 2. This procedure is
only required for the design optimization. For uncertain-
ty propagation or reliability analysis under epistemic uncer-
tainty, it is not required to estimate moments from the distri-
bution parameters.

Consider the general standard form of the bounded
Johnson distribution (Johnson 1949),

Z ¼ γ þ δlog
y

1−y

� �
ð14Þ

where Z is a unit normal variable and y ¼ x−ξ
λ ; ξ < x

< ξ þ λ.
The rth moment of the transformation variable y about zero

can be expressed as the following generalized expression
(Draper 1952):

μr yð Þ ¼ 1ffiffiffiffiffiffi
2π

p ∫þ∞
−∞ e

−1
2z

2
1þ e−

z−γð Þ
δ

� �−r
dz ð15Þ

However, as discussed in Draper (1952), this integral is not
easy to solve directly. In this paper, we have used numerical
integration to evaluate Eq. (15). Once the first two central
moments μ1 and μ2 are calculated using Eq. (15), the mean
and the standard deviation of the input random variable X can
be estimated as follows (Draper 1952):

μ xð Þ ¼ ξ þ λμ1 yð Þ ð16Þ
σ xð Þ ¼ λσ yð Þ ð17Þ

where σ yð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 yð Þ− μ1 yð Þð Þp

2.
Once the parameters of the bounded Johnson distribution

are estimated through the proposed WMLE approach, the
mean (μz) and standard deviation (σz) of the epistemic vari-
ables are calculated using Eqs. (15), (16) and (17), which are
then used in the proposed robustness-based design optimiza-
tion formulation given in Eq. (13). Figure 1 illustrates the
proposed WMLE-based robustness-based design optimiza-
tion under both aleatory and epistemic uncertainty.

Note that the robustness-based design optimization formu-
lation developed in Zaman et al. (2011a) considers the worst
case relatively to the robustness function (i.e., objective func-
tion of the robust design), whereas the proposed WMLE ap-
proach considers the worst case relatively to the likelihood
function. Therefore, the worst-case likelihood function may
not necessarily mean the worst-case responses or system

*
z

*
z σμ ,

Parameter estimation for epistemic 

variables using WMLE (Eq. (6)/(8)) 

Aleatory input variables  Moment estimation from distribution 

parameters (Eqs. (15)-(17)) 

Required Design  

,,,

d, σ(x) 
Robust Design Optimization (Eq. (13))

Fig. 1 Likelihood-based approach for robustness-based design
optimization
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characteristics in the robust design. The relationship depends
on the natures of the random variables. However, the advan-
tage of the proposed method is to obtain a unique distribution
for the random variables with interval data so that the double-
loop procedure for robust design can be eliminated.

As mentioned earlier, the proposed maximum likelihood
approach is capable of handling any known probability distri-
bution. However, in this paper, we have used the bounded
Johnson distribution to fit interval data for the sake of illustra-
tion only. Other bounded probability distributions can be eas-
ily substituted in the proposed methodology. For example, if
we substituted Johnson distribution by a simpler probability
distribution (e.g., beta distribution) whose moments are
known analytically, we could easily avoid the calculations that
were required to estimate the mean and variance from distri-
bution parameters. However, since these calculations are not
iterative and do not involve any performance function, i.e., a
computational model (e.g., a finite element code), which is
generally the more expensive analysis in a practical problem,
the computational effort involved in this step is negligible.

In the proposed robustness-based design optimization
framework, we have not used the complete probabilistic in-
formation of the epistemic variables in spite of their availabil-
ity. However, it would be interesting to study how this infor-
mation available as PDF could be utilized to solve robust
design problem using more complex robust design optimiza-
tion methods as discussed below.

First, in the proposed robustness-based design optimization
framework, we have used variance as a measure of variation.
However, there exists other probabilistic measures of robust-
ness in the literature such as percentile difference, confidence
interval, etc. that are able to provide more accurate evaluation
of the variation of the performance function. Second, we have
used the Taylor series expansion method to estimate the mean
and variance of the performance function. Taylor series ex-
pansion is a simple approach. However, for a nonlinear per-
formance function, if the variances of the random variables are
large, this approximation may result in large errors (Du et al.
2004). Several other methods are available in the literature
such as sampling-based methods, and point estimate
methods. Sampling based methods, which require
information on distributions of the random variables, can
provide bet ter precis ion at the expense of large
computational effort. Point estimate methods are often a
more practical alternative. However, they also require
probabilistic information on the random variable. Chang
et al. (1995) showed that in order to enhance the accuracy,
additional statistical information in the form of skewness
and kurtosis, other than the commonly used first two mo-
ments, should be used to estimate the mean and standard de-
viation of the performance function. Third, there are some
methods available in the literature for robust design optimiza-
tion (e.g., Congedo et al. 2014) that take into account also the

higher moments. The idea is obtaining an optimal solution that
is not sensitive to the large variation in the skewness, which is
achieved by adding another objective being minimization of
the absolute value of the skewness. All these approaches can
be easily incorporated in our proposed robustness-based de-
sign optimization framework as we have the complete PDF
information on each epistemic variable.

In the following section, we illustrate our proposed meth-
odologies for worst-case maximum likelihood estimation and
robustness-based design optimization with sparse point and/or
interval data.

4 Numerical examples

The proposed worst-case maximum likelihood approach and
robustness-based design-optimization formulation are illus-
trated with two numerical examples: 1) a simple mathematical
problem, and 2) an engineering problem (Two Stage To Orbit
(TSTO) vehicle).

4.1 Example 1: Mathematical example

Consider the following design problem:

min
x

f x; zð Þ ¼ x12−z1x1x2 þ x1x22 þ z2x1x3

s:t: g1 xð Þ ¼ −2x12−x1x2 þ x3 þ 5≤0

g2 xð Þ ¼ −x1x2 þ x22−x1x3 þ 5≤0

ð18Þ

In this example problem, the variables xi (for i = 1, 2, 3) are
treated as random design variables and the variables zi (for
i = 1, 2) are treated as non-design epistemic variables. Each
random design variable has a lower bound of 1 and an upper
bound of 10. It is assumed that each random design variable is
normally distributed with a standard deviation of 0.5. The
epistemic variable z1 is assumed to be described by 2 point
estimates {3.5, 4.5} and 3 sets of intervals ([2.8, 3.1], [4.7,
5.0], [5.2, 6.0]). The epistemic variable z2 is assumed to be
described by a multiple interval data set ([1.6, 2.2], [1.8, 2.3],
[2.0, 2.5], [2.1, 2.6], [2.2, 2.7]), which has a common region of
overlap among the intervals.

Note that since the probability distribution types for the
random variables z1 and z2 are unknown; these variables are
represented using the bounded Johnson distributions in the
design optimization framework. The information on the

Table 1 Distribution parameters for z1 and z2

δ γ ξ λ

z1 0.5392 −0.0182 2.8 3.2

z2 0.4915 −0.2745 1.6 1.1
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epistemic variable z1 is available as both sparse point and
interval data. Therefore, the distribution parameters (δ, γ, ξ
and λ) of z1 are estimated by the proposed worst-case maxi-
mum likelihood method using the optimization formulation
given in Eq. (8). Since the epistemic variable z2 is described
by only multiple interval data, its distribution parameters are
estimated using the optimization formulation given in Eq. (6).
Both formulations are solved by the MATLAB solvers
‘fminunc’ and ‘fmincon’. The worst-case maximum likeli-
hood estimates of the distribution parameters for the epistemic
variables are given in Table 1.

We have generated a bounded Johnson CDF for each ran-
dom epistemic variable using the distribution parameters esti-
mated by the WMLE approach. The CDFs for the bounded
Johnson distributions for input variables z1 and z2 are shown
in Fig. 2. In order to verify the results of the proposed ap-
proach, we also use the moment bounding approach devel-
oped in Zaman et al. (2011b) to fit a family of bounded
Johnson distributions. Several sample CDFs from the family
of Johnson distributions for input variables z1 and z2 are also
shown in Fig. 2.

Note that the proposed WMLE approach selects the worst-
case distribution parameters from infinitely many possible
maximum likelihood estimates, not from the family of distri-
butions obtained using the moment bounding approach.
However, we have compared the CDFs obtained by the
WMLE approach with the family of CDFs obtained by the
moment bounding approach, because the later is able to pro-
vide rigorous bounds on the distribution parameters. By rig-
orous, it is meant that the true interval of the possible values
lies within the computed bounds. Therefore, a single CDF for
the interval random variable X obtained by any probabilistic
methodmust lie within the bounds of CDFs obtained using the
moment bounding approach. It is seen in Fig. 2 that the single

CDF obtained using the proposed method is well within the
bounds of CDFs obtained using the moment bounding ap-
proach for each epistemic variable.

Once the uncertainty in the epistemic variable is quantified
as a single bounded Johnson distribution, the next step
is to estimate the mean (μz) and standard deviation (σz) of each
epistemic variable from the bounded Johnson distribu-
tion parameters using Eqs. (15), (16) and (17), which are listed
later in Table 2.

The likelihood-based single-loop robustness-based design
formulation for the design problem given in Eq. (18) can now
be written as:

d* ¼ argmin
d

w� μ f d;μz
*� �þ 1−wð Þ � σ f d; σx;μz

*;σ*
z

� �� �
s:t: μg1

xð Þ þ kσg1 d;σxð Þ≤0
μg2

xð Þ þ kσg2 d; σxð Þ≤0
lbi þ kσxi ≤di≤ubi−kσxi for i ¼ 1; 2; 3 ð19Þ

The mean values and the standard deviations of the objec-
tive function and two functional constraints are obtained
through the first-order Taylor series approximation assuming
independence among the uncertain input variables.

In this paper, k is assumed to be unity. The weight param-
eter w is varied (from 0 to 1) and the optimization problem in
Eq. (19) is solved by the Matlab solver ‘fmincon’. To investi-
gate the efficiency of the proposedmethod, this example prob-
lem is also solved by the decoupled approach developed in
Zaman et al. (2011a). The solutions from both the proposed
and decoupled approaches are presented in Fig. 3. Note that

(a) (b) 

Fig. 2 Comparison between
WMLE-based CDF and family of
CDFs for mathematical problem

17 18 19 20 21 22 23 24
5

5.5

6

6.5

7

7.5

8

8.5 Single-loop approach

Decoupled approach 

Note: On each curve, the weights
(w) range from 0 to 1 right to left

Fig. 3 Robustness-based design optimization for example 1

Table 2 Mean values (μz) and standard deviations (σz) of z1 and z2

z1 z2

Method w μz σz μz σz

Single-loop 0–1 4.4171 0.9693 2.2414 0.3419

Decoupled 0–1 4.1400 1.1218 2.4600 0.4499
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this problem contains a multiple interval data set that has a
common region of overlap among the intervals. Therefore, we
have not solved this problem using the robust design optimi-
zation method developed in Lee and Park (2006).

In Table 2, we present the mean values and the standard
deviations of the epistemic variables used in the single-loop
formulation; for the sake of comparison the optimum values
for the mean and the upper bound standard deviations of the
epistemic variables used in the decoupled formulations are
also included.

It is seen from Table 2 that the mean values and the
standard deviations of the epistemic variables used in
the single-loop approach differ significantly from the
ones used in the decoupled approach. This is obvious
due to the fact that their robustness is not computed from the
same input distributions. However, the results are still compa-
rable as their robustness is computed from the same multiple
interval data.

Figure 3 shows the solutions of the robust design in the
presence of epistemic uncertainty. It is seen in Fig. 3 that, as
the weight (w) increases, the mean of the performance func-
tion decreases, the standard deviation increases, and vice
versa. This is a well known characteristic for any multi-
objective optimization problem. A decrease in the standard
deviation implies that some robustness is achieved in the de-
sign. Therefore, there is a tradeoff between the two objectives,
minimizing the mean as well as the standard deviation of the
performance function.

It is also seen from Fig. 3 that the WMLE-based single-
loop formulation generates smaller values of mean (μf) and
standard deviation (σf) than the decoupled approach. This is

because the decoupled approach results in an overly conser-
vative solution of robust design as it uses the upper bound
variances of the epistemic variables and searches among
the possible mean values of epistemic variables, which is a
maximization problem, to find optimal solution as discussed
in Section 3.

As mentioned earlier in Section 3, the decoupled approach
developed in Zaman et al. (2011a) is an iterative approach,
which required 2 iterations between the design problem and
the uncertainty analysis for the non-design epistemic variables
for convergence for all weights (w) except for one which re-
quired 3 iterations. On the other hand, we just solved the
WMLE-based formulation given in Eq. (19) once to obtain
optimal solutions. It is seen that the proposed WMLE-based
robust design methodology solved this design problem with
only 185 function evaluations, whereas the decoupled ap-
proach required 853 function evaluations. Therefore, for this
example problem, the proposed WMLE-based robustness-
based design optimization is much more efficient than the
decoupled formulation. However, the proposed robustness-
based design optimization approach requires that the
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Aerodynamics Weights/Packaging 

Trajectory 

Fig. 4 TSTO vehicle concept
(Zaman et al. 2011a)

Table 3 Design bounds and standard deviations of the design variables

Design
variables

Lower bound (lb) Upper bound (ub) Standard
deviation

ExpRatio 40 150 9.50

Payload 8000 40,000 2400

SepMach 7 12 0.95

SepQ 40 200 12
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uncertainty in epistemic input variables be quantified as a
single PDF before the start of the design optimization algo-
rithm. Therefore, the efficiency of the proposed design opti-
mization approach partly depends on the efficiency of the
proposed WMLE approach. However, since the proposed
likelihood approach does not involve any performance func-
tion, the computational effort involved in the parameter esti-
mation step is negligible.

Note that the proposed methodology generates optimal so-
lutions that are not overly conservative and performs better than
the existing method (e.g., decoupled approach) in terms of
computational effort. Further, the proposed single-loop ap-
proach has some advantages over the existing method
in terms of epistemic uncertainty modeling. First, unlike
the decoupled approach where epistemic analysis is per-
formed within the design optimization framework, the pro-
posed single-loop approach completely separates the ep-
istemic analysis from the design optimization framework
and thereby achieves computational efficiency. Second,
the proposed approach estimates the distribution param-
eters of the epistemic variables from the same configu-
ration of multiple interval data as opposed to the decoupled
approach where the mean and variance are estimated
from different configurations of multiple interval data,
which is not a feasible approach in the context of inter-
val uncertainty.

4.2 Example 2: Engineering example

In this section, the proposed methods are illustrated for the
conceptual level design process of a TSTO vehicle. This prob-
lem is adapted from Zaman et al. (2011a) and modified
in this example to include both aleatory and epistemic
uncertainty. In this example problem, the multidisciplin-
ary system analysis consists of geometric modeling, aerody-
namics, aerothermodynamics, engine performance analysis,
trajectory analysis, mass property analysis and cost modeling
(Stevenson et al. 2002). In this paper, a simplified version of
the upper stage design process of a TSTO vehicle is used to
illustrate the proposed methods. High fidelity codes of indi-
vidual disciplinary analysis are replaced by inexpensive sur-
rogate models. Figure 4 illustrates the analysis process of a
TSTO vehicle.

The analysis outputs (performance functions) are Gross
Weight (GW), Engine Weight (EW), Propellant Fraction
Required (PFR), Vehicle Length (VL), Vehicle Volume
(VV), and Body Wetted Area (BWA). Each of the analysis
outputs is approximated by a second-order response surface

and is a function of the random input variables Nozzle
Expansion Ratio (ExpRatio), Payload Weight (Payload),
Separation Mach (SepMach), Separation Dynamic Pressure
(SepQ), Separation Flight Path Angle (SepAngle), and Body
Fineness Ratio (Fineness).

In this paper, our objective is to optimize an individual
analysis output (e.g., Gross Weight) while satisfying the con-
straints imposed by each of the design variables as well as the
analysis outputs. It is assumed that four input variables
(ExpRatio, Payload, SepMach, and SepQ) are random design
variables and the remaining two variables (SepAngle, and
Fineness) are the non-design epistemic variables described
by multiple interval data. Each random design variable is as-
sumed to be normally distributed. The numerical values of the
design bounds and the standard deviations of the random de-
sign variables are given in Table 3. The multiple interval data
for the epistemic variables are given in Table 4.

This example problem contains two epistemic variables
(SepAngle and Fineness), for which the probability distribu-
tion types are unknown. In this example, it is assumed that
both SepAngle and Fineness are characterized by bounded
Johnson distributions. We follow the procedure described in
Section 2 to obtain the distribution parameters of SepAngle
and Fineness as given in Table 5.

We use the distribution parameters estimated by the
WMLE approach to fit a bounded Johnson distribution
to each multiple interval data set. For the sake of com-
parison, we have also generated a family of bounded
Johnson distributions for each epistemic variable using
the moment bounding approach outlined in Zaman et al.
(2011b). The results from both the approaches are shown in
Fig. 5. It is seen in Fig. 5 that the single CDF obtained using
the proposed method is well within the bounds of CDFs ob-
tained using the moment bounding approach for each episte-
mic variable.

Once the uncertainty in the epistemic variable is
quantified as a single bounded Johnson distribution,
we then estimate the mean (μz) and standard deviation (σz)
of each epistemic variable from the bounded Johnson distri-
bution parameters using Eqs. (15), (16) and (17), which are
listed later in Table 6.

Table 4 Multiple interval data
for the epistemic input variables SepAngle [8.00, 8.50], [8.20, 8.60], [8.50, 9.00], [8.20, 9.20], [8.80, 9.50]

Fineness [4.00, 4.50], [4.25, 4.75], [4.50, 5.25], [4.50, 5.50], [5.00, 6.00]

Table 5 Distribution parameters for SepAngle and Fineness

δ γ ξ λ

SepAngle 0.4902 −0.2411 8 1.5

Fineness 0.4923 −0.2008 4 2
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The design problem can now be formulated as follows:

d* ¼ argmin
d

w� μGW d;μz
*� �þ 1−wð Þ � σGW d;σx;μz

*;σz
*� �� �

s:t: LB1 þ kσGW d; σx;μz
*;σz

*� �
≤μGW x; zð Þ≤UB1−kσGW d;σx;μz

*;σz
*� �

LB2 þ kσEW d; σx;μz
*; σz

*� �
≤μEW x; zð Þ≤UB2−kσEW d;σx;μz

*;σz
*� �

LB3 þ kσPFR d;σx;μz
*;σz

*� �
≤μPFR x; zð Þ≤UB3−kσPFR d;σx;μz

*;σz
*� �

LB4 þ kσVL d; σx;μz
*; σz

*� �
≤μVL x; zð Þ≤UB4−kσVL d; σx;μz

*; σz
*� �

LB5 þ kσVV d; σx;μz
*; σz

*� �
≤μVV x; zð Þ≤UB5−kσVV d; σx;μz

*; σz
*� �

LB6 þ kσBWA d; σx;μz
*; σz

*� �
≤μBWA x; zð Þ≤UB6−kσBWA d;σx;μz

*;σz
*� �

lbi þ kσxi ≤di≤ubi−kσxi for i ¼ 1; 2; 3; 4

ð20Þ

The mean values and the standard deviations of the
performance functions are estimated by the first-order
Taylor series approximation. The weight parameter w
is varied (from 0 to 1), and the optimization formulation in
Eq. (20) is solved by the Matlab solver “fmincon”. We also
solve this problem using the decoupled approach devel-
oped in Zaman et al. (2011a). Since this problem does
not contain a multiple interval data set that has a common
region of overlap among the intervals, this problem is also
solved by the robust design optimization method with incom-
plete data developed in Lee and Park (2006). Note that Lee
and Park (2006) used a nominal the best type formulation,
where they considered robustness in the objective function
only; feasibility robustness, i.e., robustness in the constraint

functions was not considered. In this paper, we have used a
similar formulation as in Eq. (20) for this incomplete
data approach; however, the mean values and the stan-
dard deviations of the epistemic variables have been estimated
using Eq. (4) by assuming that the underlying distribution is
bounded Johnson. The solutions from all the approaches are
presented in Fig. 6.

In Table 6, we present the mean values and the stan-
dard deviations of the epistemic variables used in the
single-loop formulation; for the sake of comparison the
mean values and the standard deviations of the epistemic var-
iables used in the decoupled and incomplete data approaches
are also included.

(a () b)  

Fig. 5 Comparison between
WMLE-based CDF and family of
CDFs for TSTO problem

Table 6 Mean values (μz) and standard deviations (σz) of SepAngle
and Fineness

SepAngle Fineness

Method Weights (w) μz σz μz σz

Single-loop 0–1 8.8597 0.4687 5.1219 0.6264

Decoupled 0–0.8 8.3400 0.5810 5.2000 0.7681

1 8.9600 0.5810 4.4500 0.7681

Incomplete data 0–1 8.6166 0.2623 4.7640 0.3566
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Fig. 6 Robustness-based design optimization for Example 2
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It is seen from Table 6 that the incomplete data approach
results in overly optimistic estimates for the standard deviation
of the epistemic variables (i.e., the standard deviations assume
lower values). Therefore, this approach results in an overly
optimistic design. The decoupled approach selects a distribu-
tion that has the largest variance and results in an overly con-
servative design. On the contrary, the single-loop approach
proposed in this paper results in a design that is not overly
conservative or overly optimistic as the estimated variance is
less than the upper bound variance used in the decoupled
approach and much larger than the one obtained by the incom-
plete data approach.

Figure 6 shows the solutions of the robust design for the
TSTO problem in the presence of epistemic uncertainty. It is
seen in Fig. 6 that for the same value of the mean (μGW) of the
objective function, the likelihood-based single-loop approach
generates smaller values of standard deviation (σGW) than the
decoupled approach. Similarly, for the same value of the stan-
dard deviation (σGW), the optimal solutions obtained by the
single-loop approach have smaller values of the mean (μGW)
than the decoupled approach. However, the incomplete data
approach developed in Lee and Park (2006) results in the
smallest values for both the mean (μGW) and standard devia-
tion (σGW) of the objective function. This behavior is intuitive
given the fact that the decoupled approach results in an overly
conservative design, whereas the incomplete data approach
underestimates input uncertainty and thereby results in an
overly optimistic design.

From engineering and economic perspectives, a design
must be realistic, not too optimistic or too conservative. An
overly optimistic design is disappointing as it may cause a
system to be designed for superoptimal performance, which
may cause faulty operation, whereas an overly conservative
design is likely to cause a system to be designed for subopti-
mal performance, which may leave the competition with a
better design. Therefore, in the context of interval uncertainty,
the proposed likelihood-based single-loop approach generates
realistic solutions as the resulting design is not too optimistic
or too conservative.

As mentioned earlier, the decoupled approach is an
iterative approach, which required 2–3 iterations be-
tween the design problem and the uncertainty analysis for
the non-design epistemic variables for convergence, de-
pending on the weight parameter w. The proposed
WMLE-based robust design methodology solved this design
problem with only 300 function evaluations, whereas the
decoupled approach required 832 function evaluations.
Therefore, for this example problem, the proposed WMLE-
based single-loop robustness-based design optimization is
much more efficient than the decoupled formulations.
However, the incomplete data approach resulted in a compu-
tational effort (350 function evaluations) comparable to the
single-loop approach.

5 Conclusions

This paper proposes a worst-case maximum likelihood esti-
mation (WMLE) methodology to estimate the distribution pa-
rameters of random variable described by sparse point
and/or interval data. The distribution parameters of the
epistemic variables thus estimated are then used to develop an
efficient methodology for robustness-based design optimiza-
tion under both aleatory and epistemic uncertainty. The pro-
posed methodologies are illustrated for two numerical exam-
ple problems – a general mathematical problem and the upper
level conceptual design of a TSTO vehicle.

In this paper, we present a new methodology to convert
sparse point and/or interval data to a probabilistic format.
Unlike the existing family of distributions approach, the pro-
posed approach results in a single PDF for a random variable
described by sparse point and/or interval data. This single
PDF uncertainty representation approach enables an efficient
combined treatment of aleatory and epistemic input uncertain-
ty from the perspective of uncertainty propagation and design
optimization. Existing methods typically produce the maxi-
mum and minimum output quantities of interest and are com-
putationally expensive because they often require a double
loop approach – an uncertainty analysis/design optimization
loop with respect to random variables and an epistemic anal-
ysis loop for extreme responses with respect to epistemic var-
iables. However, in the context of uncertainty propagation, the
proposed single PDF approach can achieve computational ef-
ficiency by eliminating the need for double loop analysis
through the estimation of a single PDF for each epistemic
variable and thereby treating the uncertainty propagation
problem as a single-loop problem.

This single PDF approach also facilitates the implementa-
tion of design optimization under both aleatory and epistemic
uncertainty by completely separating the epistemic analysis
from the design optimization framework. In this paper, we
propose a single-loop formulation for robustness-based design
optimization based on the proposed worst-case maximum
likelihood uncertainty representation method. Unlike the
existing methods that either use a nested optimization formu-
lation or a decoupled approach of optimization, the proposed
single-loop formulation completely eliminates the epistemic
analysis from the design optimization framework to
achieve computational efficiency. The uncertainty analy-
sis for the epistemic variables is performed outside the design
optimization framework. In the context of interval uncertainty,
the proposed likelihood-based single-loop approach generates
realistic solutions as the resulting design is not too optimistic
or too conservative.

The proposed likelihood-based approach is general and is
able to estimate the parameters of any known probability dis-
tributions. However, in this paper, we have used bounded
Johnson distribution to illustrate the proposed method.
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The proposed worst-case maximum likelihood approach
has the following advantages. First, the proposed methodolo-
gy has the ability to convert epistemic uncertainty to probabi-
listic format as a single PDF, which eliminates the need for
any nested or double loop analysis for both uncertainty prop-
agation and design optimization problems. Second, the pro-
posed approach can deal with mixed data, i.e., both sparse
point and interval data on a random variable. Third, unlike
existing approaches, the proposed methodology does not un-
derestimate or overestimate input uncertainty and is able to
retain the parametric form of the distribution. Fourth, the pro-
posed approach is also valid for any type of multiple interval
data, i.e., non-overlapping, overlapping, or mixed intervals (a
combination of the former two). Since both types of uncer-
tainty are treated in a unified manner using single PDF, the
proposed methodologies can facilitate the efficient implemen-
tation of multidisciplinary uncertainty propagation and design
optimization, which are computationally demanding problems
in the presence of both aleatory and epistemic uncertainty.
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