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Abstract A multiresolution topology optimization approach
is proposed using the p-version finite element method (p-ver-
sion FEM). Traditional topology optimization, where a densi-
ty design variable is assigned to each element, is suitable for
low-order h-version FEM. However, it cannot take advantage
of the higher accuracy of higher-order p-version FEM analysis
for generating results with higher resolution. In contrast, the
proposed method separates density variables and finite ele-
ments so that the resolution of the density field, which defines
the structure, can be higher than that of the finite element
mesh. Thus, the method can take full advantage of the higher
accuracy of p-version FEM.

Keywords Topology optimization . Finite element method .

Multiresolution . Density method . Density filter . p-element

1 Introduction

Structural topology optimization aims to find an optimal ma-
terial distribution in a design domain under given boundary
conditions. There have been significant advances in the past
decades and topology optimization has emerged as a powerful
tool for generating innovative designs in various engineering
fields such as microelectrical systems, photonic crystals, flu-
idics, and acoustic. In the popular element-based density
method (Bendsøe and Sigmund 1999; Rozvany et al. 1992),

the design domain is discretized into finite elements, each of
which is assigned a design variable (e.g., density) that is opti-
mized. The optimization process results in different values for
the design variables that define the optimal structure similar to
the way pixels define a gray-scale image. To obtain a more
well-defined design, a finer discretization is needed, requiring
more computational power. Despite the rapid increase in com-
puter performance, the need for efficient approaches to obtain
high resolution designs still remains, especially for three-
dimensional applications.

Numerous efforts to overcome the challenge of the compu-
tational cost of finite element analysis that incorporates topol-
ogy optimization have been documented in the literature. One
approach is to use parallel computing to expedite the finite
element analysis (FEA) (Aage et al. 2014; Aage and
Lazarov 2013; Borrvall and Petersson 2001; Evgrafov et al.
2008; Kim et al. 2004). Others use fast iterative solvers and
nested solution approaches (Amir et al. 2010, 2014; Mello
et al. 2010; Wang et al. 2007), space reduction (Evgrafov
2014), approximate reanalysis (Amir et al. 2009), and adap-
tive mesh refinement (Costa and Alves 2003; Kim et al. 2003;
Stainko 2006) to reduce the total number of finite elements
and/or the number of finite element analyses. There have also
been efforts to employ graphics processing units (GPUs)
(Challis et al. 2014; Schmidt and Schulz 2012) to overcome
the computational cost challenge. All the above-mentioned
studies use the traditional element-based topology optimiza-
tion approach where the same discretization is used for both
the finite element mesh and the design variable set. There have
been some efforts to separate the design optimization and the
analysis model using adaptive scheme (Guest and Smith
Genut 2010; Maute and Ramm 1995). In other recent studies,
methods for improving topology optimization resolution by
separating the design and the analysis models in a
multiresolution framework have been proposed (Nguyen
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et al. 2010a, 2012) and demonstrated in large-scale applica-
tions including reliability-based design and topology optimi-
zation (Nguyen et al. 2010b, 2010c, 2011), geometrical design
of thermoelectric generators (Takezawa and Kitamura 2012),
biomechanics problems (Sutradhar et al. 2010), interactive
topology optimization applications on handheld devices
(Aage et al. 2013), and piezocomposite energy harvesting de-
vices (Vatanabe et al. 2012).

Additionally, various analysis methods have been investi-
gated for topology optimization, among them are the meshless
method, the boundary element method, the finite volume
method, and the isogeometric method. However, the finite
element method (FEM) has been most preferred so far.
Traditionally, each finite element is assumed to have a con-
stant material density that is represented by a design variable,
resulting in the so-called element-based density method. To
increase the analysis fidelity as well as the resolution of the
topology optimization results, one refines the finite element
mesh, i.e., using h-refinement or the h-version FEM. The h-
version FEM is so well suited for the element-based topology
optimization approach that the two are often thought of as an
integral method. As a result, the majority of studies in topol-
ogy optimization employ the h-version FEM for the analysis.
However, the p-version of the finite element method has its
own advantages in analysis and is becoming more and more
popular especially in front-end design tools such as Creo
(Toogood and Zecher 2013). The p-version FEM has been
well developed in the past decades and applied in a variety
of engineering problems ranging from linear to nonlinear,
static to dynamic in both two- and three-dimensional applica-
tions of computational mechanics. The discussion on advan-
tages and disadvantages of the p-version finite element anal-
ysis can be found in (Szabo and Babuska 1991). In contrast to
the h-version FEM, the p-version FEM keeps the finite ele-
ment mesh unchanged while increasing the polynomial order
of shape functions to achieve higher analysis accuracy. With
the p-version FEM, the traditional way of assigning a density
to each finite element is not an effective approach since re-
finement of the analyses does not improve the resolution of
the results. As the polynomial order increases, the resolution
of the results does not change to take advantage of the higher
analysis accuracy.

There have been some efforts to use high-order elements
for topology optimization reported in the literature (Diaz and
Sigmund 1995; Jog and Haber 1996; Nguyen et al. 2013;
Parvizian et al. 2012; Sigmund and Petersson 1998). Higher-
order elements have been used as a means to alleviate the
checker board problem (Diaz and Sigmund 1995), which is
caused by the fact that the analysis using first-order elements
within an h-version FEM is not accurate enough for the ge-
ometry description using an associated element-based topolo-
gy optimization approach. To avoid the checkerboard prob-
lem, using second-order elements is usually sufficient.

However, in practice, it is more computationally efficient to
use a filter (Bruns and Tortorelli 2001; Guest et al. 2004;
Sigmund 2007) together with first-order elements to avoid
the checkerboard problem. Moreover, filter also provides a
means for length scale control which resolves the mesh de-
pendency problem. In contrast, the p-version FEM has its own
advantages in analysis and has gained widespread use. Recent
efforts have been made to perform topology optimization with
higher-order elements (Parvizian et al. 2012), where separate
material and displacement discretizations (Nguyen et al.
2010a) for topology optimization have been used with the
so-called finite cell method (Düster et al. 2008) for analysis.
In terms of method, there are two main differences. First, the
work by Parvizian et al. (2012) uses a heuristic update scheme
while the multiresolution approach employs a mathematical
programming method. The heuristic update scheme in
Parvizian et al. (2012) adjusts a factor α at each material point
based on the ratio of the stress and a stress limit. The factor α
is later used to determine if the material point is solid (α=1) or
void (α=0). As the above problem statement lacks the formal
objective and constraint functions, the approach may not
directly apply to common topology optimization problems
such as minimum compliance or compliant mechanism
problems. Second, Parvizian et al. (2012) use a fictitious do-
main method for finite element analysis, while the
multiresolution approach (Nguyen et al. 2010a) uses the more
widely recognized conformingmesh finite element method. In
the Finite Cell Method (Parvizian et al. 2012), the original
structure domain is embedded in a geometrically larger ficti-
tious domain of a simpler shape. The embedded domain is
then discretized with Cartesian meshes and analyzed with a
high-order approximation. Although in (Parvizian et al. 2012),
the high-order approximation is developed for the fictitious
domain, the high-order element can be used for a conforming
finite element mesh. In (Parvizian et al. 2012), a polynomial
order of 4 or higher is required to obtain good results, while
the multiresolution procedure works well for lower polynomi-
al orders. In addition, Parvizian et al. (2012) only show 2D
applications, while the current study demonstrates the
multiresolution approach in both 2D and 3D applications.

In this paper, the use of p-version FEM for topology
optimization with a conventional mathematical program-
ming framework is investigated and a method that allows
flexible resolution for topology optimization and takes ad-
vantage of the p-version FEM for generating higher reso-
lution results is proposed. The remainder of the paper is
structured as follows: Section 2 reviews the p-version
FEM; Section 3 discusses the design and the analysis
model in topology optimization; Section 4 introduces the
multiresolution topology optimization approach (MTOP)
for the p-version FEM; Section 5 presents numerical stud-
ies; Section 6 provides additional examples, and finally
Section 7 concludes the paper.
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2 The p-version of the finite element method

The p-version of the finite element method is well developed
and documented (Düster et al. 2001; Szabó et al. 2004; Szabo
and Babuska 1991). This section provides a summary of key
aspects relevant to the proposed method for the completeness
of the paper. The p-version FEM reduces approximation error
inherent in finite element analysis approaches by progressively
increasing the polynomial degree of element shape functions.
An important difference of the p-version FEM from the classi-
cal h-version FEM is in the use of the hierarchical shape func-
tions that have orthogonality properties. The shape functions
for the p-version FEM are constructed using Legendre polyno-
mials (Szabo and Babuska 1991), which form a hierarchical
set. However, the proposed method can be used with standard
higher-order finite elements, in which the shape functions are
constructed from Lagrange polynomials (Cook 2007). The pro-
cedure to construct the stiffness matrix and the load vector from
the shape functions is similar to the standard finite element
method (Cook 2007; Szabo and Babuska 1991).

2.1 Hierarchical shape functions for one-dimensional
problems

To illustrate relevant components of the p-version FEM, one-
dimensional shape functions are presented below; in p-version
FEM, two- and three-dimensional shape functions are typical-
ly based on one-dimensional hierarchical shape functions. Let
ξ be the coordinate in one-dimensional standard space
Ωst

q = [(−1,1)]. The shape functions for one-dimensional space
are classified into two categories: nodal and internal shape
functions. The nodal shape functions are similar to standard
FEM shape functions:

N1 ξð Þ ¼ 1

2
1−ξð Þ ð1Þ

N2 ξð Þ ¼ 1

2
1þ ξð Þ ð2Þ

where N1 and N2 correspond to node 1 and node 2 located at
ξ=−1 and ξ=1, respectively. The internal shape functions for
an element of order p≥2, are as follows:

Ni ξð Þ ¼ ϕi−1 ξð Þ; i ¼ 3; 4;…; pþ 1 ð3Þ
with

ϕ j ξð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
2 j−1
2

r Z ξ

−1
P j−1 tð Þdt ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 2 j−1ð Þp P j ξð Þ−P j−2 ξð Þ� � ð4Þ

where Pk(ξ) is the Legendre polynomials:

Pk ξð Þ ¼ 1

2kk!

dk

dξk
ξ2−1
� �k ð5Þ

These internal shape functions have the following property
which is inherited from the orthogonality of the Legendre
polynomials:Z 1

−1

dNi ξð Þ
dξ

dN j ξð Þ
dξ

dξ ¼ δi j; i; j≥3 ð6Þ

This hierarchical property of the shape functions improves
the efficiency and accuracy relating to stiffness matrix com-
putation. Index i in (3) indicates the polynomial degree of the
shape function. For element of order p, there will be (p+1)
shape functions (e.g., the highest value of i is (p+1)).

2.2 Hierarchical shape functions for two-dimensional
problems

Shape functions in two-dimensional space are constructed
based on the above-mentioned one-dimensional hierarchical
shape functions. The shape functions for quadrilateral ele-
ments are presented here, and other two-dimension elements,
such as triangular elements, can be found in (Szabo and
Babuska 1991). Consider a standard quadrilateral element,
denoted as Ωst

q = [(−1, 1) × (−1, 1)] and shown in Fig. 1a.
Similar to the one-dimensional problems, the shape functions

(a) 

(b) 

[( 1,1) ( 1,1) ( 1,1)]h
stΩ = − × − × −
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Fig. 1 Elements in standard space: (a) Quadrilateral with nodes, edges,
and polynomial degrees and (b) Hexahedron with nodes, edges, faces,
and polynomial degrees
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of quadrilateral elements are classified into nodal, edge and
internal shape functions.

The nodal shape functions are the same as shape functions
of the standard FEM:

NNi
1;1 ξ; ηð Þ ¼ 1

4
1þ ξiξð Þ 1þ ηiηð Þ; i ¼ 1;…; 4 ð7Þ

where (ξi′ηi) are the coordinates of the i-th node of the
reference element. These nodal shape functions are sim-
ilar to the standard bi-linear shape functions for
isoparametric quadrilateral element.

The edge and internal shape functions differ from conven-
tional FEM. For example, the edge shape function for edge E1

in Fig. 1a is defined as follows:

NEi
i;1 ξ; ηð Þ ¼ 1

2
1þ ηð Þϕi ξð Þ; i≥2 ð8Þ

In which, ϕi(ξ) is defined by (4).
The internal shape functions are defined for each element

locally. These shape functions vanish at all the edges.

N int
i; j ξ; ηð Þ ¼ ϕi ξð Þϕ j ξð Þ; i; j≥2 ð9Þ

where the indices i and j of the shape functions denote the
polynomial degrees in the local directions ξ and η, respec-
tively. Figure 2 shows plots of shape functions for quad-
rilateral element in the trunk space (Szabo and Babuska
1991) with p= 1 to p= 8, where polynomial degree pξ and
pη in directions ξ and η, respectively, are set equal to p.
These shape functions are plotted according to the nodal
and edge numbering convention shown in Fig. 1a.

2.3 Hierarchical shape functions for three-dimensional
problems

Similar to the 2D quadrilateral element, the hierarchical shape
functions are introduced for hexahedral element in Fig. 1b.
These shape functions are classified into four groups: nodal,
edge, face and internal shape functions. The nodal shape func-
tions are similar to the standard FEM tri-linear shape func-
tions:

NNi
1;1;1 ξ; η; ζð Þ ¼ 1

8
1þ ξiξð Þ 1þ ηiηð Þ 1þ ζiζð Þ; i ¼ 1;…; 8 ð10Þ

The edge shape functions are non-zero at an edge and van-
ish at other edges. For example, the edge shape function for
the edge E1 is defined as follows:

NE1
i;1;1 ξ; η; ζð Þ ¼ 1

4
1−ξð Þ 1−ζð Þϕi ηð Þ; i≥2 ð11Þ

Similarly, the face shape functions are non-zero at a face
and vanish at other faces. For example, the face shape function
for face F1 is defined as follows:

N F1
i; j;1 ξ; η; ζð Þ ¼ 1

2
1−ζð Þϕi ξð Þϕ j ηð Þ; i; j≥2 ð12Þ

Internal shape functions are defined locally for each ele-
ment and vanish at all the faces.

N int
i; j;k ξ; η; ζð Þ ¼ ϕi ξð Þϕ j ηð Þϕk ζð Þ; i; j; k≥2 ð13Þ

In (11), (12), and (13), the indices i, j, and k indicate the
polynomial degrees of the shape functions in the directions ξ,
η, and ζ, respectively.
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Fig. 2 Hierarchical shape
functions of quadrilateral element
in the trunk space for polynomial
degree p = 1 to p = 8 (after (Szabo
and Babuska 1991))
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3 Geometry and analysis models

As the traditional element-based topology optimization ap-
proach uses the material density of the finite elements as the
design variables, this often obscures the distinction between
the design optimization parameterization model (design mod-
el) and the analysis model (finite element model). The goal of
structural optimization is to find the optimal geometry of the
structure. To obtain this goal, the geometry is parameterized
by defining it as a function of a set of design variables and uses
an optimizer to seek the optimal set of values for the design
variables. Structural responses such as compliance or stresses
are typically used for design criteria, thus an analysis model
(the finite element model in this context) is needed to assess
the responses.

An example of this dichotomy is shown in Fig. 3 with an
example of a plate with an elliptical hole. The design model in
this case can be composed of the lengths of the two axes and
how they define the ellipse, while the analysis model is the
discretized finite element model that is used to compute com-
pliance and stresses. For this example, there are multiple op-
tions for the design model. Instead of defining the hole as an
ellipse and using its two axes as design variables, a spline

interpolation can be used to define the hole, and use its control
point coordinates as design variables. The coordinates of
nodes along the hole boundary can also be used to define
the hole, or a filtered version of the FE nodes may be used
for design variables, as in (Le et al. 2011).

In the density-based topology optimization, the geometry is
represented by a material density field, which has a value of
1.0 for a point in the design space that has material and 0.0 for
a void point. One can use the density at the finite element
nodes as design variables and interpolate the density field
using the finite element shape functions as in (Matsui and
Terada 2004). One can also use the level set of a higher di-
mensional scalar function to define the boundary between
solid and void, in this case the variables that define the scalar
function are design variables (Norato et al. 2007). The
element-based method assumes that material density is con-
stant in each finite element, thus one design variable repre-
sents each finite element. Similar to shape optimization, a
filtered version of such element density variables is often used
to define the geometry; thus the design model includes an
intermediate filter function that bridges in between the design
variables and geometry (Guest et al. 2004; Le et al. 2010).
This also suggests that the design variables are not necessarily
located directly on finite element centroids or nodes, but can
be independent from the finite element mesh, as detailed in
(Nguyen et al. 2010a, 2012). In the recently proposedMoving
Morphable Components method (Guo et al. 2014; Zhang et al.
2016), the geometry is represented by components of explicit
geometries, which are projected to the finite element mesh for
analysis. The idea is related to the topological derivativemeth-
od (Norato et al. 2007).

One typically desires higher resolution for the topolo-
gy definition, while having a limit on computational re-
sources for the analysis model. The aforementioned var-
ious design models for topology optimization raise the
question on how much resolution one can obtain on ge-
ometry given a limit on the fidelity of the analysis model.
In general, a numerical analysis result (e.g., from a finite
element model) is an approximation to the exact structur-
al solution. The higher computational cost one can afford

Fig. 3 A plate with elliptical hole and the FE mesh

(a) (b)

Fig. 4 Non-optimal shape and
topology optimization results: (a)
optimizing topology for
minimum compliance, (b)
optimizing hole shape for
minimum stress
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for the finite element model, the lower the approximation
error will be. In other words, for a given computational
cost, the more complex the geometry is, the less accurate
the analysis will be. In topology optimization, the analy-
sis model is typically fixed, while the geometry evolves
within the design space spanned by the design model.
Since optimization is the process of finding the extreme,
the result can have extreme complexity and thus extreme
analysis error. Above a certain level of resolution of the
design model, the optimization becomes problematic,
i.e., rendering spurious results. These problems have
been referred to as numerical instabilities (Jog and
Haber 1996; Sigmund and Petersson 1998). Fig. 4a illus-
trates a checkerboard-like topology optimization result,
and Fig. 4b shows a jagged boundary of a shape optimi-
zation result, both obtained by using unsuitable design
models that have higher resolution than the analysis mod-
el can support. Both results are non-optimal and
undesirable.

On the other hand, using a low resolution design model
with a high fidelity analysis model, in many cases, results in
the similar topology as that of using a low fidelity analysis
model. Let’s consider the example of topology optimization of

a half of an MBB beam (Nguyen et al. 2012) as shown in
Fig. 5. The element-based approach is used with a density
filter as the design model, and p-version FEM with a
30×10mesh as the analysis model. Two cases are considered,
one with polynomial order p=2 and the other with p=6. Here,
the design models for the two cases are the same, while the
analysis models have widely different fidelity. It can be seen
that the result with high-order FEAmodels in Fig. 5b is similar
to the result in Fig. 5a, even though the analysis model in
Fig. 5b employs about five times more degrees-of-freedom
(DOFs) than that of Fig. 5a. In other words, the design model
cannot take advantage of the higher accuracy of the analysis
model.

One may not want to use low resolution design models that
do not take full advantage of the analysis model fidelity for
topology optimization. Unfortunately, the combination of the
traditional element-based approach for geometry and the p-
version finite element method for analysis falls into this cate-
gory. The above example shows that no matter how highly
accurate a FEA model is employed, no significant benefit will
be obtained in the topology optimization results. To address
this issue, in this paper, the newly developed multiresolution
approach is used for the design model to take advantage of the
improved accuracy of p-version finite element analysis for
optimal results.

4 Multiresolution topology optimization using
the p-version finite element method

This section describes the multiresolution topology optimiza-
tion approach using the p-version FEM. The topology optimi-
zation formulation is first introduced for generic minimum
compliance problems.

4.1 Topology optimization problem formulation

While the proposed method in this paper is applicable to a
generic topology optimization problem, for simplicity, it will
be described in the context of a compliance minimization
problem. The objective of this problem is to minimize the
compliance of the structure subject to a constraint on the total
amount of material. The problem statement for the compliance
problem is as follows:

p = 2 with filter (nDOFs = 1,962) p = 6 with filter (nDOFs = 10,682)  (a) (b)

Fig. 5 Topology optimization
using same design models with
different analysis models

Density element

minr

Design variable 

Finite element

)xρ(

Fig. 6 Design variable grid, finite element mesh and density element
mesh
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min
d

C ρ dð Þ; uð Þ
s:t: : ρ ¼ f dð Þ

K ρ dð Þð Þu ¼ f

V ρ dð Þð Þ ¼
Z

Ω
ρ dð ÞdV ≤Vs

ð14Þ

in which C(ρ(d),u) is the compliance measure which is a
function of the material field ρ and coefficient vector u; K is
the global stiffness matrix which depends on the density field
(the procedure to compute the stiffness matrix is presented in
Section 4.3); f is the global force vector; V is the total material
volume; and Vs is a predefined upper bound on the material
volume.

The vector of coefficients u contains the coefficients corre-
sponding to the node, edge, face and internal shape functions.
The coefficient values for nodal shape functions equal the
nodal displacements. However, the other coefficient values
do not represent displacement at any point. Similar to the h-
version FEM, the displacement field ue(x) inside an element is
interpolated using hierarchical shape functions as:

ue ¼ Neue ð15Þ
whereNe is the matrix of hierarchical shape functions and ue is
the vector of coefficients corresponding to the degrees of free-
dom of element e. Note that the degrees of freedom definition
in that context includes the coefficients corresponding to the
node, edge, face and internal shape functions. The density field
ρ is a function of the design variable vector d. The way d is

arranged and related to the density field ρ defines the design
model and will be detailed in the following section. Through
using a relaxation approach, the density can have any interme-
diate value between 0 and 1. Thus, material properties are re-
lated to the intermediate density by the well-known Solid
Isotropic Material with Penalization (SIMP) model (Bendsoe
and Kikuchi 1988; Rozvany et al. 1992; Sigmund 2007).
According to this model, the Young’s modulus is computed as:

E xð Þ ¼ Emin þ ρ xð Þq E0−Emin

� � ð16Þ

where E0 is the Young’s modulus of the solid material (corre-
sponding to the density ρ=1), and the exponent q is the penal-
ization parameter. The Young’s modulus Emin is a small stiff-
ness that is introduced to prevent singularity of the stiffness
matrix.

4.2 The design model

The design model follows the multiresolution topology optimi-
zation (MTOP) approach which has been successfully applied
to the conventional h-version FEM in (Nguyen 2010; Nguyen
et al. 2010c, 2011, 2012). On top of the finite element mesh, a
grid of points is introduced to represent the design variables d
(cf. Fig. 6). Each point corresponds to one design variable
which can take any value between 0 and 1. This design variable
grid is independent of the finite element mesh. Thus, the choice
of the design variable and finite element discretizations is flex-
ible. The denser the design variable grid is, the higher

(a) (b) (c) (d)

Fig. 7 Dividing displacement element into density elements: (a) quadrilateral element, (b) triangular element, (c) hexahedral element, (d) tetrahedral element

s

r

(c) 

( 1, 1)− − (1, 1)−

( 1,1)− (1,1)

(a) (b)

ξ

η

( 1, 1)− − (1, 1)−

(1,1)( 1,1)−
Fig. 8 Integration of stiffness
matrix - element transformation:
(a) original element, (b) reference
element, (c) integration element
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resolution the topology optimization can be. However, increas-
ing the number of design variables also increases the computa-
tional cost associated with the optimizer. Nevertheless, the op-
timizer computation cost is usually smaller than that of the
finite element analysis cost in the traditional element-based
approach (Borrvall and Petersson 2001; Wang et al. 2007).

The density field inside of a finite element is computed
from the design variable grid using a convolution, in this case
a filter (Bruns and Tortorelli 2001; Guest et al. 2004) as fol-
lows:

ρ xð Þ ¼ f dð Þ ¼
X

i∈S xð Þdiw rið ÞX
i∈S xð Þw rið Þ

ð17Þ

where S(x) is the subset of the design variable vector d which
lies in a circle of radius rmin and centered at point x (cf. Fig. 6).
The weight w(ri) corresponding to variable di can be defined
as follows:

w rnið Þ ¼
rmin−rni
rmin

if rni≤rmin

0 otherwise

(
ð18Þ

Note that for topology optimization that is integrated either
with h-version or p-version FEM, the physical radius rmin (cf.
Fig. 6) is independent of the mesh. More discussion about the
use of filter in topology optimization can be found in (Bruns
and Tortorelli 2001; Guest et al. 2004; Sigmund 2007). In
general, the filter imposes a length-scale to the resulting struc-
ture. More specifically, the size of the smallest structural mem-
ber is in the range of 2rmin. The bigger radius rmin is, the more
restriction is imposed on the design model. The choice of the
length-scale parameter rmin is based on two considerations.

First, it has to be large enough to avoid numerical instabil-
ity. The smaller rmin is, the higher resolution the design model

can be. At a certain point, the analysis model is no longer
accurate enough for the resolution of the design model, and
the optimization will start producing spurious results. The
analysis accuracy is dependent on the polynomial degree of
the p-elements. For the traditional element-based approach
using h-FEM (p=1), the size of rmin must be larger than the
size of the finite element.Moreover, rmin must be large enough
such that S(x) is non-empty for all points in the design space,
i.e., there is no point in the design space for which the filter
circle does not contain any design variable. For the
multiresolution method for compliance and compliant mech-
anism problems, our numerical studies suggest that rmin must
satisfy the following conditions: rmin>h for p=1; rmin>0.75 h
for p=2; r

min
> 0.5 h for p=4, and rmin>0.35 h for p=6, where

h is the finite element size. These filter radii are the recom-
mended lower bound values for the multiresolution approach
using 5x5 density elements per finite element.

Second, designers may want to limit the complexity of a
design for easier manufacturing, and produce a more well-
defined result for easier interpretation. In that case, rmin can
be determined based on the desired length-scale/complexity of
the design.

4.3 Integration of stiffness matrix

From the discussion above, for one finite element as shown
Fig. 6, the density field inside a finite element can be obtained
by the convoluted operation in (17). Thus, the stiffness matrix
can be obtained as follows:

Ke ¼
Z
Ve

BTDBdv ð19Þ

where Ke is the stiffness matrix of the element e, D is the
constitutive matrix, and B is the strain–displacement matrix
of shape function derivatives. One can compute the density at
any point inside the finite element, and thus the stiffness ma-
trix integration of that finite element can be exact. However,
numerical integration is commonly used in practical finite
element analysis. Since the polynomial degree of the density
field is not known, one cannot determine the quadrature rule
for the numerical integration exactly. However, the density
field is defined based on the design variable grid and the filter,
thus the density field is often locally smooth. For this reason,
in this paper the finite element is proposed to divide into
smaller regions, the so-called density element, and use low-
order gauss quadrature to integrate in each density element.
During the topology optimization process, there are regions
that have high density gradient for which small density ele-
ment size should be used. A larger density element size can be
used in regions where the density field is uniform or has small
gradient. The study on appropriate density element size choice

Fig. 9 Density elements in a displacement element and two selected
shape functions (one nodal function and one edge shape function)
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is left for future work. For simplicity in this study, a uniform
size for the density element is used for the entire structure in
the numerical examples, but no changes in results are antici-
pated when more efficient density element choice and numer-
ical integration are used.

The density field, which is discretized by the density
element mesh, defines the topology optimization results as
shown in Fig. 6. The finer the density element mesh is, the
higher the resolution of the results will be. When the opti-
mization process converges, the topology optimization re-
sult is desired to have largely black and white regions and
distinct structural elements boundaries. Thus, high resolu-
tions are only needed around the boundary of the resulting
structure. This matches well with the density element size
determination scheme that is proposed above for numerical
integration purposes. The resolution obtained from this
method is much higher than that of the traditional
element-based topology optimization approach, wherein
each displacement element has a uniform density. Note that
the density elements are not used to discretize the displace-
ment. Thus, the manipulation of the density element mesh
is straightforward. Figure 7 shows examples of how to di-
vide quadrilateral (Fig. 7a), triangular (Fig. 7b), brick
(Fig. 7c), and tetrahedral (Fig. 7d) displacement elements.
Furthermore, the increased computation cost associated
with stiffness matrix integration due to the non-uniform
density field is highly parallelizable.

When a displacement element is divided into density ele-
ments, the stiffness matrix integration becomes:

Ke ¼
Z
Ve

BTDBdv ¼
X
i¼1

NeZ
Vi

BTDBdv ð20Þ

where Vi is the volume of the density element i, and the sum is
over all density elements within a finite (displacement) ele-
ment e, Ne is the number of density element in the displace-
ment element e. The Gauss quadrature for the above integra-
tion is similar to that of the standard finite element method,
except for a simple transformation from the standard reference
element (cf. Fig. 8b) to the integration element (cf. Fig. 8c):

Ke ¼
X
i¼1

NeX
g¼1

ng

BTDB
� �

g J e J gwg ð21Þ

where Je is the Jacobian corresponding to the standard trans-
formation of the displacement element from the original ele-
ment (cf. Fig. 8a) to the reference element (cf. Fig. 8b); Jg is a
scaling factor corresponding to the transformation from the
reference element to the integration element (cf. Fig. 8c);
and wg is the weight of the integrand corresponding to the
integration Gauss point. For illustration purposes, Fig. 9
shows a displacement element with 25 density elements and
two shape functions.

4.4 Sensitivity

The optimization problem (14) is solved by mathematical pro-
gramming that requires the computation of the derivatives of
the objective and constraint functions with respect to design
variables. The derivative of the volume is straightforward:

∂V
∂dn

¼
Z
V

∂ρ
∂dn

dv ð22Þ

The derivative of the compliance is:

∂C
∂dn

¼
Z
V

∂C
∂ρ

∂ρ
∂dn

dv ¼
Z
V

−uT
∂K
∂ρ

u
∂ρ
∂dn

dv ð23Þ

The sensitivity ∂ρ/∂dn can be derived from (17); and the
derivative of the stiffness matrix is:

∂K
∂ρ

¼
XN
e

∂Ke

∂ρ
¼

XN
e

X
i∈Ωe

X
g¼1

ng

BT ∂D
∂ρ

B

� �
g
J e J gwg ð24Þ

where ∂D/∂ρ depends on the stiffness interpolation (SIMP
method) as given in (16) via Young’s modulus.

5 Numerical studies

To show the effectiveness of the proposed multiresolution
approach using p-version FEM, a benchmark example, the
Messerschmitt-Bolkow-Blohm (MBB) beam (Nguyen et al.
2012, 2013; Olhoff et al. 1991) is investigated for minimum
compliance subject to a volume constraint (cf. Fig. 10a). The
beam has a length b=60 and height h=10. To enhance con-
vergence to global optima, the continuation technique is used
on the power q: q is initially taken as 1 and increased by 0.5
after every 30 iterations and q is ultimately taken as 3. Young’s
modulus is taken as 1 and Emin =10

−9. The method of moving
asymptotes (MMA) (Svanberg 1987) is used as the optimizer.
For this example, the analytical solution is the so-called
Michell’s truss (Rozvany 1996, 1998) as shown in Fig. 10b.
We do not include the numbers of iterations for each example,
but we note that these numbers of iterations are comparable to
that of the traditional SIMP method if the same optimizer is
used.

The optimization problem is first solved using the tradition-
al element-based approach with p-version FEM. The problem
is solved for two cases, one using a density filter with a filter
radius (rmin =1.2, Figs. 11a, c, e, and g), and one without filter
(Figs. 11b, d, f, and h). In both cases, the finite element mesh is
60×10. The results in Fig. 11 show that increasing p from 1 to
8, and thus the number of degrees-of-freedom (DOFs), does
not have a significant effect on the results, indicating that the
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higher computational cost and higher accuracy of p-version
FEM are unnecessary. Without the filter, and for p=1, a result
with numerical instabilities (checkerboard) is obtained as ex-
pected, as shown in Fig. 11b. As polynomial degree p is in-
creased to 2, the numerical instability is alleviated as shown in
Fig. 11d. However, increasing p further again does not have
significant effect on the results (Figs. 11f and h). Note that the
filter introduces a gray area around structural members
(Figs. 11a, c, e, and g), otherwise the results with and without
filter have similar topology. Overall, there is no significant
improvement in the design when increasing p if the traditional
element-based approach is employed.

The problem is solved next using the same FE mesh size of
60×10, but using the proposed multiresolution approach. Since
the example uses a structured mesh, a design variable grid that is
parallel to the rows and columns of the finite element mesh is

chosen. The spacing of design variables is one fifth of the finite
element size. For simplicity, a uniform density element mesh
which has 25 density elements in each finite element is used
(cf. Fig. 6). For each polynomial degree p from 1 to 6, a density
filter radius that is just large enough to avoid numerical instabil-
ities yet small enough to get as intricate structures as possible is
used. The results in Figs. 12b, c, d, e show that as p increases,
more and more intricate structures are obtained. This increase in
resolution of the results is similar to the improvement expected
with h-version FEM when the finite element mesh is refined.
Note that in this case the finite element mesh stays the same,
while the polynomial order increases. For comparison, the result
using the traditional element-based approach is included in
Fig. 12a. Comparison of Figs. 12a and b shows that even with
the same number of degrees of freedom and FEM mesh, the
proposed multiresolution approach generates better resolution

(a)

(b)

Fig. 10 MBB beam example: (a)
domain, (b) analytical solution
(Michell’s solution (Rozvany
1996))

retliftuohtiWretlifhtiW

(a) 

(d) 

(f) 

(h) 

(e) 

(g) 

(b) 

(c) 

Fig. 11 Results using traditional element-based approach with p-version
FEM (FE mesh 60× 10) – with filter on the left and without filter on the
right: (a) p = 1 with filter, (b) p= 2 without filter, (c) p = 2 with filter, (d)

p= 2 without filter,(e) p= 4 with filter, (f) p= 4 without filter, (g) p = 8
with filter, (h) p = 8 without filter

580 Nguyen et al.



(i.e., a more well defined structure). Note that the results in
Figs. 12a and b have approximately the same level of intricacy.

In general, increasing the p-version FEM polynomial de-
grees improves the intricacy of the design which is similar to
the effect of refining the finite element mesh, while increasing
the number of design variables and density elements improves
the resolution of the results. It is also noted that for higher p, it
is possible to obtain structural members that are considerably
smaller than the finite element size; this is obtained because
the increased accuracy of the p-version FEM method allows
such resolution of the design model so that a smaller length-
scale, i.e., the filter radius, can be used to capture such reso-
lution. In this case, the filter radius is 1.2 for the element
based-approach and 1.0, 0.75, 0.5, and 0.35 for p=1, 2, 4
and 6 for the multiresolution approach, respectively.

Figure 13 shows a comparison of topology optimization
results obtained by h-refinement and p-refinement.
Figure 13a shows the element-based approach on a coarse
FE mesh of 60 × 10. In Figs. 13b, d, and f, the finite ele-
ment mesh is refined progressively to obtain higher design
resolution. In contrast, the finite element mesh in
Figs. 13c, e, and g are kept the same as Fig. 13a while
the polynomial degrees are progressively increased. Note
that the number of degrees-of-freedom (DOFs) of the h-
refinement (Figs. 13b, d, and f) is respectively comparable
to that of the p-refinement (Figs. 13c, e, and g). Note that
the stiffness matrix of the p-refinement is generally denser.
In general, a denser stiffness matrix means longer solver
time for direct solver. But the solution time is highly de-
pendent on linear solver as well. It is also noted that hier-
archical shape functions produce a matrix with better con-
dition number and thus can help iterative solvers.

(a) 

(d) 

(e) 

(c) 

(b) 

Fig. 12 Results usingmulti-resolution approachwith p-version FEMon the
samemesh (FE mesh 60×10 elements) – effect of the polynomial degree p:
(a) p = 1, element-based approach, rmin = 1.2, (b-e) multiresolution
approach, 25 density elements per finite element, (b) p=1, rmin = 1.0, (c)
p=2, rmin = 0.75, (d) p=4, rmin = 0.5, (e) p=6, rmin = 0.35

(a) 60x10 mesh (p = 1), 1,342 DOFs

(b) 120x20 mesh (p = 1), 5,082 DOFs (c) 60x10 mesh (p = 2), 3,882  DOFs

(e) 60x10 mesh (p = 4), 10,162  DOFs(d) 240x40 mesh (p = 1), 19,762 DOFs

(f) 480x80  mesh (p = 1), 77,922 DOFs (g) 60x10 mesh (p = 8), 37,122  DOFs

h-version FEM p-version FEM

Fig. 13 Comparing h-version and p-version FEM for topology optimization: (a) element-based approach and p = 1, (b, d, f) h-version FEM approach,
(c, e, g) p-version FEM approach with the number of density elements per displacement of (4, 16, 16), respectively
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In this example, h-refinement and p-refinement are com-
pared, thus the same resolution is used for the two methods,
i.e., the number of density elements for p-refinement is the
same as the number of displacement elements for the h-refine-
ment. Specifically, the number of density elements for each
finite element is 4, 16 and 64 for the results in Figs. 13c, e, and
g, respectively. In addition, the length scale is employed the
same for the two methods: rmin= 0.75 for Figs. 13b and c;
rmin =0.5 for Figs. 13d and e; rmin =0.25 for Figs. 13f and g.
The results show that with a similar or smaller number of
degrees-of-freedom (DOFs), results obtained using p-
refinement is comparable to that using h-refinement, based
on the use of the proposed multiresolution approach for p-
refinement. In addition, increasing the number of density ele-
ments will continue to provide higher resolution for the p-
refinement results.

The computational efficiency of this method is investi-
gated using the example in Fig. 10 with a length scale of
1.2. The analyses are implemented in MATLAB and run
on a personal computer. Because of symmetry, only half
of the model is taken into account. Each finite element of
the coarse mesh (30x10) is divided into n × n density ele-
ments with n = 5, 6, 7 and 8. Higher order elements are
used in which the p-order varies from 1 to n. The compu-
tational time is then normalized against the computational
time of fine meshes using n = 1 and p =1. For n = 5, 6, 7,
and 8, the reference fine meshes are 150x50 Q4, 180x60
Q4, 210x70 Q4 and 240x80 Q4, respectively. For all
cases, the computational time is recorded after 200 opti-
mization iterations. The normalized computational time is
defined as the ratio of the computational time of the above
mentioned fine meshes to the computational time of the
corresponding coarse meshes with high-order elements
and the multiresolution approach. In the current, study, it
is noted that the computational time for the MMA opti-
mizer contributes from 50 to 95% of the total computa-
tional time. Thus, both the comparison of the total com-
putational time and the comparison of the computational
time without the MMA contribution are also included.
The normalized total computational time comparison is
shown in Fig. 14a. Note that a normalized total computa-
tional time smaller than 1.0 means the corresponding p-
order multiresolution approach is slower than the fine
mesh using a traditional Q4 element. For higher order
elements (p = 5 and above), the multiresolution approach
is slower than the corresponding traditional approach.
Figure 14b shows the normalized computational time by
MMA. It can be seen that the MMA computational time is
similar for the traditional approach and the multi-
resolution approach because the numbers of design vari-
ables are the same for both cases. The computational time
without MMA is shown in Fig. 14c. It can be seen that the
speed up is significantly improved in favor of the
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Figure 14 Computational time of our multi-resolution approach with
various polynomial degree (p): (a) total computational time, (b) MMA
computational time, (c) computational time excludingMMA contribution
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multiresolution approach. We note that the MATLAB im-
plementation of MMA contains loops that are known to
be slow in MATLAB. The MMA computational time in
this case does not represent well the optimizer cost in a
production implementation. From these results, it can be
seen that p-orders of 2, 3, 4 have good balance between
accuracy and speed.

6 Additional examples

In this section, results from additional examples are shown to
verify that the proposed method works for a variety of prob-
lems including three-dimensional and mechanical compliance
problems. The first example problem is the benchmark
Michell’s truss with circular support as shown in Fig. 15a. In
this example, 45 × 30 FE p-element mesh with p= 5, and
20× 20 density elements per finite element are employed.
Young’s modulus is taken as 1 and Emin =10

−9. Penalization
parameter q is taken as 4 and length-scale rmin=0.2. The high
resolution optimized design as shown in consists of a system
of orthogonal members that agrees well with analytical solu-
tion (Rozvany 1998; Sigmund 2000; Suzuki and Kikuchi
1991) as shown in Fig. 15b and the previous multiresolution
study using h-version FEM with a finer FE mesh (Nguyen
et al. 2010a).

The next example is a 3D structure wherein the design
space is half of a cube that is subjected to a vertical load at
the bottom center and supported at four corners as shown in
Fig. 16a. The example is solved using a relatively coarse FE
mesh of only 8×8×4 p-elements with p=3, and 15×15×15
density elements per finite element. That results in 256 finite
elements and 864,000 density elements. The length-scale of

1/10 height of the domain is used. The result (isosurface
ρ=0.25) is shown in Figs. 16b and c with high resolution
despite a relatively coarse FE mesh being used.

The next example is a bridge design. The domain was
chosen to have the dimension 2L×24L×3L, and the sup-
ports have distance of 4 L from the center as can be seen in
Fig. 17a. A uniform vertical load is applied at the top of a non-
designable layer with thickness of L/5 on the top of the do-
main. Avolume fraction of 12.5% of the domain is employed.
The length-scale of 1/15 height of the domain is used. During
the optimization process, a cut of thin layer of material from
the bottom of the non-designable layer to bottom of the do-
main along the x direction (y = 0) is used. Another cut of
material with thin layer is used from the bottom of the non-
designable layer to mid high of the domain along the y direc-
tion (x=0). In this example, the polynomial degree p=2 and
10×10×10 density elements per element are employed. The
domain is divided into 10×120×15 FEs which results in a
total of 18,000 finite elements. The total 18 million density
elements provide high resolution solution. Noted that because
of the hardware limit, the direct solver in MATLAB does not
allow the solution of a model with 19 million B8 elements,
thus the efficiency of 3Dmodel is not investigated. The results
as shown in Figs. 17b and c show that high resolution topol-
ogy can be obtained using the proposed multiresolution
approach.

All aforementioned examples address the minimization of
compliance subject to a volume constraint, which is a straight-
forward problem setup since the constraint is linear and the
objective is convex. Thus, the next example is a 3D compli-
ance mechanism problem where a force inverter in the design
domain shown in Fig. 18a is designed. The structure is sub-
jected to a vertical upward force at the input point A located at

(a)

(b) (c)

Fig. 15 Michell’s type structure:
(a) domain, (b) analytical
solution, (c) optimized topology
using p-version FEM with p = 5,
FE mesh 45× 30, each FE
consists of 20 × 20 density
elements, volume fraction 25%,
rmin = 0.2
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L/2

(a)

(b)

Fig. 16 A half cube with load at the bottom center: (a) domain, (b) and (c) optimized topology

(b)

(c)

(a)
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Fig. 17 Optimization of a bridge:
(a) design domain, (b) and (c)
optimized topology
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(b)              (c)
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Fig. 18 Displacement inverter
design using topology
optimization using p-version
FEM: (a) domain, (b) and (c)
optimized topology
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the center of the bottom face. The goal is to maximize the
downward displacement of the output point B located at the
center of the top face. The amount of material is 7.5% of the
total design domain volume. Young’s modulus is taken as 1,
Emin=10

−4, and length-scale rmin =L/20. To make the prob-
lem well-posed, two springs are attached to the input point A
and output point B has the stiffness of 0.01 and 0.001, respec-
tively. The cube is divided into 10×10×10 brick elements
with polynomial degree p=3 and 15×15×15 density ele-
ments per finite element. The model results in a total of
1000 FEs and 3,375,000 density elements. The optimal design
is shown with different viewpoints in Figs. 18b and c
(isosurface ρ=0.375); the topology is consistent with other
studies in the literature (Amir et al. 2010; Evgrafov et al.
2008). It can be seen that the obtained topology creates a
compliant mechanism in three-dimensional space. This exam-
ple demonstrates that the proposed approach also works well
to the compliant mechanism problem.

7 Conclusions

The element-based topology optimization method has been
well developed for the h-version of the finite element method.
However, the traditional approaches are not capable of
exploiting the advantages of the p-version of the finite element
method, which has gained popularity, especially front-end
analysis tools such as Creo (Toogood and Zecher 2013). In
this paper, a new topology optimization method is proposed
that is more suitable for the p-version FEM. The method is
based on the idea of decoupling of the design model and the
analysis model so that the resolution for the topology descrip-
tion becomes flexible. This allows the analyst to refine the
design models along with the increase of polynomial order
in the analysis model, even when the finite element mesh is
fixed. The method takes full advantage of the increased anal-
ysis accuracy of the p-version FEM method for topology op-
timization. Numerical studies show that comparable topology
optimization results can be obtained for h-version FEM and p-
version FEM analysis models with a comparable number of
degrees-of-freedoms. In addition to the proposed method
working well with the p-version FEM, it also improves topol-
ogy optimization compared to traditional element-based ap-
proaches. With this method, topology optimization can be
readily coupled with the p-version of the finite element meth-
od. This approach thus allows topology optimization to be
more accessible for designers at a conceptual design stage
where topology optimization is most valuable.
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