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Abstract This paper proposes an effective numerical pro-
cedure for reliability-based design optimization (RBDO)
of nonlinear inelastic steel frames by integrating a harmo-
ny search technique (HS) for optimization and a robust
method for failure probability analysis. The practical ad-
vanced analysis using the beam-column approach is used
for capturing the nonlinear inelastic behaviors of frames,
while a detail implement of HS for discrete optimization
of steel frames is introduced. The failure probability of
structures is evaluated by using the combination of the
improved Latin Hypercube (IHS) and a new effective im-
portance sampling (EIS). The efficiency and accuracy of
the proposed procedure are demonstrated through three
mathematical examples and five steel frames. The results
obtained in this paper prove that the proposed procedure
is computationally efficient and can be applied in practical
design. Furthermore, it is shown that the use of nonlinear
inelastic analysis in the optimization of steel frames yields
more realistic results.
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1 Introduction

The optimization of steel frames has been attracting the interest
of many researchers in recent years since this approach reduces
costs and guarantees performance of structures. In optimiza-
tion, the frame weight is minimized by selecting the lightest
cross-sectional area from the standard lists of sections (e.g.
AISC, Eurocode, etc.), while the performance requirements
are still satisfied. The optimization of steel frames is hence a
discrete optimization and requires metaheuristic algorithms for
solving discrete variable spaces. Based on considering or ig-
noring probabilistic constraints, the optimization of steel frames
is divided into deterministic design optimization (DDO) and
reliability-based design optimization (RBDO), respectively.

Many researches concerning DDO of steel frames have
been carried out in the literature with various algorithms and
techniques being proposed (Hasançebi et al. 2009, 2010a, b;
Kripakaran et al. 2011; Doğan and Saka 2012; Alberdi and
Khandelwal 2015). In these researches, considerable effort has
been used to improve and develop metaheuristic optimization
algorithms since these techniques are accepted as the standard
design optimization tools for the foreseeable future (Saka and
Geem 2013). Some of the well-known metaheuristic optimi-
zation algorithms are ant colony optimization (ACO) (Camp
et al. 2005), genetic algorithm (GA) (Rajeev and
Krishnamoorthy 1992), harmony search (HS) (Lee and
Geem 2004), particle swarm optimization (PSO) (Perez and
Behdinan 2007), simulated annealing (SA) (Balling 1991),
Tabu search (TS) (Bland 1995), etc. The review of
metaheuristic algorithms for steel frames is presented by
Saka and Geem (2013). Although there has been significant
improvement in the study of metaheuristic algorithms, most of
their applications are limited to linear frames where the
member-based design method is used for evaluating strength

* Seung-Eock Kim
sekim@sejong.ac.kr

V. H. Truong
truongviethung82@sju.ac.kr

1 Department of Civil and Environmental Engineering, Sejong
University, 98 Gunja Dong, Gwangjin Gu Seoul 143-747, South
Korea

Struct Multidisc Optim (2017) 56:331–351
DOI 10.1007/s00158-017-1667-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-017-1667-7&domain=pdf


and inter-story drift constraints. The member-based design
method in conventional design codes is unattractive since
the capacity of individual members is checked using the ef-
fective length factor instead of considering the interaction of
stability and strength between the member and whole frame.
Therefore, there have been significant efforts for developing
practical advanced analyses (PAAs) which can capture the
nonlinear inelastic behaviors and eliminate the individual
member check of a whole frame (Clarke 1994; Teh and
Clarke 1999; Chen and Kim 1997; Kim and Chen 1996; Tai
and Kim 2009). In addition, the DDO of nonlinear steel
frames has been attracting the interest of researchers in recent
years (Saka and Kameshki 1998; Kameshki and Saka 2003;
Degertekin 2007; Degertekin and Hayaliolu 2010; Truong
et al. 2017). The results in these works showed that the lighter
and realistic optimum designs were obtained when consider-
ing structural nonlinear behaviors in optimization.

Although there have been many researches concerning
DDO of steel frames, few studies related to RBDO of steel
frames have been carried out. Among these studies, an RBDO
procedure for nonlinear large-scale frames is proposed by
Tsompanakis and Papadrakakis (2004) using evolution strate-
gies (ES) for optimization and importance sampling technique
(IS) for reliability analysis. However, the case studies do not
take the different probabilistic distributions of applied loads
into account. Furthermore, the capacities of IS are significant-
ly decreased when the number of random variables increases.
A combination of decoupling for optimization and the meta-
model for reliability analysis is proposed by Valdebenito and
Schuëller (2010) in terms of GA, IS, and Subset simulation
(SS) techniques to investigate the RBDO optimum solution of
frames. This method seems very robust since the computation-
al cost is low, but only local optimum solutions are found. In
addition, geometric and material nonlinear behaviors are not
considered. An RBDO procedure of structures is developed
by Shayanfar et al. (2014) using GA for optimization, first-
order reliability method (FORM) for reliability analysis, and
OpenSees and Tcl for structural analysis. This procedure is not
reliable since only linear analysis of frames is considered and
the error of FORM in a highly nonlinear system is quite large.

In the present work, a robust procedure for RBDO of space
steel frames is proposed. The objective of optimization is to
minimize the total weight of the frame, while the constraints
are both deterministic (stress, displacement, and geometric
constructional limitations) and probabilistic (the overall fail-
ure probability of the structure) constraints. The contribution
of this work is as follows: the nonlinear inelastic behaviors of
frames are predicted by using the beam-column approach; a
detailed implementation of HS for discrete optimization of
steel frames is introduced; and, an efficient reliability analysis
method (IHS-EIS) is proposed. IHS-EIS is the combination of
the improved Latin Hypercube Sampling (IHS) proposed by
Beachkofski and Grandhi (2002) and a new effective

importance sampling (EIS). Three mathematical examples
and five steel frames are considered to demonstrate the effi-
ciency and accuracy of the propose procedure.

2 Reliability-based design optimization of steel
frames

In this study, the RBDO of steel frames is formulated for
achieving the minimization of total structural weight subjected
to deterministic and probabilistic constraints. Deterministic
constraints are limits on member stresses, nodal displacements
or inter-story drifts, and geometric constructability. The proba-
bilistic constraint ensures the condition that the overall failure
probability of frame is smaller than a certain value (e.g. 10−3).

2.1 Objective function

The objective function of the RBDO of steel frames can be
expressed as follows:

Min W Y ;Xð Þ ¼ ρ
Xn
i¼1

A yið Þ
X
q¼1

nq

Lq

 !
; ð1Þ

where ρ is the specific weight of steel; n and Y= (y1, y2,…, yn)
are the number and vector of design variables, respectively;
X= (x1, x2,…, xm) is the vector of random variables; nq is the
number of frame member groups; Lq is the length of the mem-
ber q in the group ith; and, A(yi) is the cross-sectional area of
the design variable yi. A(yi) is selected from the list of W-
shaped sections given by AISC-LRFD specification (1999).
Furthermore, according to AISC-LRFD, the response of the
structure to service loads generally can be analyzed by assum-
ing elastic behavior.

2.2 Deterministic constraints

The constraint of member stresses considering PAA can be
expressed on the condition that the structural load-carrying
capacity R is larger than the applied load S as follows:

Cstr ¼ 1−
R
S
≤0: ð2Þ

The inner-story drift constraints can be expressed as fol-
lows:

Cins
j ¼ d j

�� ��
duj
��� ��� −1≤0 j ¼ 1;…; nstory ; ð3Þ

where nstory is the number of structural stories; dj and dj
u are the

inter-story displacement and allowable inter-story displace-
ment of the story j, respectively.
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Geometric constructional constraints are formulated as
follows:

Ccon
k;1 ¼ bb f

bc f

� �
k

−1≤0; ð4:aÞ

Ccon
k;2 ¼ bb f 2

Tc

� �
k
−1≤0; ð4:bÞ

where k=1,…,ncon; ncon is the number of geometric con-
structional constraint; Tc is the web height of column; and,
bbf, bbf2, and bcf are the flange width of beam and column
as given in Fig. 1.

2.3 Probabilistic constraint

The probabilistic constraint (the condition that the overall fail-
ure probability of the structure is smaller than a certain value)
can be expressed as

Cprob ¼ P f Xð Þ
Pa

−1≤0; ð5Þ

where Pf(X) and Pa are the failure probability and the allow-
able failure probability, respectively.

2.4 Unconstrained objective function

The constrained objective function in (1) can be transformed
to unconstrained objective function by adding a penalty func-
tion as follows:

W Yð Þ ¼ ρ
Xn
i¼1

A yið Þ
X
q¼1

nq

Lq

 !
� αstrβ1 þ αinnβ2 þ αconβ3 þ αprobβ4

� �
;

ð6Þ
where

β1 ¼ max Cstr; 0ð Þ
β2 ¼

X
j¼1

nstory

max Cins
j ; 0

� �

β3 ¼
X
k¼1

ncon

max Ccon
k;1 ; 0

� �
þmax Ccon

k;2 ; 0
� �� �

β4 ¼ max Cprob; 0
� �

; ð7Þ

in which αstr, αinn, αcon, and αprob are penalty factors corre-
sponding to the violation of strength, inner-story drift, con-
structability, and failure probability of structure, respectively.

RBDO of steel frames presented in (7) is a discrete optimi-
zation problem, in which the cross-sectional areas of frame
members are selected from a list of W-shaped sections.
Therefore, metaheuristic methods are often employed to solve
this problem. Among the well-known metaheuristic methods,
HS is used in this study because this algorithm is quite

efficient for frame optimization (Alberdi and Khandelwal
2015). In addition, PAA using the beam-column approach is
employed to capture nonlinear inelastic behaviors of steel
frames and the Monte Carlo simulation (MCS) based method
is applied to evaluate the probability constraint, since most
steel frames are highly nonlinear structures.

3 PAA of space steel frames

Most PAA methods for analysis of nonlinear inelastic steel
frames presented in literature can be classified into plastic
zone methods (Clarke 1994; Teh and Clarke 1999) and plastic
hinge methods (Chen and Kim 1997; Kim and Chen 1996;
Thai and Kim 2009). In plastic zone methods, interpolation
functions are adopted to represent the second-order effects
while plastic zone models are used to capture the spread of
nonlinear behavior along the structural elements. Although
designated as ‘exact’ methods, these methods have not been
widely applied to the actual design due to their excessive
computational time. In the plastic hinge method or beam-
column approach, stability functions derived from differential
equilibrium equations are used to capture second-order effects
of frames. The refined plastic hinge model is also adopted to
account for nonlinear inelastic behaviors of frames. The ad-
vantage of this method is that one or two elements are needed
to model a frame member, so the computational time de-
creases considerably. As a consequence, the beam-column
approach is employed in this study.

Fig. 1 Beam to column connection constructability

An efficient method for reliability-based design optimization 333



3.1 Beam-column element

In a beam-column element, the stability functions proposed by
Chen and Lui (1987) is employed to capture P-δ effect, while
the column research council (CRC) tangent modulus concept
(Chen and Lui 1992) is used to account for initial geometric
imperfection and residual stresses. The gradual stiffness deg-
radation model using Orbison yield surface (Orbison et al.
1982) is also employed to consider the case of small axial
force and large bending moments. The force-displacement
relationship of the element AB is written as:

ΔP
ΔMyA

ΔMyB

ΔMzA

ΔMzB

ΔT

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

EtA=L 0 0 0 0 0
0 kiiy ki jy 0 0 0
0 ki jy k j jy 0 0 0
0 0 0 kiiz ki jz 0
0 0 0 ki jz k j jz 0
0 0 0 0 0 GJ=L

2
6666664

3
7777775

Δδ
ΔθyA
ΔθyB
ΔθzA
ΔθzB
Δϕ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ð8Þ

in which Et and G are the reduced-elastic and shear modulus
of material, respectively; L and A are the length and area of the
element, respectively; J is the torsional constant; ΔP and ΔT
are the incremental axial force and incremental torsional mo-
ment, respectively;ΔMnN is the incremental moment at end N
(N=A, B) according to axis n (n=y, z) of the element;Δδ and
Δϕ are the incremental axial displacement and incremental
twist angle, respectively; ΔθnN is the joint incremental rota-
tion at end N of the element corresponding to axis n; and,

kiin ¼ ηA S1n−
S22n
S1n

1−ηBð Þ
� �

EtIn
L

; ð9:aÞ

ki jn ¼ ηAηBS2n
EtIn
L

; ð9:bÞ

k j jn ¼ ηB S1n−
S22n
S1n

1−ηAð Þ
� �

EtIn
L

; ð9:cÞ

where In, S1n and S2n are the inertia moment and stability
functions corresponding to axis n, respectively; ηA and ηB
are scalar parameters representing the gradual inelastic stiff-
ness reduction of the element due to plastification at A and B,
respectively. η can be determined by using the Orbison yield
surface parameter α as follows:

η ¼ 1:0 f or α≤0:5; ð10:aÞ
η ¼ 4α 1−αð Þ f or α > 0:5; ð10:bÞ
with α ¼ 1:15p2 þ m2 þ 3:67p2m2; p ¼ P=Py; and m ¼ M=Mp: ð11Þ

To consider the influence of initial geometric imperfection
and residual stresses, Et in (8) can be calculated as

Et ¼ E f or P	
Py
≤0:5; ð12:aÞ

Et ¼ 4
P
Py

E 1−
P
Py

� �
f or P	

Py
> 0:5; ð12:bÞ

in which Py is the axial yield force.

3.2 Nonlinear solution procedure

In order to solve the nonlinear equations, the generalized dis-
placement control method (GDC) (Yang and Shieh 1990) is
employed here since it is robust for nonlinear problems with
multiple critical points. In GDC, the equilibrium equation of
the iteration jth in the incremental step ith is written as follows:

Ki
j−1

h i
ΔDi

j

n o
¼ λi

j P̂
n o

þ Ri
j−1

n o
; ð13Þ

and can be decomposed as

Ki
j−1

h i
ΔD̂

i

j


 �
¼ P̂
n o

ð14:aÞ

Ki
j−1

h i
ΔD

i

j


 �
¼ Ri

j−1

n o
ð14:bÞ

ΔDi
j

n o
¼ λi

j ΔD̂
i

j


 �
þ ΔD

i

j


 �
ð14:cÞ

in which [Kj− 1
i ] is the tangent stiffness matrix; {ΔDj

i} is the
displacement incremental vector; P̂

� 
and {Rj− 1

i } are the ref-
erence load and unbalanced force vectors, respectively;
ΔD̂

i
j

n o
and ΔD

i
j

n o
are the displacement incremental vec-

tors generated by the P̂
� 

and {Rj− 1
i }, respectively; and, λj

i is
the load incremental parameter.

In (13), λj
i is determined using a constraint condition as

following steps:

& At the first iterative step (j=1), λj
i is calculated as

λi
1 ¼ λ1

1

ffiffiffiffiffiffiffiffiffiffiffiffi
GSPj j

p
; ð15Þ

where λ1
1 is the initial value of the load increment parameter

and GSP is the generalized stiffness parameter which is cal-
culated as

GSP ¼
ΔD̂

1

1


 �T

ΔD̂
1

1


 �

ΔD̂
i−1

1


 �T

ΔD̂
i

1


 � : ð16Þ

& At the iterative steps (j≥2), λji is calculated as

λi
j ¼ −

ΔD̂
i−1

1


 �T

ΔD
i

j


 �

ΔD̂
i−1

1


 �T

ΔD̂
i

j


 � : ð17Þ

The load factorΛj
i of the iteration jth in the incremental step

ith can be calculated as

Λi
j ¼ Λi

j−1 þ λi
j: ð18Þ
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The total applied load vector {Pj
i} and the total displace-

ment vector {Dj
i} of the structure at the iteration jth in the

incremental step ith are determined as follows:

Pi
j

n o
¼ Λi

j P̂
n o

; ð19:aÞ

Di
j

n o
¼ Di

j−1

n o
þ ΔDi

j

n o
: ð19:bÞ

The procedure for nonlinear inelastic analysis is presented
in Fig. 2.

4 Failure probability analysis of space steel frames

The limit state function of structure can be written as follows:

G R; Sð Þ ¼ R−S; ð20Þ
where R and S are the structural load-carrying capacity and the
loading effect, respectively.

The structural failure probability is calculated as follows:

P f ¼ P G R; Sð Þ≤0½ � ¼
Z

G R;Sð Þ≤0

f R rð Þ f S sð Þdrds; ð21Þ

in which fR(r) and fS(s) are the probability density functions of
R and S, respectively.

In highly nonlinear frames, R cannot be determined analyt-
ically. Therefore, the integral of (21) is often estimated by
approximate methods. Among the well-known approximate
methods, MCS seems superior. However, MCS requires a
very large number of samples when Pf is small. To overcome
this limitation, IHS-EIS is developed herein by integrating
IHS and EIS.

4.1 Improved Latin hypercube sampling

Latin Hypercube Sampling (LHS) is a stratified sampling
technique which allows the effective sample creation to
represent the distribution of a random variable. Many im-
provements of LHS have been proposed for multivariate
variable problems (Beachkofski and Grandhi 2002; Tang
1998; Morris and Mitchell 1995; Owen 1994; Ye et al.
2000). Among these techniques, IHS proposed by
Beachkofski and Grandhi (2002) is used in this study
since it is robust and easy to implement.

The basis of IHS originates from the maximum of the min-
imum distance between sample points which is determined as
follows:

dopt ¼ N	 ffiffiffi
Nm

p ; ð22Þ

where N and m are the number of samples and random
variables, respectively. The first sample point is randomly

selected, while the next points are created by using the
“piecewise deterministic optimization” technique. In this
technique, a subspace is firstly developed by repeating l
times of remaining available possibilities of variables. The
point in the subspace, which having the value of mini-
mum distance to the selected sample points closest to d-
opt, is then selected. The value of l can be chosen from 5
to 10 (Beachkofski and Grandhi 2002).

4.2 Effective importance sampling method

Equation (14) can be rewritten as following for the general
case:

P f ¼
Z

G Xð Þ≤0

f X Xð ÞdX ; ð23Þ

in which X= (x1, x2,…, xm) is the vector of random variables
and fX(X) is the joint probability. The IS technique is applied
by rewriting (23) as follows:

P f ¼
Z

G Xð Þ≤0

f X Xð Þ
gX Xð Þ gX Xð ÞdX ; ð24Þ

where gX(X) is the IS distribution function. By applying the
law of large numbers, the failure probability of structure is
estimated as

PIS
f ≃

1

N

XN
i¼1

I X ið Þ; ð25Þ

in which:

I X ið Þ ¼
f X X ið Þ
gX X ið Þ if G≤0

0 if G > 0

8<
: : ð26Þ

In PAA of a nonlinear system, G(X) cannot be presented as
a mathematical function, while the choice of gX(X) is very
difficult due to the variety of the distribution of random vari-
ables. To overcome these limitations, EIS is proposed herein
based on a new equation of G(X) which allows the easy and
automatic selection of IS function in numerical procedure.
Moreover, compared to the IS, the variance of the structural
failure probability using EIS is considerably decreased.

In order to develop a new equation ofG(X), Fig. 3 presents
two safety check methods of a plane frame subjected to two
applied loads (H,P). In the first method in Fig. 3a, the load
factor lf, which is defined as the ratio of the ultimate load at the
frame collapse to the applied load, is calculated by using PAA.
The frame is safe if lf is larger than 1.0. In the second method
as shown in Fig. 3b, the frame deformation due to P is firstly
captured, and the load-carrying capacity RH of the frame in
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terms of H is then calculated. The frame safety condition in
this case is that RH must be larger than H.

Now, consider the case that the value ofH is changed while
the value of P is preserved. To check the frame safety, the

second method requires only one structural analysis while
the first method needs the number of structural analyses equal
to the number of values ofH. Hence from the simulation view
point, the second method is much better than the first method.

Fig. 2 Flow-chart of nonlinear
inelastic analysis
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The limit state function of the frame using the secondmeth-
od can be written as

G H ;Pð Þ ¼ RH−H : ð27Þ

In the general case, (27) can be rewritten as

G Xð Þ ¼ Rxm x1; x2;…; xm−1ð Þ−xm; ð28Þ
where X= (x1, x2,…, xm) is the vector of random variables; xm
is an applied load; and, Rxm is the structural load-carrying
capacity in terms of xm.

The structural failure probability is calculated as follows:

Pf ¼ P G Xð Þ≤0½ � ¼
Z

G Xð Þ≤0

f Rxm
rð Þ f xm xð Þdrdx; ð29Þ

where f Rxm
rð Þ and f xm xð Þ are probability functions of Rxm and

xm, respectively.

To apply the IS technique, (29) is rewritten as follows:

Pf ¼ P G Xð Þ≤0½ � ¼
Z

G Xð Þ≤0

f Rxm
rð Þgxm xð Þ f xm xð Þ

gxm xð Þ drdx; ð30Þ

where gxm xð Þ is the IS distribution function of xm.
The failure probability of structure according to the IS

method can be calculated as:

PIS
f ≃

1

N

XN
i¼1

I xmi� �
; ð31Þ

whereN is the number of samples; xm
i is the sample ith of xm by

using gxm xð Þ; and, I(xmi ) is the scale factor which is defined as:

I xim
� � ¼

f xm xim
� �

gxm xim
� � f Rxm

i ¼ Rxm x1i; x2i;…; xm−1i
� �

≤xmi

0 if Rxm
i ¼ Rxm x1i; x2i;…; xm−1i

� �
> xmi

8><
>: : ð32Þ

(a) Method 1 

(b) Method 2 

Fig. 3 Methods of safety
checking of simple planar frame.
a Method 1. b Method 2
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The following conclusions are drawn for calculating Pf
IS

from (28) and (31):

& The number of structural analyses is equal to N and inde-
pendent from the sample creation of xm;

& The sample number of xm is equal to N; and,
& If N values of Rxm are known, Pf

IS is dependent on the
creation of N samples of xm.

From the above conclusions, EIS is proposed by repeating
k - times the creation of N samples of xm. The unbiased esti-
mate Pf

EIS of Pf using EIS is defined as follows:

PEIS
f ¼ 1

k

Xk
j¼1

PIS; j
f ; ð33Þ

where Pf
IS,j is the unbiased estimate of Pf by using IS corre-

sponding to the sampling creation jth of N samples of xm; and,
k is defined as the duplication factor of EIS.

The flowchart of failure probability analysis of steel frames
is given in Fig. 4.

5 Harmony search algorithm

HS is proposed by Geem et al. (2001). Three fundamental
elements of HS are the harmony memory matrix (HM), the
pitch adjustment, and randomization. HS starts by generating
the number of variable design vectors (HMS) and stores them
in HM so that they are sorted in terms of objective function
value. The member which has the largest objective function
value is called the worst member. In iteration steps, a new
design vector is created by randomly selecting from the
existing matrix of HM with probability HMCR and by mutat-
ing it with a pitch adjustment rate (PAR), or by generating a
new ones from the variable space with probability (1-HMCR).
If the objective function value of the new design vector is
smaller than that of the worst member ofHM, it will be chosen
to replace the worst member in HM. This process is repeated
until the maximum number of iterations is reached.

The flowchart of HS algorithm for optimization of steel
frames is given in Fig. 5, while the important stages are
discussed as follows:

Stage 1: Initialization of problem

In the first stage, the objective function of optimization of
steel frames W(Y) is performed as a minimization problem:

Min W Y ;Xð Þ ¼ ρ
Xn
i¼1

A yið Þ
X
q¼1

nq

Lq

 !
; Y ¼ y1; y2; ::; ynð Þ; yi∈ 1;UBi½ �;

ð34Þ
Fig. 4 Flow chart of IHS-EIS procedure
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where UBi is the number of W-shaped sections of the variable
space of yi. In every iteration of HS, yi is selected as an integer
value in the range [1,UBi] which represents the position of yi in
the variable space. From the value of yi, the property parameters
of cross-sectional areas of design variables are inputted. To im-
prove the local search capacity of HS, Murren and Khandelwal
(2014) proposed the design driven harmony search method
(DDHS), in which the space around a design variable is

arranged in terms of appropriate section parameter. Since frame
members are axial and flexural components, the variable space
in this study is sorted in terms of the plastic section modulus Zx.

The HS parameters are also specified, including harmony
memory size HMS, harmony consideration rate HMCR, the
range of pitch adjusting rate [PARmin,PARmax], and the
number of iteration MaxItr. The range of bandwidth for mu-
tation is not used in the discrete optimization of steel frames.

Stage 2: Development of the initial HM

Based on the initial parameters of HS, the HM matrix is
firstly filled by randomly creating HMS design variable vec-
tors Yj= (y1

j, y2
j,.., yn

j) (j=1,..,HMS), where:

yi
j ¼ randint 1;UBið Þ; ð35Þ

in which rand int(1,UBi) is used for creating the random inte-
ger value in the range [1,UBi].

After generation of the initial design variable vectors,
the objective function of problem is evaluated, and HM
matrix is sorted in terms of objective function from low to
high value as follows:

HM ¼
Y 1

Y 2

⋮
YHMS

8>><
>>:

9>>=
>>;

¼
y11 y12 … y1n
y21 y22 … y2n
⋮ ⋮ ⋱ ⋮

yHMS
1 yHMS

2 … yHMS
n

2
664

3
775

f Y 1
� �

≤ f Y 2
� �

≤ ⋯ ≤ f YHMS� �
: ð36Þ

The design variable vector which has the largest value of
objective function is identified as the worst member of HM.

Stage 3: Improvisation of new design variable vector

In this stage, a new design variable vector Y' = (y1
', y2

',.., yn
')

is generated based on memory consideration, pitch

Fig. 5 Flow chart of HS procedure
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adjustment, and random selection. The process of generating a
new design variable vector is called improvisation. Y' is
assigned due to the rule of memory consideration and the
value of HMCR as follows:

If yk
' is chosen from {yk

1, yk
2,…, yk

HMS}, the rule of pitch
adjustment will be applied with a probability PAR, where
PAR is linearly adjusted with generation number as follows:

PAR current iterationð Þ ¼ PARminþ current iteration
total iteration

� PARmax−PARminð Þ:
ð37Þ

The modification of yk
' is set as:

y
0
k ¼ y

0
k þ randint 1; 3ð Þ if rand < 0:5ð Þ
y
0
k − rand int 1; 3ð Þ if rand≥0:5ð Þ



: ð38Þ

Equation (38) indicates that yk
' is mutated with an inte-

ger step of random search direction. The step size in this
study is chosen in the range [1, 3] due to the suggestion of
Degertekin (2008).

To improve the harmony search method, HMCR and PAR
of components of Y' are determined by applying the adaptive
harmony search method (AHS) proposed by Hasançebi et al.
(2010a, b) as follows:

HMCR y
0
j

� �
¼ 1þ 1−HMCR

HMCR
exp −γN 0; 1ð Þð Þ

 !−1

PAR y
0
j

� �
¼ 1þ 1−PAR

PAR
exp −γN 0; 1ð Þð Þ

 !−1

8>>>>><
>>>>>:

j ¼ 1; ::; nð Þ; ð39Þ

where HMCR and PAR are the average values of the memory
consideration rate and pitch adjustment rate, respectively,
which are used for controlling mutation of Y '; and,
γ∈ [0.25, 0.50] is a scalar.

To reduce the computational time of structural analysis, the
matrix HMstor is created to store all design vectors in every
iteration. If Y' is the same with one member of HMstor, it will
be discarded and a new design variable vector is generated
again; otherwise, Y' is stored in HMstor.

Stage 4: Updating HM

If the objective function value of the worst member of HM
is larger than ones of Y', it will be replaced by Y'. Then, HM is
sorted again in terms of objective function from low number
to high number.

Stage 5: Termination of optimization process

Stages 3 and 4 are repeated until the maximum number of
objective function evaluations is reached or the best design
shows no further improvements during a specific number of
iterations. The member of HM which has the smallest value of

objective function is chosen as the final result of HS optimiza-
tion process.

6 Proposed RBDO procedure

In this section, an effective RBDO procedure for space steel
frames is proposed by a hybrid approach from HS and IHS-
EIMS as illustrated in Fig. 6.

As can be seen in Fig. 6, the proposed procedure is
divided into five big steps: (1) initializing the optimiza-
tion problem, (2) generating the deterministic HM, (3)
generating the probabilistic HM, (4) improvisation of
new design variable vector, and (5) updating HM. The
deterministic HM means that all members of HM satisfy
de te rmini s t i c cons t ra in t s o f op t imiza t ion . The

Fig. 6 Flow chart of the proposed procedure for optimization of space
steel frames
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probabilistic HS means that all members of HM satisfy
deterministic and probabilistic constraints of optimization.

In the first step, the objective function, constraints, and
design variables of the optimization are defined. The informa-
tion of random variables and HS parameters is inputted.

In the second step, the deterministic HM is developed by
using HS algorithm considering only deterministic constraints
as follows:

1. Generate the initial HM

2. Evaluate the deterministic constraints of members of HM by using
PAA

3. Calculate the deterministic objective function of members

4. Sort HM by deterministic objective function from low to high value

5. Generate a new design variable vector based on HS operators by
using memory consideration, pitch adjusting, and randomization

6. Repeat steps 2 and 3 to evaluate objective function of the new
member

7. Replace the worst member of HM by new member if improved

8. SortHM in terms of deterministic objective function from low to high
value

9. Repeat 5–8 until the worst member of HM satisfies all deterministic
constraints

In the third step, the probabilistic HM is developed as
follows:

1. Evaluate the probabilistic constraint of members of the deterministic
HM by using IHS-EIS

2. Calculate the objective function of members of the deterministicHM

3. Sort the deterministic HM by objective function from low to high
value

4. Generate a new design variable vector based on HS operators
by using memory consideration, pitch adjusting, and
randomization

5. Evaluate deterministic constraints of the new member

6. Evaluate the probabilistic constraint of the new member if it satisfies
all deterministic constraints; otherwise, go back step 4

7. Evaluate objective function of the new member

8. Replace the worst member of HM with new member if improved

9. Sort HM in terms of objective function from low to high value

10. Repeat 4–9 until the worst member of HM satisfies all constraints

Since probabilistic HM is developed, the new design
variable vector is firstly created by using HS operators
in the fourth step. The deterministic objective function
of the new member is then evaluated by using PAA.
The probabilistic constraint of new member is only
evaluated if its deterministic objective function is small-
er than the objective function of the worst member of
HM. HM is updated if the objective function of the
new member is smaller than that of the worst member
of HM in the fifth step.

The optimization is terminated when the total number of
iterations is reached or the best design shows no further im-
provements during a specific number of iterations.

7 Numerical examples

7.1 Verification of IHS-EIS

The PAA method presented in Section 3 has been imple-
mented in the practical advanced analysis program (PAAP)
(Thai and Kim 2009) to calculate the load-carrying capacity
of steel frames, so only IHS-EIS is verified in this study
through three mathematical examples and one planar steel
frame. The mathematical examples are modified from the
published problems in order to reach the target failure prob-
ability of 0.1%, which value is often used for reliability-
based design of structure. MCS, IS, and Subset simulation
(SS) methods are employed for comparison. SS is performed
by using the Matlab code which is provided by Li and Cao
(2016), and the partial failure probability Pi is equal to 0.1.
The duplication factor k of IHS-EIS for these examples is
equal to 2000.

7.1.1 Mathematical examples

Three limit state functions (LSFs) are considered in this sec-
tion. The original problems were proposed by Engelund and
Rackwitz (1993) and used by many authors in the literature
due to their complexities for solving by using FORM/SORM.

Table 1 Results of three mathematical examples with the same number of samples

LSF No. Samples MCS with 2 million samples
(Accurate Pf(%))

SS IS Proposed method
EIS, k= 2000

Proposed method
IHS-EIS, k= 2000

Pf (%) COVof Pf Pf (%) COVof Pf Pf (%) COVof Pf Pf (%) COVof Pf

1 840 0.139 0.191 0.58 0.133 1.11 0.141 0.30 0.136 0.03

2 1110 0.111 0.150 0.65 0.109 1.39 0.116 0.33 0.117 0.26

3 1400 0.150 0.200 0.44 – – 0.150 0.52 0.154 0.39
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a. Multiple failure points with two random variables

LSF1 ¼ X 1X 2−PL; ð40Þ

in which : P ¼ 14:614 ; L ¼ 10:0 ;
X 1∼ N 31064:4; 4659:6ð Þ ;

and X 2∼N 0:0104; 1:56� 10−3
� �

:

In this example, X2 is selected to perform IS and IHS-EIS
techniques.

b. Noisy limit state function with six random variables

LSF2 ¼ X 1 þ 2X 2 þ 2X 3 þ 2X 4−5X 5−5X 6 þ 0:01
X6
i¼1

sin 100X ið Þ; ð41Þ

in which X 1∼ N 50; 5ð Þ ;
X 2;X 3;X 4∼N 120; 12ð Þ;
X 5∼ N 50; 15ð Þ ;

and X 6∼ N 40; 12ð Þ :

X6 is selected in this example to perform IS and IHS-EIS.

c. Noisy limit state function with 17 random variables

This example is the modification of the example 2 for high
dimensions of random variables. The LSF is written as follows:

LSF3 ¼
X7
i¼1

X i−
X17
i¼8

X i þ 0:001
X17
i¼1

sin 100X ið Þ; ð42Þ

in which X 1∼ N 80; 8ð Þ ;
X i∼N 120; 12ð Þ i ¼ 2; 7ð Þ;
X i∼N 80; 24ð Þ i ¼ 8; 12ð Þ;

and X i∼N 40; 12ð Þ i ¼ 13; 17ð Þ:

In this example, X17 is chosen for performing IS and
IHS-EIS.

Tables 1 and 2 show the numerical results with 500 inde-
pendent runs for each value. MCS with 2 million samples is
used to calculate the accurate Pf. As can be seen in Table 1, the

Table 2 Results of three mathematical examples with the same COVof Pf

LSF No. MCS SS IS Proposed method
EIS, k= 2000

Proposed method
IHS-EIS, k= 2000

Sample COVof Pf Sample COVof Pf Sample COVof Pf Sample COVof Pf Sample COVof Pf

1 1,000,000 0.03 42,000 0.10 100,000 0.14 10,000 0.077 500 0.032

2 15,000 0.25 5040 0.27 34,000 0.26 1800 0.27 1110 0.26

3 10,000 0.32 1960 0.39 – – 3000 0.44 1400 0.39

Fig. 7 Vogel portal frame

Table 3 Statistical properties of random variables for Vogel portal frame

Properties Variables Nominal Mean/nominal COV Distribution Reference

Material E 205 (GPa) 1.00 0.04 Lognormal Bartlett et al. (2003)

Fy 235 (MPa) 1.10 0.06 Lognormal Bartlett et al. (2003)

Cross-section Ab

Ib
Ac

Ic

0.0133 (m2)
2.769E-4 (m4)
0.0149 (m2)
2.517E-4 (m4)

1.00
1.00
1.00
1.00

0.05
0.05
0.05
0.05

Normal
Normal
Normal
Normal

Ellingwood et al. (1982)
Ellingwood et al. (1982)
Ellingwood et al. (1982)
Ellingwood et al. (1982)

Loading P
H

2240 (KN)
28 (KN)

1.05
0.92

0.10
0.37

Normal
Gumbel

Ellingwood et al. (1982)
Ellingwood et al. (1982)
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means of Pf by using IS and the proposed methods (EIS, IHS-
EIS) are almost equal to the accurate values, while those by
using SS are 34–37% higher than the accurate ones.
Furthermore, the values of coefficient of variation (COV) of
Pf of IHS-EIS are smaller than those of SS and IS, especially
in examples 1 and 2 where the number of random variables are

2 and 6, respectively. In particular, in example 2, COVof 0.26
of Pf by using IHS-EIS is equal to 40 and 18.7% of those by
using SS and IS, respectively. As can be observed from
Table 2, the sample numbers of IHS-EIS in the examples 2
and 3 are 80.15 and 28.57% lower than those of SS, respec-
tively. The sample number of 500 of IHS-EIS in the example 1

Fig. 8 Load-roof displacement
response of Vogel portal frame

Fig. 9 Relationship between k
value with COVof structural
failure probability of Vogel portal
frame

Fig. 10 COVof structural failure
probability of reliability analysis
methods for Vogel portal frame
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is greatly smaller than 42,000 of SS since only 2 random
variables are considered.

7.1.2 Vogel portal frame

The geometric dimensions and section properties of the frame
are presented in Fig. 7, while the information of eight random
variables is given in Table 3. The accurate value of Pf is equal
to 0.1017%. The vertical load P is used to perform IS, EIS,
and IHS-EIS. The ultimate load factor of the frame in terms of
P due to the mean values of the random variables is equal to

1.470, as can be obtained from Fig. 8. Therefore, the IS dis-
tribution of P is chosen as a normal distribution with
mean=1.470 *mean of P and COV=5 *COVofP. Figure 9
shows the relationship between k and COV of Pf by using
EIS and IHS-EIS with 1000 samples. It can be seen that the
COV value is converged when k is larger than 2000. Thus, the
value of k is chosen as 2000.

The relationship of COVof Pf and sample number is shown
in Fig. 10 with 500 independent evaluations for each value. As
can be seen in this figure, COVof Pf by using IHS-EIS is 77
and 60% lower than those by usingMCS and SS, respectively,
while IS is not much effective.

The frequency histogram ofPf by using IHS-EIS with 1000
samples is shown in Fig. 11. The mean value of 0.102% of Pf
distribution is almost equal to the accurate value. In addition,
the mean value of 0.142% of Pf by using SS is about 40%
higher than the accurate Pf. Hence, IHS-EIS can capture the
failure probability more precisely than SS.

It should be noted that SS is based onMarkov ChainMonte
Carlo (MCMC) technique which generates samples one by
one, so parallel computing cannot be performed to reduce
the computational cost of SS. In the computational cost view
of point, the proposed method hence is more effective than SS
in structural optimization. Therefore, it can be concluded that

Fig. 11 Histogram of failure probability of Vogel portal frame using the
proposed method IHS-EIS (k= 2000) with 1000 samples

Table 4 HS parameters and design information of deterministic optimization examples

Example Design space HS parameters Constraints

Two-bay three-story (2 × 3) planar frame Beam bracing: L/6
Beam: all W-shapes
Column: W10

HMS= 25
HMCR= 0.8
PAR= 0.4
MaxItr= 2000

Strength: Yes
Drift: No
Geometry: No

Five-bay fourteen-story (5 × 14) planar frame Beam bracing: L/6
Beam: all W-shapes
Column: W12, W14, W18, W21, W24, W27

HMS= 100
HMCR= 0.8
PAR= 0.4
MaxItr= 25,000

Strength: Yes
Drift: H/400
Geometry: Yes

Fig. 12 Two-bay three-story
planar frame
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the proposed method for structural reliability analysis is effec-
tive and accurate.

7.2 Deterministic optimization of steel frames

Two planar frames are investigated in this section to illustrate
the accuracy and efficiency of the proposed procedure for
deterministic optimization of steel frames. In addition, the
comparison of linear and nonlinear inelastic analyses is

shown. The HS parameters and design variable spaces are
given in Table 4. All frames use ASTM A992 steel with
Fy=248MPa and E=200GPa.

7.2.1 Two-bay three-story planar frame

The frame has 15 members which are split into 2 member
groups, beams and columns, as shown in Fig. 12. This frame
was optimized by Pezeshk et al. (2000), Camp et al. (2005),

Table 5 Optimal results of two-bay three-story planar frame

Element group GA
(Pezeshk et al. 2000)

ACO
(Camp et al. 2005)

HS
(Degertekin 2008)

DDHS
(Murren and
Khandelwal 2014)

HS in this study

Linear
analysis

Advanced
analysis

Beam W24× 62 W24× 62 W21× 62 W24× 62 W24× 62 W21× 44

Column W10× 60 W10× 60 W10× 54 W10× 60 W10× 60 W10× 45

Wt. (lb)
Wt. (kN)

18,792
83.6

18,792
83.6

18,292a

81.4a
18,792
83.6

18,792
83.6

13,660
60.77

Avg. number of analyses 780 2200 853 200 231 243

Normalized strength capacity – – – – 1.001 1.002

Number of times optimum
results obtained

5/30 84% of total
simulations

<100% of total
simulations b

100/100 100/100 100/100

a The design is infeasible
b The average weight of 30 different designs is 18,784 lb, with a standard deviation of 411 lb

Fig. 13 Five-bay fourteen-story
planar frame

An efficient method for reliability-based design optimization 345



Degertekin (2008), and Murren and Khandelwal (2014) by
using GA, ACO, HS, and DDHS, respectively. Only strength
constraint is considered in this example. The optimum design

of this frame using linear analysis is W24 × 62 for beams and
W10 × 60 for columns, which was demonstrated by Pezeshk
et al. (2000) by checking all possibilities of design variables.

Table 5 shows the optimization results obtained from 100
evaluations for each value. It can be seen from this table that
the proposed procedure successfully captures the optimum
design in the average of 231 and 243 iterations corresponding
to using linear and nonlinear inelastic analyses, respectively.
These are much better than the 780 iterations of GA (Pezeshk
et al. 2000), 2200 iterations of ACO (Camp et al. 2005), and
853 iterations of HS in (Degertekin 2008), and similar to 200
iterations of DDHS (Murren and Khandelwal 2014). In addi-
tion, the optimum design of the frame using nonlinear inelastic
analysis is W21 × 44 for beams, W10 × 45 for columns, and

total weight of 60.77 kN. This optimum weight is equal to
72.7% of one using linear analysis. The reason is that the
nonlinear inelastic analysis considers the inelastic force

Table 6 Equivalent
static wind loads of five-
bay fourteen-story planar
frame

Story Equivalent static
wind load (kN)

1 17.37
2 17.37
3 18.46
4 20.09
5 20.82
6 21.54
7 22.63
8 23.54
9 23.54
10 24.45
11 25.17
12 25.17
13 25.90
14 13.22

Table 7 Optimal results of five-bay fourteen-story planar frame

Alberdi and Khandelwal (2015) HS in this study

ACO GA DDHS PSO ISA TS Linear analysis Nonlinear inelastic
analysis

Avg. Wt. (kN) 1030.1 1040.4 779.33 1244.40 1447.0 797.20 791.67 790.83

Std. Wt. (kN) 32.30 95.70 6.39 262.9 278.4 13.40 11.16 10.73

Percent feasible 100.0 100.0 100.0 97.6 64.6 100.0 100.0 100.0

Table 8 Best optimal designs of five-bay fourteen-story planar frame

Member group Alberdi and Khandelwal (2015) HS in this study

ACO GA DDHS PSO ISA TS Linear analysis Nonlinear inelastic
analysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21 × 101
24 × 131
21 × 147
18 × 86
21 × 101
14 × 120
12 × 87
14 × 109
12 × 96
24 × 117
12 × 65
18 × 130
21 × 44
18 × 40
18 × 35
16 × 36
12 × 72
16 × 89
16 × 50
16 × 45

24 × 104
21 × 122
24 × 146
24 × 84
18 × 97
14 × 120
14 × 53
18 × 119
12 × 82
14 × 30
24 × 55
12 × 40
21 × 44
24 × 55
16 × 36
18 × 35
18 × 50
12 × 79
18 × 65
18 × 46

14 × 82
21 × 132
14 × 145
12 × 65
14 × 90
14 × 109
12 × 50
14 × 61
12 × 65
14 × 30
12 × 30
14 × 38
21 × 44
21 × 44
18 × 35
18 × 35
21 × 48
21 × 50
21 × 44
21 × 44

27 × 129
18 × 143
21 × 166
24 × 84
27 × 129
18 × 158
21 × 68
21 × 83
21 × 147
21 × 132
27 × 114
27 × 178
21 × 44
14 × 48
16 × 36
14 × 48
21 × 57
16 × 100
16 × 57
21 × 55

21 × 147
27 × 161
24 × 192
24 × 94
14 × 109
18 × 119
21 × 73
21 × 83
21 × 101
24 × 131
12 × 65
24 × 146
16 × 40
21 × 73
16 × 50
12 × 40
21 × 57
21 × 57
18 × 60
21 × 44

18 × 76
24 × 131
24 × 146
18 × 76
27 × 102
24 × 104
14 × 53
24 × 68
18 × 76
12 × 30
12 × 30
14 × 43
21 × 44
18 × 35
18 × 35
18 × 35
21 × 48
21 × 48
21 × 44
18 × 50

14 × 82
21 × 132
14 × 145
12 × 65
14 × 90
14 × 109
12 × 50
14 × 61
12 × 65
14 × 30
12 × 30
14 × 38
21 × 44
21 × 44
18 × 35
18 × 35
21 × 48
21 × 50
21 × 44
21 × 44

14 × 82
21 × 132
14 × 145
12 × 65
14 × 90
14 × 109
12 × 50
14 × 61
12 × 65
14 × 30
12 × 30
14 × 38
21 × 44
21 × 44
18 × 35
18 × 35
21 × 48
21 × 50
21 × 44
21 × 44

Weight (kN) 925.14 838.05 756.55 1043.4 1042.7 756.84 756.55 756.55
Normalized strength capacity – – – – – – 1.001 1.734
Max. normalized story drift 0.996 0.996
Max. normalized geometry 0.960 0.960
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distribution while the linear analysis cannot. In addition, the
satisfaction of the strength constraint of the best frame designs
is shown in Table 5 by using the normalized strength capacity,

which is defined as the ratio of load-carrying capacity of the
structure and applied loads. In this table, this value greater
than 1 means that the strength constraint is satisfied.

7.2.2 Five-bay fourteen-story planar frame

The frame has 174 members which are split into 20 mem-
ber groups as shown in Fig. 13. This frame was optimized
by Alberdi and Khandelwal (2015) using many different
metaheuristic algorithms. All strength, drift, and geomet-
ric construction constraints are considered in this exam-
ple. The equivalent static wind loads for this frame are
given in Table 6.

The optimization results obtained from 100 evaluations
for each value are presented in Table 7, while the best
designs are given in Table 8. It can be seen in Table 7
that the average and standard deviation of the optimum
frame weight of the proposed procedure using linear anal-
ysis are 791.67 and 11.16 kN, respectively. These results
are better than those of ACO, GA, PSO, and ISA, and
similar to those of DDHS and TS, which are given in
Alberdi and Khandelwal (2015). In addition, the average
of 790.83 kN of the optimum frame weight using nonlin-
ear inelastic analysis is similar to the one using linear
analysis. The reason is that the optimum design of the

Table 9 Design summary of RBDO of steel frames

Two-story space frame Six-story space frame

Design space Beam: all W-shapes
Column: W10, W12

Beam: all W-shapes
Column: W14, W18, W21, W24

IHS-EIS parameters k = 2000
Number of samples = 1000

k = 2000
Number of samples = 1000

Constraints Strength: Yes
Drift: H/400
Geometry: Yes

Strength: Yes
Drift: H/400
Geometry: Yes

Termination criteria Total function evaluation = 2000
Number of function evaluation for no improvement

of best member = 500

Total function evaluation = 2000
Number of function evaluation for no improvement

of best member = 1000
HS parameters HMS = 25

HMCR= 0.8
PAR= 0.4
MaxItr= 2000

HMS = 50
HMCR= 0.8
PAR= 0.4
MaxItr = 5000

GA Population = 50
Iteration = 40
Mutation = 0.8
Crossover: Uniform technique with crossover rate = 0.5

Population = 100
Iteration = 100
Mutation = 0.8
Crossover: Uniform technique with crossover rate = 0.5

Micro-GA Population = 10
Iteration = 200
Mutation: No
Crossover: Uniform technique with crossover rate = 0.5
Elitism scheme: Yes

Population = 10
Iteration = 500
Mutation: No
Crossover: Uniform technique with crossover rate = 0.5
Elitism scheme: Yes

PSO Number of particle = 20
Iteration = 100
c1 = 2
c2 = 4
Velocity limit scheme: Yes
Evaluate center of gravity: Yes
Initialize by Quasi-Monte Carlo: Yes
Local random search: Yes

Number of particle = 50
Iteration = 100
c1 = 2
c2 = 4
Velocity limit scheme: Yes
Evaluate center of gravity: Yes
Initialize by Quasi-Monte Carlo: Yes
Local random search: Yes

Fig. 14 Two-story space frame
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frame is controlled by the inter-story drift constraints
which are calculated by using elastic analysis in both of
the optimization using linear and nonlinear inelastic anal-
yses. Furthermore, the satisfaction of the strength, story
drift, and geometric constraints of the best frame designs
are presented in Table 8. The maximum normalized story
drift is defined as the ratio of the maximum value of
structural story drifts and the allowable story drift, and

the maximum normalized geometry is the maximum value
of geometric constructional constraints. As can be seen in
this table, the normalized strength capacity is greater than
1, while the maximum normalized story drift and maxi-
mum normalized geometry are smaller than 1. This means
that all constraints are satisfied.

From the two aforementioned examples of steel frames, it
can be concluded that the proposed optimization procedure is
effective and robust. Furthermore, the optimum designs using
nonlinear inelastic analysis are better than those using linear
elastic analysis. Therefore, using nonlinear inelastic analysis
in optimization of steel frames is preferable.

7.3 Reliability-based design optimization of steel frames

Two space steel frames are investigated in this section to
illustrate the accuracy and efficiency of the proposed pro-
cedure for RBDO of frames. Only nonlinear inelastic
analysis is considered. GA, micro-GA, and PSO are
employed for comparison, which are performed using
the latest FORTRAN code versions developed by Carroll
(2001) for GA and micro-GA and Tada (2007) for PSO.

Table 10 Statistical properties of random variables for two-story space frame

Properties Variables Nominal Mean/nominal COV Distribution Reference

Material E
Fy

200 (GPa)
248 (MPa)

1.00
1.10

0.04
0.06

Lognormal
Lognormal

Bartlett et al. (2003)
Bartlett et al. (2003)

Cross-section Ai
Ii

–
–

1.00
1.00

0.05
0.05

Normal
Normal

Ellingwood et al. (1982)
Ellingwood et al. (1982)

Loading DL
LL
W

50 (KN/m)
30.5 (KN/m)
30 (KN)

1.05
1.00
0.92

0.10
0.10
0.37

Normal
Normal
Gumbel

Ellingwood et al. (1982)
Ellingwood et al. (1982)
Ellingwood et al. (1982)

Table 11 RBDO results of two-story space frame

GA Micro-GA PSO Proposed method 1 Proposed method 2

Avg. Wt. (kN) 50.81 47.34 55.63 41.23 41.52

Std. Wt. (kN) 4.59 4.23 6.83 2.22 2.53

Avg. computational time (h) 12.89 11.93 13.85 13.67 0.69

Best design 12 × 53, 18× 35,
14 × 22

12× 53, 18× 35,
14 × 22

12× 53, 18× 35,
14 × 22

12× 53, 18× 35,
14× 22

12× 53, 18 × 35,
14× 22

Weight of best design (kN) 38.19 38.19 38.19 38.19 38.19

Normalized strength
capacity of best design

1.535 1.535 1.535 1.535 1.535

Max. normalized store drift
of best design

0.553 0.553 0.553 0.553 0.553

Max. normalized geometry
of best design

0.601 0.601 0.601 0.601 0.601

Normalized failure probability
of best design

0.983 0.932 0.869 0.873 0.972
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Fig. 15 Convergence histories of the best designs of two-story space
frame
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The proposed procedure is considered in two options:
proposed method 1 is that probabilistic constraint is eval-
uated in all design samples, and proposed method 2 is to
use the fully proposed procedure. The design summary

and metaheuristic parameters are given in Table 9. Both
frames are optimized according to the load combinations
for the serviceability of (DLn+ 0.5LLn+ 0.7Wn) and for the
strength and failure probability of (1.2DLn + 0.5LLn +
1.6Wn), in which DLn, LLn, and Wn are the nominal values
of dead, live, and wind loads, respectively. Parallel com-
puting is also used for probability constraint evaluation by
using the shared memory programming model OpenMP.
For these examples, 10 processors of the computer con-
figuration (Intel® Core™ i7-3930 K CPU@3.20Hz
4.20Hz) are used. Each method is run 50 times in order
to investigate the efficiency and accuracy of the methods.

7.3.1 Two-story space frame

This frame with three design variables is shown in Fig. 14.
Wind loads are converted into point loads at every beam-
column joint in the X-direction. The total number of random
variable is therefore equal to 11. The information of random
variables is given in Table 10.

The RBDO results of the frame are shown in Table 11.
As can be seen in this table, proposed method 1 produces
the lowest average and standard deviation of the optimum
frame weight, 41.23 kN and 2.22 kN, respectively. These are
similar to the average of 41.52 kN and the standard devia-
tion of 2.53 kN of the optimum frame weight by using pro-
posed method 2. However, the average computational time
of 0.69 h of proposed method 2 is much less than those of
12.89, 11.93, 13.85, and 13.67 h of GA, micro-GA, PSO,
and proposed method 1, respectively. The satisfaction of
probabilistic and deterministic constraints of the best frame
designs is also shown in the Table 11, in which the normal-
ized failure probability is the ratio of structural failure prob-
ability and the allowable failure probability value. In this
table, the normalized strength capacity is greater than 1,
while the maximum normalized story drift, maximum nor-
malized geometry, and normalized failure probability are
smaller than 1. This means that all constraints are satisfied.
In addition, Fig. 15 shows the convergence histories of the
best optimum designs of the frame.
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Fig. 16 Six-story space frame. a Plan view. b Perspective view

Table 12 Statistical properties of
random variables for six-story
space frame

Properties Variables Nominal Mean/
nominal

COV Distribution Reference

Material E

Fy

200 (GPa)

248 (MPa)

1.00

1.10

0.04

0.06

Lognormal

Lognormal

Bartlett et al. (2003)

Bartlett et al. (2003)

Cross-section Ai
Ii

–

–

1.00

1.00

0.05

0.05

Normal

Normal

Ellingwood et al. (1982)

Ellingwood et al. (1982)

Loading DL

LL

W

19.5 (kN/m)

10.5 (kN/m)

20 (kN)

1.05

1.00

0.92

0.10

0.10

0.37

Normal

Normal

Gumbel

Ellingwood et al. (1982)

Ellingwood et al. (1982)

Ellingwood et al. (1982)
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7.3.2 Six-story space frame

This frame with five design variables is shown in Fig. 16, in
which wind loads are simulated by equivalent concentrated
loads at every beam-column joint in the Y-direction. The total
number of random variable is therefore equal to 15. The in-
formation of random variables is given in Table 12.

Table 13 shows the comparison of the optimal results of the
proposed method and other algorithms. Again, the average of
246.42 kN and standard deviation of 6.21kN of the optimum
frame weight by using proposed method 2 are similar to those
by using proposed method 1. These results are much better
than the average weight of 267.56 kN, 261.37 kN, and
280.37 kN of GA, micro-GA, and PSO, respectively.
Proposed method 2 continues showing that it is much faster
than other methods since its average computational time of
1.84 h is much smaller than those of 32.58, 31.73, 35.47,
and 34.66 h of GA, micro-GA, PSO, and proposed method
1, respectively. Therefore, it can be concluded that proposed
method 2 is the most effective algorithm in all considered

methods. Furthermore, Fig. 17 presents the convergence his-
tories of the best optimum designs of the frame.

8 Conclusion

The summaries and conclusions of this study can be drawn as
follows:

(a) An efficient numerical procedure for RBDO of nonlinear
inelastic steel space frames is developed by combining
the practical advanced analysis, a new robust method of
failure probability analysis, and harmony search tech-
nique (HS).

(b) The proposed method (IHS-EIS) for evaluating the fail-
ure probability of structures is developed by integrating
the improved Latin Hypercube (IHS) and a new effective
importance sampling (EIS).

(c) The detail implement of HS for discrete optimization of
steel frames is introduced.

(d) Compared to Monte Carlo simulation, importance sam-
pling technique (IS), the combination of IS and IHS, and
Subset simulation technique, IHS-EIS is much more ef-
fective since it requires a smaller number of samples and
reduces the computational cost by applying parallel
computing.

(e) The proposed implement of HS is shown to be robust in
deterministic optimization of steel frames when com-
pared to other metaheuristic algorithms e.g. genetic algo-
rithm, particle swarm optimization, ant colony optimiza-
tion, Tabu search, etc.

(f) The results of deterministic optimization of the case stud-
ies prove that using nonlinear inelastic analysis is prefer-
able to optimization of steel frames.

Table 13 RBDO results of six-story space frame

GA Micro-GA PSO Proposed method 1 Proposed method 2

Avg. Wt. (kN) 267.56 261.37 280.37 245.11 246.42

Std. Wt. (kN) 19.23 17.79 23.67 5.62 6.21

Avg. computational time (h) 32.58 31.73 35.47 34.66 1.84

Best design 24× 84, 21× 55,
21× 57, 24× 55,
12× 19

24× 84, 21 × 55,
21× 57, 24 × 55,
12× 19

24× 94, 21 × 55,
21× 48, 24 × 55,
12× 19

24× 84, 21× 48,
21 × 57, 24× 55,
12 × 19

24× 84, 21 × 48,
21× 57, 24 × 55,
12× 19

Weight of best design (kN) 242.65 242.65 246.79 238.07 238.07

Normalized strength
capacity of best design

1.263 1.263 1.396 1.262 1.262

Max. normalized store
drift of best design

0.675 0.675 0.743 0.678 0.678

Max. normalized geometry
of best design

0.853 0.853 0.991 0.861 0.861

Normalized failure
probability of best design

0.956 0.889 0.935 0.896 0.963
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Fig. 17 Convergence histories of the best designs of six-story space
frame
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(g) The proposed procedure for RBDO of steel frames is
more stable and effective in the case studies when com-
pared to the genetic algorithm, micro-genetic algorithm,
and particle swarm optimization.

(h) The computational time of 0.69 and 1.84 h in RBDO of
the two- and six-story space steel frames of the proposed
procedure, respectively, proves that this method can be
applied in practical design.
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