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Abstract This paper presents a new approach for the topolog-
ical design ofmaterials with extreme properties. Themethod is
basedonhybridcellular automaton (HCA),which is an implicit
optimization technique that uses local rules to update design
variables iterativelyuntilmeeting the describedoptimality con-
ditions. By means of an energy-based homogenization ap-
proach, the effective properties of the considered material are
calculated in termsof elementmutual energies.By thismethod,
no sensitivity information is required to find the optimal topol-
ogy for the considered design objectives: bulk modulus, shear
modulus, and negativePoisson’s ratio. The proposedmethod is
validated by a series of numerical examples.
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1 Introduction

Topology optimization (Bendsøe and Kikuchi 1988) has not
been applied only for macroscopic structural design but also
for material microstructural design. Sigmund (Sigmund 1994)
first employed an inverse homogenization method to tailor
materials with prescribed constitutive parameters. Over the

past decades, material design using topology optimization
has undergone a remarkable development. Homogenization
theory (Guedes and Kikuchi 1990) is the most commonly
used method to account material heterogeneities and effective
properties so as to assess the macroscopic performance. The
key hypothesis of this theory is the assumption that the mac-
roscopic characteristic is much larger than that of microscopic
structure and the material is composed by the representative
unit cell (RUC) periodically. By means of inverse homogeni-
zation and density-based topology optimization method, var-
ious extreme material properties are obtained by tailoring the
architecture of constitution phases in RUC, including the ex-
treme thermal expansion coefficients (Sigmund and Torquato
1997), extreme viscoelastic behavior (Andreassen and Jensen
2014; Huang et al. 2015), combined extreme stiffness and
fluid permeability (Guest and Prévost 2006, 2007), and
hyperelastic properties (Wang et al. 2014b). Some other typi-
cal topology optimization approaches such as ESO-type
methods (Huang et al. 2011, 2012; Xia et al. 2016) and
level-set methods (Amstutz et al. 2010; Challis et al. 2012;
Wang et al. 2014a) also fall into this hot subject, all with the
purpose of finding the best material layout within a given
design domain which normally is the RUC in material design
for specified objectives. A review on design of material mi-
crostructures has been recently presented in (Cadman et al.
2013; Xia and Breitkopf 2016).

Note that the topology optimization algorithms formulated
in all above-mentioned works are typically gradient-based.
Another effective method that requires no gradient informa-
tion and utilizes cellular automata (CAs) is the hybrid cellular
automaton (HCA) method (Tovar et al. 2004a). The CA is a
discrete model inspired biologically (Chopard and Droz 1998;
Patel 2007). One of the first application of CAs to structural
designwas presented by Inou et al. (1994, 1998), and the basic
idea of this method is that the overall behavior one particular
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cell is governed by its neighbor neighbors. The HCA method
is a CA technique which actually is not explicitly an optimi-
zation technique (Tovar et al. 2004b). The physical quantities
at all lattices are updated simultaneously based on the local
rules such that the material or structural topologies can be
tailored to achieve the selected objectives (Kita and Toyoda
2000). During the past decade, structural optimization using
the HCA has undergone a remarkable development (Abdalla
and Gurdal 2004; Setoodeh et al. 2005, 2006; Tovar et al.
2006; Bochenek and Tajs-Zielinska 2015), and it has been
demonstrated that the HCA method is an efficient and robust
method in solving topology optimization problems (Tovar
et al. 2007; Penninger et al. 2010).

This paper aims to extend the HCAmethod to the design of
periodic microstructures of porous materials with extreme
properties. The merits of the HCA method include effective-
ness, gradient free and easy implementation with any numer-
ical analysis method (Bochenek and Tajs-Zielinska 2013). In
addition, existing works have shown that the used optimiza-
tion parameters and algorithm could influence final results of
material design (Huang et al. 2011; Sigmund 2000; Xia and
Breitkopf 2015). With regard to homogenization, this work
adopts an energy-based homogenized approach (Xia and
Breitkopf 2015) which is based on average stress and strain
theorems (Hashin 1983). In the following, the optimization
model of material microstructural design using the HCA is
described in Section 2. Section 3 gives several numerical ex-
amples on the design of periodic porous material with maxi-
mum bulk or shear modulus and negative Poisson’s ratio.
Finally, conclusion is drawn in Section 4.

2 Material design using the HCA

2.1 Optimization model

The idea of the CA requires decomposition of the considered
design domain (RUC) into a set of cells which is also the basic
idea of finite element (FE) method. The CA cells and the FE
meshes are coincident in this work. The values of elastic mod-
ulus of cells or elements are used as the design variables which
are updated upon a local rule until convergence is met. Similar
to topology optimization of homogeneous structures, the mod-
ulus at a cell/element i is defined using the modified solid
isotropic material with penalization (SIMP) approach
(Sigmund 2007),

Ei ρið Þ ¼ Emin þ ρPi E0−Eminð Þ ð1Þ
where E0 is the Young’s modulus of solid cell and Emin is the
Young’s modulus of void cell, which is a very small value to
avoid the singularity of the stiffness matrix. P is the penaliza-
tion exponent which is artificially introduced to make sure the

material distribution converges to a black and white design. ρi
takes values between 0 and 1, and these limits denote the void
cells and solid cells, respectively.

The optimization model using the HCA for extreme mate-
rial properties can be formulated as follows:

min
ρ

: c EH
ijkl ρð Þ

� �
ð2Þ

s:t: : Si ¼ Ci−C*
i ¼ 0 ð3Þ

: KU ¼ F ð4Þ

: 0 < ρi≤1 ; i ¼ 1;…;N ð5Þ

The objective c is a function of the homogenized material
constitutive components. For example, the maximization of
bulk modulus of 2D porous materials can be equivalently
formulated into the minimization of

c ¼ −
1

4
EH
1111 þ EH

1122 þ EH
2211 þ EH

2222

� � ð6Þ

where Eijkl
H is the homogenized stiffness tensor. And the max-

imization of shear modulus of 2D porous materials can be
expressed as the minimization of

c ¼ −EH
1212 ð7Þ

In Eq. (3), Ci
* is the local strain energy target and Ci is an

average element strain energy value. This value is calculated
as the average within a fixed proximity of each element in the
design domain (Tovar et al. 2006) as

Ci ¼
Ci þ

Xn

j¼1

C j

nþ 1
ð8Þ

where Cj corresponds to the strain energy of a neighboring
element and n is the number of neighbors defined in the CA
neighborhood. Von Neumann neighborhood is employed in
this work as illustrated in Fig. 1, and n equals to 4. The Ci is
defined as the element strain energy and also viewed as the
element contribution to the objective function. For instance,
when the objective function is chosen as bulk modulus, the Ci

denotes the element strain energy which corresponds to the
bulk modulus. While it comes to maximizing material shear
modulus, the Ci denotes the element contribution to the shear
modulus. Therefore, using the energy-based homogenized ap-
proach, the global homogenized material properties formulat-
ed in Eq. (2) is governed by discrete elements that interact
with their neighbors. The use of average element strain energy
instead of an actual value is analogous to the filter technique in
classic topology optimization to avoid numerical instabilities
such as checkerboard phenomenon and mesh dependency.
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Equation (3) achieves the zero-error condition between the
average value of the strain energies and their optimum value
implies that elements which are not void are saturated. When
Eq. (3) is not satisfied, a local rule of HCA algorithm formu-
lated in Section 2.2 updates the density design variable ρi to
make this condition hold true.

In Eq. (4),K is the global stiffness matrix, and U and F are
the global displacement vector and external force vector, re-
spectively. Under the assumption of periodicity boundary con-
ditions (PBC), the global displacement field of the design
domain (RUC) is evaluated by solving the equilibrium prob-
lem subjected to the uniform strain fields (three unit test
strains for 2D cases, and six unit strains for 3D cases). The
PBC in the FE model is directly imposed by constraining the
nodal displacements on two opposite faces of the RUC, as also
done in (Xia et al. 2003). More details about the numerical
implementation of the energy-based homogenization to ac-
count for material constituent parameters based on the FEM
can refer to (Xia and Breitkopf 2015).

As can be seen, the optimization model using the HCA
drives the internal strain energy density of solid cells/
elements in design domain to a saturated state. Then, the to-
pology optimization problem considered here can be solved as

finding the optimal layout of solid materials so that the ex-
treme effective properties of considered material are satisfied.
Note that the volume constraint of solid materials is implicitly
presented in optimization model, and a post-processing step
given in (Sigmund and Maute 2013) can be employed to mi-
nor adjust the final volume fraction.

2.2 Updating rule and convergence criterion

In this work, a local rule in the HCA approach is adopted to
update the density design variables ρi iteratively, and the ma-
terial which is composed of final relative density distribution
processes the extreme material property. The updating rule of
the element relatively density is

ρi t þ 1ð Þ ¼ ρi tð Þ þΔρi tð Þ ð9Þ
Δρi tð Þ ¼ cP � Si tð Þ ð10Þ

ρi tð Þ ¼
ρi tð Þ þ

Xn

j¼1

ρ j tð Þ

nþ 1
ð11Þ

where t is the iteration number; ρi tð Þ denotes the effective
value of the density design variable which is averaged with

(a) Empty ( 0)n (b) Von Neumann (n 4)

Fig. 1 Two CA neighborhood
layouts

(a) Initial design 1 (b) Initial design 2

Fig. 2 Two initial designs
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neighborhood elements in the same way as it is done for the
element strain energy in Eq. (8). Δρi(t) presents the local
control strategy which is the proportion control in the HCA
approach. It can be seen that the local rule controls the material
distribution in the design domain according the feedback sig-
nal Si(t) in Eq. (10). cP is a constant named as the proportional
gain. Other updating control rules such as integral and deriv-
ative control methods can be find in (Kulakowski et al. 2007).

Typically, the convergence criteria for topology optimiza-
tion using the HCA algorithm is based on the change in

density design variable. Since the structural volume of the
current design is determined by density design variable, the
iterative optimization process converges when no further
change in volume is possible (Tovar et al. 2007). This state
can be expressed as

ΔV tð Þ
���þ

���ΔV t−1ð Þ
���

���
2� V0

≤τ where ΔV tð Þ

¼ V tð Þ−V t−1ð Þ ð12Þ

0.204 0.155 0

0.155 0.204 0

0 0 0.086

0.380 0.068 0

0.068 0.380 0

0 0 0.023

(b)

(a)

Fig. 3 Optimized RUC
topologies (left), corresponding
periodic microstructures (middle),
and effective constitutive matrix
(right) of materials with
maximum bulk modulus starting
two initial designs. a Initial design
1. b Initial design 2

(a)

0.123 0.113 0

0.113 0.123 0

0 0 0.099

0.140 0.122 0

0.122 0.140 0

0 0 0.107

(b)

Fig. 4 Optimized RUC
topologies (left), corresponding
periodic microstructures (middle),
and effective constitutive matrix
(right) of materials with
maximum shear modulus with
two different penalization factors
P. a P= 5. b P= 3
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where V(t) and V0 are the structural volume of t-th iteration
step and of initial design, respectively. τ is the convergence
tolerance which is set to be 0.01% in this work.

3 Numerical examples

As mentioned in the introduction, there is no unique
solution for topological design of materials with extreme
properties, and the used algorithm and parameters have
influence on the final results. This work considers two
initial guesses of the design domain (RUC) as shown in
Fig. 2. Following (Huang et al. 2011; Amstutz et al.
2010), four elements and a circular region with void
phase at the center of the RUC are named initial design
1 and 2, respectively. The RUC with dimensions
100 × 100 is discretized into 100 × 100 4-node quadrilat-
eral plane stress elements. Young’s modulus and
Poisson’s ration of solid phases are set to E = 1 and
μ= 0.3, respectively.

3.1 Materials with maximum bulk modulus

Two initial designs of the RUC are employed here, and the
penalization exponent P is set to 5. The iterative optimization
processes converge with the volume fractions of the solid
materials 0.493 and 0.575 starting from initial design 1 and
2, respectively. As for the result starting from initial 1, we used
a post-processing step given in (Sigmund and Maute 2013) to
satisfy the volume fraction constraint 50%. The final RUCs,
corresponding periodic microstructures and their constitutive
matrices obtained from two different initial designs are shown
in Fig. 3, and the total iteration numbers are 156 and 152,
respectively. The bulk moduli from initial designs 1 and 2
are, respectively, 0.180 and 0.224. To verify the developed
method, the above problem using the same parameters is
solved using the SIMP method (Xia and Breitkopf 2015) with
density filtering and filter radius r=2. When the volume frac-
tions of solid materials are set to 0.5 and 0.575, the resulted
bulk moduli are 0.164 and 0.210, respectively, which are low-
er than that of the proposed method. The corresponding
Hashin-Strickman (HS) upper bounds (Hashin and

0.089 0.053 0

0.053 0.089 0

0 0 0.004

Fig. 5 Materials with negative
Poisson’s ratio starting from
initial design 2: final topology
(left), corresponding periodic
microstructure (middle), and
effective constitutive matrix
(right)

Fig. 6 Iteration histories of the
objective function, volume
fraction, and intermediate
microstructural topologies for the
negative Poisson’s ratio (NPR)

Design of materials using hybrid cellular automata 135



Shtrikman 1963) are 0.185 and 0.229 which shows a good
agreement with the present solutions.

3.2 Materials with maximum shear modulus

In this section, the objective is to find optimal microstructures
with maximum shear modulus and initial design 1 is
employed. Two different penalization exponents 5 and 3 are
considered. The iterative processes converge with the volume
fractions 0.391 and 0.406, respectively. Figure 4 shows the
final microstructures and corresponding effective elasticity
matrices indicating that both solutions with clearly discernible
topology layouts. The total iteration numbers are 37 and 50
and the shear moduli are 0.099 and 0.107, respectively.

3.3 Materials with negative Passion’s ratio

Here, we follow the relaxed function of negative Poisson’s
ratio (NPR) proposed by Xia and Breitkopf (Xia and
Breitkopf 2015) as

c ¼ EH
1122‐β

t EH
1111 þ EH

2222

� �

where β is a fixed parameter defined as 0.8 and t is the itera-
tion step. Apart from the constant, three remainder items in
above c are all homogenized material constitutive. Therefore,
the same strategy is employed to design materials with nega-
tive Poisson’s ratio as for bulk modulus or shear modulus. The
penalization exponent is set to 3 here, and the convergence
tolerance changes from 0.01 to 0.1%. The numerical proce-
dure starting from initial design 2 converges to Fig. 5 after 57
iterations, and the final volume fraction and Passion’s ratio are
0.388 and −0.590, respectively. The iteration histories of the
objective function and volume fraction for the negative
Poisson’s ratio are illustrated in Fig. 6.

4 Conclusions

This paper has developed a new approach to material design
for maximum bulk modulus, maximum shear modulus, and
negative Passion’s ratio using the HCA method. Numerical
examples have shown the proposed method is effective and
robust. Various innovative material microstructural design re-
sults have been obtained by the proposed HCA method.
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