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Abstract Aiming at efficiently estimating the dynamic failure
probability with multiple temporal and spatial parameters and
analyzing the global reliability sensitivity of the dynamic
problem, a method is presented on the moment estimation of
the extreme value of the dynamic limit state function. Firstly,
two strategies are proposed to estimate the dynamic failure
probability. One strategy is combining sparse grid technique
for the extreme value moments with the fourth-moment meth-
od for the dynamic failure probability. Another is combining
dimensional reduction method for fractional extreme value
moments and the maximum entropy for dynamic failure prob-
ability. In the proposed two strategies, the key step is how to
determine the temporal and spatial parameters where the dy-
namic limit state function takes their minimum value. This
issue is efficiently addressed by solving the differential equa-
tions satisfying the extreme value condition. Secondly, three-
point estimation is used to evaluate the global dynamic reli-
ability sensitivity by combining with the dynamic failure
probability method. The significance and the effectiveness of
the proposed methods for estimating the temporal and spatial
multi-parameter dynamic reliability and global sensitivity in-
dices are demonstrated with several examples.

Keywords Temporal and spatial multi-parameter . Reliability
analysis . Global reliability sensitivity . Sparse gridmethod .
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1 Introduction

Reliability is the probability that a product performs its
intended performance over a specified period of time under
specified conditions (Hu and Du 2013). It can be classified
into time-independent reliability and time-dependent reliabil-
ity. Time-dependent reliability analysis quantifies the proba-
bility that a structure or system survives after it has worked for
a certain time t or over the period [t0, tf] (Singh et al. 2010).
When the time-dependent reliability analysis is performed at
each time instant, it is said to be time-independent reliability
analysis which is also called static reliability analysis.

The static reliability analysis aims at estimating the proba-
bility of structure or system matching specific requirement. In
the past decades, many methods have been developed for
reliability of static structure, such as the Monte Carlo
Simulation (MCS) (Binder 1997), the First Order Reliability
Method (FORM) (Hasofer and Lind 1974), the Second Order
Reliability Method (SORM) (Zhao and Ono 1999), the
Importance Sampling method (IS) (Au and Beck 2003) and
the Line Sampling method (LS) (Schueller et al. 2004) etc. In
engineering, the precise probability distributions of the inputs
usually cannot be obtained. In such circumstances, some effi-
cient approaches have been proposed, such as convex model-
ing analysis (Kang and Luo 2009), interval analysis (Moore
1966), possibility theory (Zadeh 1978) and probabilistic
models (Kang and Luo 2010).

For the time-dependent reliability, Rice (Rice 2015; Lutes
and Sarkani 2009) firstly developed the first-passage method
and then this method was developed by several authors
(Sudret 2008; Andrieu-Renaud et al. 2004). Now, the first-
passage method becomes the most popular method for solving
time-dependent reliability problem. The advantage of this
method is its high efficiency, but its accuracy is poor for prob-
lem whose reliability is low and the accuracy is based on the
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assumption that all the up-crossings are independent. Extreme
value method (Lutes and Sarkani 2004; Li and Mourelatos
2009) is another type procedure for time-dependent reliability
analysis. This method uses the distribution of the extreme
value of the limit state function under consideration to esti-
mate the reliability. By introducing the envelope function and
first order approximation of the motion error function, Du
proposed an envelope method for the time-dependent reliabil-
ity (Du 2014). This procedure is proved to be an accurate and
efficient method for time-dependent reliability, but it is just
suitable for the problem where the coefficient of variation of
the input is small. Here are other studies on time-dependent
reliability analysis (Mourelatos et al. 2015; Jiang et al. 2014).
In this paper, we proposed two new strategies based on the
moment of extreme value to efficiently estimate the failure
probability for temporal and spatial multi-parameter dynamic
reliability problem. By using the sparse grid technique (He
et al. 2014) and dimensional reduction method (Rabitz 1999;
Li and Artamonov 2003), we can efficiently estimate the ex-
treme value moments. Then the temporal and spatial multi-
parameter dynamic failure probability can be estimated by
combining with the fourth-moment method (Zhao and Lu
2007) or the maximum entropy (Inverardi and Tagliani 2003).

The global sensitivity analysis can measure the overall
effect of the uncertainty of each input on the variance or
the distribution of the model outputs in consideration (Wei
and Lu 2012). Many sensitivity analysis techniques are
now available. Sobol and others proposed the variance-
based global sensitivity indices (Sobol 2001; Song et al.
2015) to measure the effects of the uncertainty of input on
the variance of model outputs. Borgonovo and others de-
veloped the moment-independent global sensitivity indices
(Borgonovo 2007; Zhang et al. 2014b) to measure the ef-
fects of the uncertainty of each input on the distribution of
model outputs. Cui, Li and Wei developed the global reli-
ability sensitivity indices (Wei and Lu 2012; Cui and Lu
2010; Li et al. 2012) to measure the uncertainty of each
input on the failure probability. The global reliability sen-
sitivity indices (Li et al. 2012) proposed by Li is defined as
the expectation of the square of the difference between the
unconditional failure probability and conditional failure
probability. The global reliability sensitivity technique is
shown to be especially useful for reliability-based design.
In this paper, we extend this global reliability sensitivity
technique to the dynamic problem with the temporal and
spatial multi-parameter. Based on the dynamic reliability
analysis method we proposed, combining with the three-
point estimation method (Zhang et al. 2014a), this paper
develops two new efficient global reliability sensitivity ap-
proaches for temporal and spatial multi-parameter dynamic
reliability problem.

This paper is organized as follows: Section 2 gives the defi-
nition of temporal and spatial multi-parameter dynamic

reliability. Section 3 proposes two temporal and spatial multi-
parameter dynamic reliability strategies by use of the extreme
value moments to efficiently estimate the dynamic failure prob-
ability. Section 4 gives the definition of global reliability sensi-
tivity indices for temporal and spatial multi-parameter dynamic
problems and introduces two approaches to calculate the indices
based on the proposed dynamic reliability strategies. Section 5
employs several examples for demonstrating the efficiency and
precision of the proposed methods. Section 6 gives the
conclusion.

2 The definition of temporal and spatial
multi-parameter dynamic reliability

Considering the temporal and spatial limit state function is in the
form ofG=g(X,z), in whichX=[X1,X2,…,Xn]

T denotes the n-
dimensional vector constructed by the independent random var-
iables Xi(i=1,2,…,n) and z=[z1, z2,…, zm]

T is temporal and
spatial multi-parameter vector. In the discussed problem, we as-
sume that the temporal and spatial parameter is in an interval, i.e.
zi∈ zi; zi
� �

, (i = 1, 2,…, m), and the random variables
Xi(i=1,2,…,n) are time independent and space position inde-
pendent. As usual, the safe domain corresponds to positive
values of g(⋅), and the failure domain corresponds to negative
values of g(⋅). The temporal and spatial multi-parameter dynamic
reliability over parameter intervals is defined by:

R z1;…; zmð Þ ¼ P g X; zð Þ > 0; ∀ z1∈ z1; z1
h i� �

∩⋅⋅⋅∩ zm∈ zm; zm
h i� �n o

ð1Þ

The failure probability for temporal and spatial multi-
parameter dynamic problem can be defined as:

Pf z1;…; zmð Þ

¼ P g X; zð Þ≤0; ∃ z1∈ z1; z1
h i� �

∩⋅⋅⋅∩ zm∈ zm; zm
h i� �n o

ð2Þ

where z1∈ z1; z1
� �� �

∩⋅⋅⋅∩ zm∈ zm; zm
� �� �

means the value do-
main of the temporal and spatial multi-parameters.

The temporal and spatial multi-parameter dynamic limit
state function Y=g(X, z) can be considered as a parametric
function, where z is the parameter vector. That’s to say, the
function represents a family of hyper-surfaces when z varies
on the intervals. So the function g(⋅) can be regarded as the
function of z when the input variables are fixed on their real-
ization x∗ over their distributions.

h zð Þ ¼ g x*; z
� � ð3Þ

From the Eqs. (2) and (3), it is concluded that if the mini-
mum value of the Eq. (3) is greater than zero, then the
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structure or system will be safe at the parameter intervals.
Otherwise it will be failure if the minimum value is less than
or equal to zero. Suppose the minimum value point is denoted
as z∗= [z1

∗, z2
∗,…, zm

∗ ]T when x=x∗, one method is proposed in
next section to determine z∗ at x=x∗.

3 Temporal and spatial multi-parameter dynamic
reliability analysis

The moments on the minimum value of the dynamic limit
state function is introduced to estimate the failure proba-
bility for temporal and spatial multi-parameter dynamic
reliability problem. And the moments of the minimum
value of g(X, z) is denoted as the extreme value moments.
The key idea is to employ some point-estimation tech-
niques to generate the samples and calculate the extreme
value moments. After the extreme value moments are ob-
tained, the failure probability of the temporal and spatial
multi-parameter dynamic reliability problem can be esti-
mated by the moment method and maximum entropy
technique. The next subsections give two strategies about
how to use different point-estimation techniques for esti-
mating the extreme value moments and the dynamic fail-
ure probability.

3.1 A sparse grid technique combined
with the fourth-moment method

The fourth-moment method (Zhao and Lu 2007) is an
efficient method to estimate the failure probability for
static reliability problem. We extend this method to cal-
culate the failure probability of temporal and spatial
multi-parameter dynamic reliability problem by using
the extreme value moments. For estimating the extreme
value moments, a sparse grid technique is employed.

A sparse grid stochastic collocation method (He et al.
2014) is an efficiently approach to compute the moment of
limit state function in static reliability analysis. This method
usually needs much fewer function evaluations than MCS
m e t h o d . I n t h i s p a p e r , t h e i n p u t v a r i a b l e s
X= [X1,X2,…,Xn]

T are assumed to be mutually independent
standard normal random variables, if not so, one can use the
Rosenblatt transformation (Rosenblatt 1952) to transform the
input variables to be independent standard normal random
variables.

For arbitrary input variables X, the minimum value func-
tion gS(X, z) of temporal and spatial multi-parameter dynamic
limit state function g(X, z) can be expressed as follows.

gS X; zð Þ ¼ min
z≤ z≤ z

g X; zð Þ½ � ð4Þ

Generally, the origin moments of the extreme value
of the temporal and spatial multi-parameter dynamic re-
liability problem can be computed by the multivariate
integration as follows.

MαlgS ¼
Z

X
gS x; zð Þ� �αl f X xð Þdx ð5Þ

in which, αl(l=1,2,…,u) denotes the αlth moment, fX(x)
is the joint probability density function (JPDF) of input vari-
able vector. If the input variables are independent, then

f X xð Þ ¼ ∏
n

i¼1
f i xið Þ, where fi(xi) is the marginal PDF of

Xi(i=1, 2,…,n). Furthermore, based on the hypothesis that
input variables are independent standard normal random var-
iables, Eq. (5) can be rewritten as:

MαlgS ¼
Z þ∞

−∞
⋅⋅⋅
Z þ∞

−∞
gS x1;…; xn; zð Þ� �αlφ x1ð Þ…φ xnð Þdx1…dxn ð6Þ

where φ(⋅) is the PDF of a standard normal random variable.
With the Smolyak algorithm (Smolyak 1963), Eq. (6) can

be derived as:

MαlgS ¼
X

i∈H q;nð Þ
−1ð Þqþn−

���i��� n−1
qþ n−

���i���
 !

�
X
j1¼1

mi1

⋯
X
jn¼1

min

gS xi1j1 ;…; xinjn ; z
� �h iαl

pi1j1⋯pinjn ð7Þ

where the weights and abscissas are piiji ¼ 1ffiffi
π

p ζiiji and

xiiji ¼
ffiffiffi
2

p
ξiiji , in which ζ

ii
ji
and ξiiji are the weights and abscissas

in the Gauss-Hermite quadrature formula, ji ¼ 1;…;mii ,
i= (i1,…, in)∈N+

n, and the H(q,n) is defined by:

H q; nð Þ ¼ i∈Nn
þ; i≥1 : qþ 1≤

Xn
l¼1

il ≤qþ n

( )
ð8Þ

in which the choice of q depends on the nonlinearity of the
gS(x, z).

In Eq. (7), the vector z represents the minimum value point

corresponding to the input variable nodes xi1j1 ;…; xinjn

h iT
. The

input variable nodes xi1j1 ;…; xinjn

h iT
can be generated by the

sparse grid technique, then we can determine the minimum
value point z corresponding to the input variable nodes by the
method proposed in subsection 3.3.

From above procedure, it is shown that the sparse
grid method can generate much fewer interpolation
nodes but most useful to calculate the extreme value
moments. In this paper, the first four extreme value
moments are combined with the fourth-moment method
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to estimate the dynamic failure probability. Before using
the fourth-moment method, the origin moments should
be converted to the central moments of the extreme
value by the following Eq. (9).

γ1gS ¼ M 1gS

γ2gS ¼ M 2gS−M 2
1gS

� �1=2
γ3gS ¼ M 2gS−M 2

1gS

� �−3=2
⋅ M 3gS−3M1gSM 2gS þ 2M 3

1gS

� �
γ4gS ¼ M 2gS−M 2

1gS

� �−2
⋅ M 4gS−4M 1gSM 3gS þ 6M 2

1gSM 2gS−3M 4
1gS

� �

8>>>>>><
>>>>>>:

ð9Þ

in which γkgS k ¼ 1; 2; 3; 4ð Þ is the first four central mo-

ments of the extreme value function gS(⋅). Then the failure
probability can be computed with the fourth-moment method
as follows (Zhao and Lu 2007).

β ¼
γ3gS γ1gS=γ2gS

� �2
−1


 �
þ 3γ1gS γ4gS−1

� �
=γ2gSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5γ23gS−9γ4gS þ 9
� �

1−γ4gS
� �r ð10Þ

Pf ¼ Φ −βð Þ ð11Þ

in which β is the reliability index and Φ(⋅) is the standard
normal cumulative distribution function (CDF).

3.2 Dimensional reduction method combined
with the maximum entropy

In this subsection, the second strategy for the dynamic
failure probability is presented. In this strategy, the frac-
tional moments of the extreme value for the minimum
value function gS(X, z) of g(X, z) is firstly estimated by
the dimensional reduction method, then the maximum
entropy approach is employed to estimate the dynamic
failure probability.

For the static reliability analysis, it is efficient and
accurate to compute the failure probability by using
the multiplicative form of dimensional reduction method
for estimating the fractional moments and the maximum
entropy constrained by the fractional moments for esti-
mating the failure probability (Zhang and Pandey 2013).
In this paper, this approach is combined with the mo-
ments of the extreme value to analyze the temporal and
spatial multi-parameter dynamic failure probability.

It is well known that multiplicative dimensional re-
duction method to compute the fractional moments is
just appropriate for positive variables (Zhang and
Pandey 2013). Therefore it should have some changes
before computing the fractional moments of the extreme
value. Suppose the dynamic response function is

gL(X, z), and the corresponding threshold is YL. Hence,
the limit sate function can be expressed as:

g X; zð Þ ¼ YL

gL X; zð Þ ð12Þ

For a multivariate function g(X, z), it can be expressed as a
sum of functions of lower order in an increasing hierarchy as
following.

g x; zð Þ ¼ g μ; zð Þ þ
Xn
i¼1

gi xi; zð Þ

þ
X

1≤ i≤ j≤n
gi j xi; x j; z
� �þ⋅⋅⋅ ð13Þ

Then after a series of derivation (Zhang et al. 2014c), a
multiplicative approximation can be obtained as follows
(Zhang and Pandey 2013):

g x; zð Þ≈g μ; zð Þ1−n∏
n

i¼1
g xi;μ−i; zð Þ ð14Þ

in which μ= [μ1,μ2,…,μn]
T is the mean value vector of

the input variables, the sub-vector μ− i is (n−1)-dimension
vector that contains all the elements of μ except μi. The min-
imum value function gS(X, z) can be written as the following
by imitating the Eq. (14).

gS x; zð Þ≈ gS μ; zð Þ� �1−n∏n
i¼1

gS xi;μ−i; zð Þ ð15Þ

Then the αlth(l=1, 2,…,u) order fractional moments of
minimum value function gS(X, z) can be expressed as:

MαlgS ¼
Z

X
gS x; zð Þ� �αl f X xð Þdx

≈
Z

X
gS μ; zð Þ� �1−n∏n

i¼1
gS xi;μ−i; zð Þ

( )αl

f X xð Þdx

¼ gS μ; zð Þ� �αl−αln∏
n

i¼1

Z
Xi

gS xi;μ−i; zð Þ� �αl f i xið Þdxi
� 

¼ gS μ; zð Þ� �αl−αln∏
n

i¼1
Mi

ð16Þ

After using the dimensional reduction method, the original
n-dimensional integration for the extreme value moments has
been approximated by the product of n one-dimensional inte-
grations. The first item of the right-hand of Eq. (16) can be
calculated by Eq. (17). The one-dimensional integration can
be efficiently computed by using the weight-points integration
scheme such as five-point Gauss-Hermite integration scheme.
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gS μ; zð Þ� �αl−αln ¼ g μ; z 0ð Þ*
� �h iαl−αln ð17Þ

Mi≈
XQ
s¼1

ws gS xs;μ−i; zð Þ� �αl

¼
XQ
s¼1

ws g xs;μ−i; z
ið Þ*

� �h iαl ð18Þ

where the xs is the sth integration point, ws is the sth integra-
tion weight, Q is the sum of integration points, z(0) ∗ and z(i) ∗

are minimum value points which correspond to the input var-
iable valuesμ and [xi,μ− i]

T respectively, and solving z(0) ∗ and
z(i) ∗ is presented in subsection 3.3.

Denote the PDF of the minimum value function
Y = gS(X, z) as fY(y), then it can be obtained using
MaxEnt (Inverardi 2003) in the following way.

find : f Y yð Þ
Maximize : H f Y yð Þ½ � ¼ −

Z
Y
f Y yð Þln f Y yð Þ½ �dy

Subject to :

Z
Y
yαl f Y yð Þdy ¼ MαlgS

8>>><
>>>:

ð19Þ

in whichH[fY(y)] is the entropy of the true PDF fY(y). Under
the constraint of the fractional moments of the extreme value,

the estimate f̂ Y yð Þ can be obtained bymaximizing the entropy
of Y. After constructing the Lagrangian function associated

with the MaxEnt problem, the estimate f̂ Y yð Þ is given as:

f̂ Y yð Þ ¼ exp −
Xu
l¼0

λlyαl

 !
ð20Þ

w h e r e α 0 = 0 , λ0 ¼ ln ∫Y exp − ∑
u

l¼0
λlyαl

� �
dy


 �
,

λ = [λ0, λ1,…, λu]
T are the Lagrange multipliers and

α= [α1,α2,…,αu]
T are the fractions associated with the frac-

tional moments. One can refer (Inverardi and Tagliani 2003)
for computing λ and α.

After getting the PDF f̂ Y yð Þ of the minimum value
function Y= gS(X) based on the fractional moments of
the extreme value, the failure probability can be obtain-
ed by an integral. Equation (12) indicates that, if the
value of limit sate function is greater than one, the
structure will be safe and if the value is greater than
zero but less than or equal to one, the structure will be
failure. Therefore, the failure probability of the temporal
and spatial multi-parameter dynamic reliability problem
can be estimated by the following integral.

P f ¼
Z 1

0
f̂ Y yð Þdy ð21Þ

The above discussions show that the proposedmethod only
evaluates the temporal and spatial dynamic limit state function
when estimating the extreme value moments. So it is an effec-
tive method for the temporal and spatial multi-parameter dy-
namic reliability problem.

3.3 Determination of the minimum value point z∗

corresponding to x=x∗

There are many methods to determine the minimum value
point when x=x∗, here we present one approach. For the sake
of demonstration, the two-parameter case is used as an exam-
ple to illustrate how to estimate the minimum value point z∗

when x=x∗, and this process can be easy to extend to the case
where the parameter is greater than two. Before solving the
minimum value point, the input variable is assumed to fix at
x∗. Such as the Fig. 1, the calculation contains three situations:
the inner-interval (gray area), parameter boundary (blue line)
and interval endpoints (red dot).

Firstly consider the inner-interval situation. It is well
known that the points satisfying that first partial derivative
of one function equals to zero are the extreme points or inflec-
tion points of this function. So the minimum value point for
this situation can be obtained by the following equations.

∂g x*; z1; z2ð Þ
∂z1

¼ 0

∂g x*; z1; z2ð Þ
∂z2

¼ 0

8>><
>>: ð22Þ

For the explicit and simple limit state function circum-
stance, the solution of the derivative equation can be obtained
analytically. For the explicit and complicated limit state func-
tion circumstance, the modern heuristic algorithms, such as
Simulated Annealing (SA) (Belisle 1992) and Genetic
Algorithms (GA) (Malhotra et al. 2011) or the derivative
equation solving function (e.g. Fsolve Function in
MATLAB) can be used to calculate the solution of above
equation. In this paper, we use the derivative equation solving
function to calculate the derivative equation. Equation (22) is
an equation set about vector [z1, z2]

Tand there may bemultiple
solutions [z1

∗ (i), z2
∗ (i)]T (i=1,2,…, k1) (k1 is the number of the

solutions).
Secondly, we consider parameter boundary situation. At

this situation, there is one parameter satisfying its boundary
at least. For two parameters situation, z1 and z2 satisfy that
z1∈ z1; z1
� �

; z2
� �

, z1∈ z1; z1
� �

; z2
� �

, z1; z2∈ z2; z2
� �� �

and

z1; z2∈ z2; z2
� �� �

. Here it is equivalent to the one-parameter
situation. The solution can be obtained by solving differential

equation ∂g x*;zð Þ
∂z j ¼ 0 with z− j ¼ z− j or z− j ¼ z− j (j=1,2 and

− j=2 if j=1, − j=1 if j=2) by the derivative equation solving
function. Suppose the k2 solutions are obtained at the
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parameter boundary situation. Add the solutions of the first
situation, the total solutions are [z1

∗ (i), z2
∗ (i)]T (i= k1 +1, k1 +

2,…, k1 + k2) (k2 is the number of the solutions for this second
situation).

Thirdly, we consider the interval endpoints situation. In this
situation, the solutions for two parameters z1 and z2 are the
combinations of the endpoints of z1 and z2 respectively as:

z* k1þk2þ1ð Þ
1 ; z* k1þk2þ1ð Þ

2

h iT
¼ z1; z2
� �T

,

z* k1þk2þ2ð Þ
1 ; z* k1þk2þ2ð Þ

2

h iT
¼ z1; z2
� �T

,

z* k1þk2þ3ð Þ
1 ; z* k1þk2þ3ð Þ

2

h iT
¼ z1; z2
� �T

a n d

z* k1þk2þ4ð Þ
1 ; z* k1þk2þ4ð Þ

2

h iT
¼ z1; z2½ �T.

With the above procedure of three situations (the inner-
interval, parameter boundary and interval endpoints), all the
solutions can be obtained. Comparing the g(x∗, z) at
[z1
∗ (k), z2

∗ (k)]T(k=1,2,…, k1 + k2+4), the minimum value point
z∗= [z1

∗, z2
∗]T can be obtained when x=x∗. The minimum value

gS(X, z) can be expressed as gS(x∗, z) =g(x∗, z∗) at x=x∗.
For the complicated problems involving implicit limit state

function and high-fidelity analysis tools (e.g. FEA or CFD),
the finite difference method (Brandimarte 2004; Tan and Liu
2006) can be employed to replace the derivative equation by
the difference equation. In this circumstance, Eq. (22) can be
rewritten as the following Eq. (23).

g x*; z1 þ h1; z2ð Þ−g x*; z1−h1; z2ð Þ
2h1

¼ 0

g x*; z1; z2 þ h2ð Þ−g x*; z1; z2−h2ð Þ
2h2

¼ 0

8>><
>>: ð23Þ

where h1 and h2 are difference step of z1 and z2 respectively.
The Fsolve Function in MATLAB is an effective tool for
solving the derivative equation and has no limitation on the
form of the equation (explicit or implicit). By combining the
Fsolve Function, the solution of above Eq. (23) can be obtain-
ed. For the parameter boundary situation and the interval end-
points situation, the procedure is the same as the explicit limit
state function circumstance except replacing the derivative
equation by the corresponding difference equation. Then the

minimum value point z∗ and the minimum value can be
obtained.

Obviously, the computational cost of the proposed
method for temporal and spatial multi-parameter dynamic
reliability analysis is caused by estimating the minimum
value with the derivative equation. In this paper, the de-
rivative equation solving function (e.g. Fsolve Function in
MATLAB) is employed to calculate the derivative equa-
tion. Comparing with the method which using heuristic
optimization method to obtain the minimum value direct-
ly, the proposed method can reduce the computational
cost for just solving several equations instead of searching
the minimum value. Although the computational cost will
has some increment for the reliability problems involving
implicit limit state function than the explicit limit state
function circumstance, the computational cost is also less
than that of the heuristic optimization method to obtain
the minimum value directly. Generally, above three strat-
egies can guarantee to obtain the global minimum. For the
complex non-convex function in which the solutions of
derivation equations can not be found correctly, the heu-
ristic optimization method is suggested. This will add sig-
nificant computational cost.

4 Temporal and spatial multi-parameter global
dynamic reliability sensitivity analysis

The temporal and spatial multi-parameter global dynamic re-
liability sensitivity analysis can distinguish the importance of
the random inputs so as to provide reference for design and
optimization of the structural system. One global sensitivity
model is established for the temporal and spatial multi-
parameter dynamic reliability problem in this section.

4.1 Definition of the global dynamic reliability sensitivity
analysis

For a temporal and spatial multi-parameter dynamic reliability
problem, the failure domain of this structure system is defined
as:

ΩF ¼ X : g X; zð Þ≤0; ∃z1∈ z1; z1
h i

∩⋅⋅⋅∩zm∈ zm; zm
h in o

ð24Þ

By extending the definition of static global reliability sen-
sitivity indices (Li et al. 2012), the dynamic global reliability
sensitivity index of the input variables on the failure probabil-
ity is as follows:

Si ¼ δPi
V IΩ Fð Þ ð25Þ

1
z

2
z

( , )g ∗x z

Fig. 1 Dynamic limit state g(x, z) varying with z at x= x∗
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in which,

δPi ¼ E Pf −P
f

���X i

0
@

1
A

22
4

3
5

¼
Z þ∞

−∞
Pf −P

f

���X i

0
@

1
A

2

f i xið Þdxi ð26Þ

V IΩ Fð Þ ¼ Pf 1−P f
� � ð27Þ

where Pf is the failure probability, Pf jX i is the failure proba-
bility conditional on Xi, E(⋅) and V(⋅) represent the expectation
operator and variance operator respectively. IΩ F is the indica-
tor function of failure domain. It is defined as IΩ F xð Þ ¼ 1
when x∈{ΩF}, or else IΩ F xð Þ ¼ 0.

Furthermore, Eq. (26) can be simplified (Cui and Lu 2010)
as:

δPi ¼ V P
f

���X i

0
@

1
A ð28Þ

It is shown that there are two loops for computing the δi
P.

The inner loop is to calculate the conditional dynamic failure
probability and the outer loop is for the variance estimation of
the conditional dynamic failure probability.

So the procedure for analyzing global dynamic reliability
sensitivity can be summed up in three steps. First of all, fix the
input variable on its realization. Secondly, compute the con-
ditional dynamic failure probability by above proposed reli-
ability analysis method. Finally, calculate the variance of the
conditional dynamic failure probability. In this contribution,
the three-point estimation (Zhang et al. 2014a) is employed to
estimate the variance of the conditional dynamic failure prob-
ability. After the input variable is fixed on its realization, the
process for computing the conditional failure probability is
similar with the process of calculating the unconditional fail-
ure probability. Refer to (Zhang et al. 2014a), we can obtain
the dynamic failure probability Pf and δi

P by the following
equations.

Pf ¼ PX 1ð Þ
i
P

f

���L
X

1ð Þ
i

þ PX 2ð Þ
i
P

f

���L
X

2ð Þ
i

þ PX 3ð Þ
i
P

f

���L
X

3ð Þ
i

ð29Þ

δPi ¼ PX 1ð Þ
i

P
f

���L
X

1ð Þ
i

−P f

0
@

1
A

2

þ PX 2ð Þ
i

P
f

���L
X

2ð Þ
i

−P f

0
@

1
A

2

þ PX 3ð Þ
i

P
f

���L
X

3ð Þ
i

−P f

0
@

1
A

2

ð30Þ

in which LX kð Þ
i

and PX kð Þ
i

k ¼ 1; 2; 3ð Þ represent nominal

value and corresponding weights in the three-point estimation

respectively, Pf jL
X

kð Þ
i

k ¼ 1; 2; 3ð Þ is the conditional dynamic

failure probability when input variable Xi is fixed on its nom-
inal value LX kð Þ

i
(k=1,2, 3).

4.2 Steps of solving the global dynamic reliability
sensitivity

The steps for solving the global dynamic reliability sen-
sitivity are summarized as follows.

Step 1 Calculate the nominal value LX kð Þ
i

and weight PX kð Þ
i

k ¼ 1; 2; 3ð Þ for three-point discrete distribution by
the following equations (Zhang et al. 2014a).

PX 1ð Þ
i

¼ 1

2

1þ γ3X i

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γ4X i

−3γ23X i

q
γ4X i

−γ23X i

0
@

1
A ð31Þ

PX 2ð Þ
i

¼ 1−
1

γ4X i
−γ23X i

ð32Þ

PX 3ð Þ
i

¼ 1

2

1−γ3X i

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γ4X i

−3γ23X i

q
γ4X i

−γ23X i

0
@

1
A ð33Þ

LX 1ð Þ
i

¼ γ1X i
−
γ2X i

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γ4X i

−3γ23X i

q
−γ3X i

� �
ð34Þ

LX 2ð Þ
i

¼ γ1X i
ð35Þ

LX 3ð Þ
i

¼ γ1X i
þ γ2X i

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γ4X i

−3γ23X i

q
þ γ3X i

� �
ð36Þ

in which γ jX i
j ¼ 1; 2; 3; 4ð Þ represents the first four central

moments of input variable Xi.
Step 2 Fix the input variable Xi on nominal value

LX kð Þ
i

k ¼ 1; 2; 3ð Þ, and use the above proposed two

reliability analysis methods in Section 3 to estimate
the conditional dynamic failure probability Pf jL

X
kð Þ
i

.

Step 3 Substitute the conditional dynamic failure probability
Pf jL

X
kð Þ
i

into Eqs. (29)–(30) to calculate the dynamic

failure probability Pf and δi
P.
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Step 4 Substitute the value of Pf and δi
P into Eq. (25), then

the global dynamic reliability sensitivity index Si can
be obtained.

For limit state function Gω= gω(X,ω(t), z) of the tem-
poral and spatial multi-parameter dynamic reliability
p rob lem invo lv ing s tochas t i c p roces s , whe re
ω(t) = [ω1(t),ω2(t),…,ωM(t)]

T is the stochastic process
and t is the one-dimensional parameter, the proposed
methods also can be extended to estimate the dynamic
reliability and global dynamic reliability sensitivity indi-
ces. In this situation, the Karhunen-Loeve (KL) expan-
sion (Sudret and Der Kiureghian 2000) is firstly
employed to transform the stochastic process input
ω(t) to random variable ξ= [ξ1,ξ2,…,ξM]

T, in which

ξi ¼ ξi1; ξi2;…; ξiM i

� �T i ¼ 1; 2;…;Mð Þ and Mi i s the
number of the random variable in the vector ξi. After

the transformation, the original dynamic limit state func-
tion can be transformed as Gω = gω(X, ξ, z), and the
above proposed methods can be used to estimate the
dynamic reliability and global dynamic reliability sensi-
tivity indices.

5 Examples

Several examples are provided in this section to demon-
strate the efficiency and accuracy of the presented method
for temporal and spatial multi-parameter dynamic reliabil-
ity and global reliability sensitivity analysis. The solutions
by MCS method are applied as the reference results. For
the dynamic reliability analysis, the procedure of the MCS
method is to generate the samples of the random variables
X and employ the proposed method in Section 3.3 to
estimate the minimum value point z∗ and the minimum
value for every sample, and then the design fails or not
corresponding to the negative or positive of these mini-
mum values respectively. For the global dynamic reliabil-
ity sensitivity analysis, the general double-loop MCS is
used to estimate the global dynamic reliability sensitivity
indices. In the process of estimating, the proposed method
in Section 3.3 is employed to estimate the minimum value
point z∗ and the minimum value for every sample.

Table 1 The dynamic failure
probability for different
thresholds

Threshold YL Proposed method 1 Proposed method 2 MCS

23 2.2431 × 10− 1 2.2424× 10− 1 2.2441 × 10− 1(6.21 × 10− 5)

24 6.3625 × 10− 2 6.4172× 10− 2 6.3778 × 10− 2(3.72 × 10− 5)

25 1.1437 × 10− 2 1.1442× 10− 2 1.1491 × 10− 2(3.01 × 10− 5)

26 1.1849 × 10− 3 1.0452× 10− 3 1.1921 × 10− 3(3.67 × 10− 8)

Proposed method 1 represents the sparse grid stochastic technique combined with the fourth-moment method and
proposed method 2 is the dimensional reduction method combined with the maximum entropy. The values in
brackets indicate the variance of the solution of the MCS method

Table 2 Numbers of function evaluations

Threshold YL Proposed method 1 Proposed method 2 MCS

23 671 231 1 × 106

24 671 231 2 × 106

25 671 231 4 × 106

26 671 231 6 × 106

Table 3 The global dynamic
reliability sensitivity indices Variable Proposed method 3 Proposed method 4 MCS

x1 0.33644 (1) 0.35413 (1) 0.34345 (1)

x2 0.00011 (5) 0.00011 (5) 0.00012 (5)

x3 0.00542 (4) 0.00503 (4) 0.00571 (4)

x4 0.28041 (2) 0.30281 (2) 0.29231 (2)

x5 0.02202 (3) 0.02556 (3) 0.02045 (3)

Ncall 6765 2805 5 × 1011(1.45 × 10− 4)

The solution is corresponding to the threshold YL= 23 and numbers in brackets (except the last column) indicate
importance order of the input variable. The value in brackets in the last column is the average value of the variance
of the solutions calculated by the MCS method. Proposed method 3 represents the global dynamic reliability
sensitivity analysis method based on the first proposed reliability method and proposed method 4 corresponds to
the second one
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5.1 Numerical example

Consider the model with the dynamic limit state function is
g(x, z) =YL− (x1 cos 3z1 + x2z12 + x3z1 +x4 cos 4z1 + 2x5z1)sin z2,
where YL is the threshold, and the input variables are indepen-
dent normal variables, xi∼N(10, 12)(i=1, 2, 3, 4, 5), the pa-
rameter vector z = [z1, z2]

T is defined as z1 ∈ [0, 0.5] and
z2∈ [0, 5] (they are in radians when used with the sine and
cosine functions). The dynamic failure probability is given
in Table 1 and the numbers of function evaluations are shown
in Table 2. The global dynamic reliability sensitivities of input
variables are provided in Table 3.

In this numerical example, the numbers of function
evaluation by the MCS method are shown in Table 2. It
needs about 10 function evaluations to obtain the mini-
mum value with the proposed method in Section 3.3 for
each samples of the MCS method (e.g. when the threshold
is set to be YL= 23, the samples of the MCS method is
1 × 105 and the to t a l func t ion eva lua t ions a re
1 × 105 × 10 = 1 × 106). The variance on dynamic failure
probability of the MCS method states that the MCS solu-
tions are precise enough to be the reference results. From
Table 1, it is shown that when the failure threshold is set
to be different value, the results estimated by the proposed
two methods match well with the reference results. It
proves definitively that the two proposed methods have
enough accuracy in the temporal and spatial multi-
parameter dynamic reliability analysis. From Table 2,
one can see that the MCS procedure needs huge compu-
tational cost to obtain the dynamic failure probability. The
two proposed methods just need several hundred times of
function evaluations to gain an accurate solution. For the
sparse grid stochastic technique combined with the fourth-
moment method, here set q= 3, and it generates 61 sam-
ples of the random inputs. For arbitrary sample, it needs
about 10 function evaluations to obtain the minimum val-
ue point with the proposed method in Section 3.3. Then
the total function evaluations are 61 × (10 + 1) = 671. For

a

b

h

 (a) Diagram of front axle (b) Cross section of front axle

Fig. 2 Diagram of an automobile front axle. a Diagram of front axle, b Cross section of front axle

Table 4 Distribution parameters of input variables

Variable (unit) Distribution Mean Standard deviation

a (mm) Normal 12 0.60

b (mm) Normal 65 3.25

c (mm) Normal 14 0.70

h (mm) Normal 85 4.25

M0 (N ⋅mm) Normal 3.5 × 106 7.5 × 105

T0 (N ⋅mm) Normal 3.1 × 106 1.55 × 105

Table 5 The dynamic failure
probability for different limit
stress

Limit stress (MPa) Proposed method 1 Proposed method 2 MCS

460 1.4241 × 10− 1 1.4329 × 10− 1 1.4245 × 10− 1(6.12 × 10− 5)

480 6.5594 × 10− 2 6.5610 × 10− 2 6.6312 × 10− 2(4.57 × 10− 5)

500 2.7220 × 10− 2 2.4945 × 10− 2 2.7613 × 10− 2(6.61 × 10− 6)

520 1.0411 × 10− 2 1.0035 × 10− 2 9.2256 × 10− 3(4.32 × 10− 7)

540 3.7573 × 10− 3 3.8614 × 10− 3 3.3123 × 10− 3(1.79 × 10− 7)
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the dimensional reduction method combined with the
maximum entropy method, the five-point Gauss-Hermite
integration scheme is used here. For one sample, it needs
about 10 function evaluations to obtain the minimum val-
ue point. Then the total function evaluations are 10 × (1 +
5 × 4) + 5 × 4 + 1 = 231. So these two proposed methods
have high efficiency for the temporal and spatial multi-
parameter dynamic reliability analysis. Furthermore, when
comparing the two proposed methods with each other, one
can see that the dimensional reduction method combined
with the maximum entropy is more efficient.

Table 3 shows that the two proposed global dynamic reli-
ability sensitivity analysis methods can obtain the same im-
portance ranking of input variables compared with MCS so-
lution. The samples of the MCS method is 1×105. For one
sample, it needs about 10 function evaluations to obtain the
minimum value. The total function evaluations are
(1×105×1×105×5+1×105)×10≈5×1011. Compared with
the MCS method, these two proposed methods can gain an
accurate solution by less calculation cost. For the global dy-
namic reliability sensitivity analysis method based on the first
proposed reliability method, set q=3 and 41 samples will be
generated by the sparse grid stochastic technique when one of
the inputs is fixed at the realization every time. The number of
the function evaluations for calculating the minimum value
point with one sample is about 10. Then the total function
evaluations are (41×10+ 41) × 3× 5=6765. For the global
dynamic reliability sensitivity analysis method based on the
second proposed reliability method, fix one of the inputs at the
realization and the response output will become a function of
4-dimension inputs. So the total function evaluations can be

calculated as [10 × (1 + 4 × 4) + 4 × 4 + 1] × 3 × 5 = 2805. It
shows that, x1 has the largest global dynamic reliability sensi-
tivity indices, followed by x4, and then x5, which indicates that
these three input random variables are the most influential.
That indicates that by reducing the uncertainties of the five
input random variables, x1 leads to the most increment of the
time-dependent reliability, followed by x4, and then x5.

5.2 Engineering example

5.2.1 Automobile front axle

It is well-known that the automobile front axle beam is used to
carry the weight of the front part of the vehicle (See Fig. 2a).
Nowadays, the I-beam structure is popular in the design of
front axle due to its high bend strength and light weight. As
shown in Fig. 2b, the dangerous cross-section is in the I-beam
part. The maximum normal stress and shear stress are σ ¼ M

Wx

and τ ¼ T
Wρ

respectively, whereM and T are bending moment

and torque, and they are time-varying,
M ¼ M 0

1
10 cos

1
4 zþ 9

10

� �
, T ¼ T 0sin 1

3 z, in which M0 and T0
is basic bending moment and torque, z is the time parameter
and range is z∈ [0, 10] (it is in radians when used with the sine
and cosine functions). Wx and Wρ are section factor and polar
section factor which can be given respectively as follows:

Wx ¼ a h−2cð Þ3
6h

þ b
6h

h3− h−2cð Þ3
h i

ð37Þ

Wρ ¼ 0:8bc2 þ 0:4a3 h−2cð Þ
c

ð38Þ

To check the strength of front axle, the limit state function
can be represented as:

g ¼ σS−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ 3τ2

p
ð39Þ

where σS is the limit stress of yielding. The geometry variables
of I-beam a,b, c,h and the loads M0 and T0 are independent

Table 6 Numbers of function evaluations

Limit stress (MPa) Proposed method 1 Proposed method 2 MCS

460 595 175 0.6 × 106

480 595 175 1.2 × 106

500 595 175 2.4 × 106

520 595 175 3.6 × 106

540 595 175 4.8 × 106

Table 7 The global dynamic
reliability sensitivity indices Variable Proposed method 3 Proposed method 4 MCS

a 0.05652 (4) 0.05766 (4) 0.05686 (4)

b 0.08092 (3) 0.08513 (3) 0.08315 (3)

c 0.23848 (1) 0.23285 (1) 0.23501 (1)

h 0.01537 (5) 0.01704 (5) 0.01581 (5)

M0 0.00003 (6) 0.00004 (6) 0.00003 (6)

T0 0.12370 (2) 0.12262 (2) 0.12034 (2)

Ncall 7686 2646 3.6 × 1011(3.78 × 10− 4)

The solution is corresponding to the limit stress of yielding σS= 460Mpa
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normal variables with distribution parameters listed in Table 4.
The dynamic failure probability is given in Table 5 and the
numbers of function evaluations are shown in Table 6. The
global dynamic reliability sensitivity of input variables are
provided in Table 7.

Table 5 indicates that the proposed two methods can accu-
rately estimate the dynamic failure probability for this time-
dependent reliability problem. When the limit stress of yield-
ing is defined as different values, the results estimated with the
proposed two methods can match well with the reference so-
lutions. From Table 6, one can see that, the MCS method
needs huge computational cost (the procedure for calculating
the total function evaluations is similar to the process in the
first numerical example). These two proposed procedures can
reduce the computational cost, especially the dimensional re-
duction method combined with the maximum entropy tech-
nology, which just needs a hundred times of function evalua-
tions (the procedure for calculating the total function evalua-
tion is similar to the process in the first numerical example).
So these two proposed methods can save the computational
cost.

From Table 7, when the limit stress of yielding is set to be
460MPa, the global dynamic reliability sensitivity indices
ranking estimated by the proposed methods is the same as that
of the MCS solution. And the importance ranking induced by
t h e g l o b a l d y n am i c r e l i a b i l i t y s e n s i t i v i t y i s
c>T0>b>a>h>M0. It indicates that, by reducing the same
amount of the uncertainties of the six input random variables
individually, c produces the most increment in the time-
dependent reliability, followed by T0, and then b、 a、 h、
M0 in sequence. It is also shown in Table 7 that the computa-
tional cost of MCS is enormous which is unpractical in engi-
neering application (the procedure for calculating the total

function evaluations is similar to the process in the first nu-
merical example). Above solutions show that the proposed
method can alleviate the computational burden (the procedure
for calculating the total function evaluation is similar to the
process in the first numerical example).

5.2.2 An aero engine turbine disk

Turbine disk is the key moving part of an aero engine, and it
suffers huge centrifugal force and thermal stress during the
initiate and accelerating process. Because of the complex
structural shape, the stress concentration easily takes place in
some parts during the working process, such as tongue and
groove bottom, pin hole, etc. After working for some time,
these parts may appear crack. Figure 3 shows the crack of the
aero engine turbine disk. The load that an aero engine turbine
disk is applied is F= (Cω2/2π+2ρω2J), in which ρ,C,ω and J
are mass density, coefficient, a rotation angular velocity and
moment of inertia. Here ω=2πn, n is rotational frequency, and
n ¼ n0 1

10 sinz1 þ 6
5

� �
, wherein z1 is the time parameter

z1∈ [0, 2π]. In this paper, we research the failure situation on
the length direction of the turbine disk lateral view as is shown
in Fig. 4. The ultimate strength of the turbine disk is σs.
Sectional area is related to location, and the relational expres-
sion is A ¼ A0 − 1

60 z2 þ 2
� �

, in which z2 is the location param-
eter and z2∈ [0, 10] (they are in radians when used with the
sine and cosine functions). So the multi-parameter dynamic
limit state function of the turbine disk can be established as:
g(σs,ρ,C,A0, J,n0, z) =Aσs−F. The distribution parameters of
input variables are listed in Table 8. The dynamic failure prob-
ability of this structure is given in Table 9. The global dynamic
reliability sensitivity indices of input variables are provided in
Table 10.

Table 9 shows that these two proposed methods can accu-
rately estimate the dynamic failure probability for the tempo-
ral and spatial multi-parameter reliability problem. When
compared with the MCS method, one can see that these two
approaches can reduce the computational cost which is signif-
icant for engineering application (the procedure for calculat-
ing the total function evaluations is similar to the process in
the first numerical example). When we consider these two

Fig. 3 Diagram of crack of an aero engine turbine disk

L

z

Fig. 4 The profile of the aero engine turbine disk

Table 8 Distribution parameters of input variables

Variable (unit) Distribution Mean Variation coefficient

σs (Pa) Normal 1.1 × 109 0.1

ρ (kg/m3) Lognormal 8240 0.2

C (kg ⋅m) Lognormal 5.67 0.2

A0 (m
2) Normal 6.2 × 10− 3 0.1

J (m4) Normal 1.22 × 10− 4 0.1

n0 (r/s) Normal 200 0.1
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methods with each other, we can see that the dimensional
reduction method combined with the maximum entropy is
more efficient in multi-parameter dynamic reliability analysis.

It is shown in Table 10 that, these three approaches have the
same global dynamic reliability sensitivity indices ranking of
input variables. The computational cost of these proposed
global dynamic reliability sensitivity analysis methods is far
less than that of the MCS method (the procedure for calculat-
ing the total function evaluations is similar to the process in
the first numerical example). The importance ranking induced
by the global dynamic re l iab i l i ty sens i t iv i ty is
n0 >ρ>σs>A0 > J>C. That’s means by reducing the uncer-
tainties of the six input random variables, n0 leads to the most
increment of the temporal and spatial multi-parameter dynam-
ic reliability, followed by ρ.

6 Conclusions

Based on the extreme value theory of the dynamic reliability
problem, this contribution develops two procedures to effi-
ciently estimate dynamic failure probability with temporal
and spatial multi-parameter. One employs the sparse grid sto-
chastic collocation method to evaluate the extreme value mo-
ments, and then estimates the dynamic failure probability by
the fourth-moment method. The other uses dimensional re-
duction method to compute the fractional moments of extreme
value, and then combines the maximum entropy theory to
estimate the PDF of the minimum value of the dynamic limit
state function and obtain the dynamic failure probability by
use of the estimated PDF. These two procedures inherit the
advantage of sparse grid method and dimensional reduction
method in high efficiency and accuracy, therefore with the
proposed two methods to estimate the temporal and spatial
multi-parameter dynamic failure probability, one can improve

the computational efficiency which is very significant in en-
gineering application.

For quantifying the effects of the uncertainties of the inputs
on the temporal and spatial multi-parameter dynamic reliabil-
ity, this paper develops two new efficient global sensitivity
methods based on the proposed dynamic reliability analysis
technology and three-point estimationmethod. These two pro-
posed sensitivity methods can efficiently and precisely gain
the temporal and spatial multi-parameter global dynamic reli-
ability sensitivity indices which are useful for reliability-based
design as they can efficiently identify the influential input
variables.

Several examples are given for demonstrating the efficien-
cy and precision of the proposed procedure for temporal and
spatial multi-parameter dynamic reliability and global dynam-
ic reliability sensitivity analysis. At the same time, the engi-
neering problem of the temporal and spatial multi-parameter
dynamic global reliability sensitivity indices is illustrated. In
summary, the proposed methods provide some efficient ways
to analyze temporal and spatial multi-parameter dynamic reli-
ability and global dynamic reliability sensitivity problems.

The proposed methods also can be extended to analyze the
reliability and global reliability sensitivity with the temporal
and spatial multi-parameter dynamic reliability problem
where the inputs are described by stochastic process. One
feasible way is employing the existing methods such as KL
expansion to transform the stochastic process input to random
variable, and then the above proposed methods can be used to
analyze the dynamic reliability and global dynamic reliability
sensitivity.

Acknowledgements This work was supported by the Natural Science
Foundation of China (Grant 51475370) and the fundamental research
funds for the central university (Grant 3102015 BJ (II) CG009).

Table 9 The dynamic failure
probabilities estimated by
different methods

Proposed method 1 Proposed method 2 MCS

Pf 4.8839× 10− 2 4.8320× 10− 2 4.8426 × 10− 2(2.13 × 10− 6)

Ncall 935 275 5 × 106

Table 10 The global dynamic
reliability sensitivity indices Variable Proposed method 3 Proposed method 4 MCS

σs 0.03498 (3) 0.03823 (3) 0.03856 (3)

ρ 0.07772 (2) 0.08090 (2) 0.07078 (2)

C 0.01008 (6) 0.01008 (6) 0.00989 (6)

A0 0.03467 (4) 0.03818 (4) 0.03756 (4)

J 0.01362 (5) 0.01418 (5) 0.01312 (5)

n0 0.14513 (1) 0.14069 (1) 0.13237 (1)

Ncall 12078 4158 1.5 × 1013(2.25 × 10− 4)
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