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Abstract Thin-walled structures are of great importance in
automotive crashworthiness design, because of their high
crash energy absorption capability and their high poten-
tial for light weighting. To identify the best compromise
between these two requirements, numerical optimization
is needed. Size and shape optimization is relatively well
explored while topology optimization for crash is still
an open issue. Hence, this paper proposes an approach
based on hybrid cellular automata (HCA) for crashworthi-
ness topology optimization with a special focus on thin-
walled structures. First approaches have been published, e.g.
Duddeck et al. (Struct Multidiscip Optim 54(3):415–428,
2016), using a simple rule to define the target mass for
the inner loop of the HCA. To improve the performance, a
modified scheme is proposed here for the outer optimiza-
tion loop, which is based on a bi-section search with limited
length. In the inner loop, hybrid updating rules are used
to redistribute the mass and a mass correction technique
is proposed to make the real mass converge to the target
mass strictly. The efficiency and correctness of the proposed
method is compared with LS-OPT for axial crash case.
Two different methods of defining the target mass in the
outer loop are studied, the proposed bi-section search with
limited length shows its advantage in two types of three-
point bending crash optimization cases. Another advantage
of this method is that it requires no significantly increasing
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number of evaluations when the number of design variables
increases. This is demonstrated by applying this method to
a crashworthiness optimization problem with 380 design
variables.

Keywords Topology optimization · Crashworthiness ·
Thin-walled structures · Hybrid cellular automata

1 Introduction

In order to obtain a design with satisfactory performance,
crashworthiness optimization has been widely conducted
in automotive industry. Due to the numerical noise and
physical bifurcation in crash response, gradient based opti-
mization algorithms cannot be used directly here. On the
other hand, because of high computational cost for crash
simulation, it is improper to apply evolutionary algorithms
directly, such as genetic algorithms (GA), differential evo-
lution (DE), or evolution strategies (ES). To overcome the
above problems, surrogate models are generally built to
capture the crash response. To improve the accuracy, the
optimization is normally done with an adaptive surrogate
model. In this concept, a surrogate model is built first and
then an optimization is done on this surrogate. When the
current best design is obtained, the real response for this
point is compared with the predicted one. If the differ-
ence is not within the convergence, the surrogate model is
improved. For this, there are several approaches like trust
region approach (Alexandrov et al. 1998) or kriging with
expected improvements (Jones 2001). The optimization is
then continued based on the new surrogate model. These
steps are repeated until convergence is achieved (Yang et al.
2001; Ryberg et al. 2015). However, the benefit of this
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concept would be undermined, if the number of design vari-
ables is too big. Variable screening techniques might be
helpful (Lu and Wang 2011) to reduce the number of rel-
evant parameters. Still, when the importance of the design
variables are not so different from each other, it is hard to
decide which design variable should be preserved and which
can be neglected. Moreover, the computational cost for vari-
able screening is also high when the number of design
variables is big.

Based on the above discussion, i.e., taking into account
that all of these traditional methods have their drawbacks,
HCA exhibits advantages in the following points:

1. It requires no gradient information for updating.
2. It improves the structure fast instead of requiring large

number of evaluations.
3. It can handle a large number of design variables without

obvious time increase.

Inoue et al. (1994) might have proposed the earliest
application of a CA (cellular automata) approach for struc-
tural optimization. In this work, they treated the values of
Young’s modulus as design variables. The change of the
design variable depends on the current stress and the tar-
get predefined stress. If the value of Young’s modulus is
below a certain value, this cell is deleted; this can hence
be regarded as some kind of topology optimization. Later,
Tatting and Gürdal (2000) combined simultaneous analy-
sis and design (SAND) and CA for topology optimization
of two-dimensional continuum structures. More recently,
researchers began to use a hybrid cellular automaton frame-
work for structural optimization. Compared to Tatting and
Gürdal (2000), HCA utilizes response information from
FEA (finite element analysis). As a result, in each itera-
tion, the residual between external work and internal energy
is zero, but in Tatting and Gürdal (2000), this value is
iteratively reduced to zero.

For a static loading case, Bochenek and Tajs-Zielińska
(2010) applied HCA for the topology optimization of 2D
elastic structures. By taking inspiration from PSO (par-
ticle swarm optimization), they proposed novel updating
rules for design variables. Tovar et al. (2006) discussed
different updating rules, namely two-position control, pro-
portional control, derivative control and integral control.
They demonstrated the efficiency of HCA by optimizing
two-dimensional continuum structures for cantilever prob-
lems. Tovar et al. (2004) implemented a HCA in their
research where only the surface elements are allowed to
change during the structural synthesis process. This concept
is inspired by bone remodeling, where only elements on the
surface of the mineralized structure can be modified.

With respect to static nonlinear loading cases allowing
for large deformations, Patel et al. (2005) illustrated the use

of HCA in 2D and 3D compliant mechanism designs. In
their approach, they tend to achieve a uniform distribution of
the linear combination of mutual potential energy and strain
energy for compliant mechanism design.

When it comes to crash optimization, according to the
different types of design variables, it can be classified as
finite element level optimization and macro level optimiza-
tion. In the finite element level optimization, the design
variables are the relative densities of a material (Bochenek
and Tajs-Zielińska 2012). The power-law approach SIMP,
i.e., (solid isotropic material with penalization) (Bendsøe
1989; Zhou and Rozvany 1991), is used to eliminate the
intermediate elements. Forsberg and Nilsson (2007) have
conducted a 2D crash optimization with plane elements. In
their research, the design variables are the thicknesses of
the elements and a power-law approach is also embedded.
Mozumder et al. (2008) have also applied HCA to shell-
based structures to obtain the best thickness distribution; but
in their optimization, no penalty method is applied. By con-
trast, for macro level optimization, the design variables are
shared not only by one element but by a group of elements.
For example, in Patel et al. (2009b), a three dimensional
structure is discretized in the plane that is normal to the
extrusion axis, and the elements along this axis are grouped
together. The responses of the elements are summed in
each group and used as input for design variable updating.
In Mozumder (2010), an empty crash box beam subjected
to axial dynamic load is discretized into non-bulking zone
and bulking zone. The thicknesses of each element in these
zones are forced to be the same and defined as design vari-
ables. More recently, Duddeck et al. (2016) proposed a
technique called HCATWS (HCA for Thin-walled Struc-
tures). In their work, the thickness of each thin wall is
treated as design variable, and it is deleted when it is below
a certain value. The effectiveness of HCATWS is demon-
strated by comparing to results from commercial software
LS-OPT (Stander et al. 2012).

During the last decades, various types of data flow in
HCA have been proposed and studied. The simplest form
might be the HCA without a predefined mass fraction and
extra constraints, such as displacement or force. In this
form, the goal is to homogenize a certain kind of response,
such as internal energy density or stress, throughout
the whole design domain. More specifically, Forsberg and
Nilsson (2007) have defined a target value of internal energy
density for their crashworthiness optimization. If the shell
element’s response is higher than the target value, the thick-
ness is added and vice versa. Without the predefined target
value for this specific response, the updating can also be
done by comparing the average and its own value. Examples
can be found in Khandelwal and Tovar (2010). However,
the most popular HCA for topology crash optimization
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might be the one with a predefined target mass fraction.
In this concept, the new set point is calculated according
to the previous set point, previous mass fraction and tar-
get mass fraction. Then the updating of design variables
can be proportional control (Patel et al. 2009a, b; Guo
et al. 2012; Aulig et al. 2014; Bandi et al. 2012, 2013),
two-position control (Tovar et al. 2004) or even with PID
(proportional-integral-derivative) control (Patel et al. 2005,
2006a, b).

A more complex and practical HCA is the one consid-
ering some extra displacement or force constraints. In this
form, the target mass is not fixed but dynamic. The target
mass is usually updated in the outer loop according to the
violation of the extra constraints. Mozumder et al. (2008)
propose to increase target mass when the displacement con-
straint is violated and reduce mass when the force constraint
is violated for crash optimization. Similar concept of extra
constraints handling in HCA can be found in Witowski et al.
(2012) and Roux (2011). However, one of the main disad-
vantages when it applies to crashworthiness optimization is
that it tries to homogenize certain field variables but not
explicitly minimize mass and the resultant even distribution
of energy absorption in the structure cannot ensure the over-
all maximum of energy absorption (Fang et al. 2016). To
improve specific energy absorption, Duddeck et al. (2016)
realized an approach by pushing the displacement response
to be just within the constraint limit. When the constraint is
violated, it increases mass. On the other hand, when there
is some gap between the current response and constraint, it
reduces mass. Because of the assumed monotonic relation-
ship between the mass and displacement response, this can
lead to a design with less mass. However, there might be
a design with a high value of mass but its response is just
within the boundary. If this situation takes place, the method
in Duddeck et al. (2016) improves very slowly because
the change of mass is proportional to the gap between the
response and constraint.

Fig. 1 Flow chart of topology optimization using HCA for thin-walled
structures

(a) in-plane (b) out-of-plane

Fig. 2 Neighborhood for the in-plane (a) and for the out-of-plane
case (b)

Hence, in this paper, a new idea called bi-section search
with limited length is proposed to define a proper target
mass in the outer loop of HCATWS (Duddeck et al. 2016).
Further, some new ideas are proposed to assure that the
inner loop mass distribution converges exactly to the target
mass. The correctness of the optimization results from this
improved and more efficient algorithm will be compared
with those obtained from the commercial software LS-OPT
for the axial crash case. The efficiency of the proposed tech-
niques will be finally demonstrated by more complicated 3
point bending impact cases.

2 Hybrid cellular automaton

The hybrid cellular automaton (HCA) can realize topology
optimization for structures consisting of lattices. “Hybrid”
means here the combination of cellular automaton (CA)
par-adigm and finite element analysis (FEA). The lattice
can not only consist of shell, beam or solid elements from
the FEA, but also of groups of these elements. During the
optimization, after one evaluation of FEA, field variables,
such as stress (Gürdal and Tatting 2000), mutual poten-
tial energy (MPE) (Patel et al. 2005), strain energy density
(SED) (Tovar et al. 2006) and internal energy density (IED)
(Forsberg and Nilsson 2007; Guo et al. 2011), can be
obtained for each component of the lattice. The information
will be utilized by the updating rules to distribute the mass.
The goal of the redistribution of mass is to homogenize the
field variables.

Table 1 Basic properties of aluminum

Young’s modulus E 70 GPa

Mass density ρ 2700 kg/m3

Poisson’s ratio ν 0.33

Yield strength σy 180 MPa
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Table 2 Piecewise linear isotropic hardening of the extrusion beam
(aluminum) defined by effective plastic strain ε

p
eff and corresponding

stress σ [MPa], (Hunkeler 2013)

ε
p
eff 0.00 0.01 0.02 0.05 0.10 0.15 0.20

σ 180 190 197 212 226 234 239

2.1 Hybrid cellular automaton for thin-walled
structures

For automotive, many components are designed as thin-wal-
led structures in order to improve crash safety. Therefore,
hybrid cellular automaton for thin-walled structures (HCAT-
WS) is proposed to deal with crash topology optimization
for thin-walled structures. HCATWS can be used for the
crash topology optimization problem with one extra dis-
placement constraint.

As shown in Fig. 1, HCATWS starts with the initializa-
tion of the design, which includes the division of the original
structure into lattices. The state of CA is described by its
field variable and design variable:

βk
i =

(
Uk

i

xk
i

)
(1)

where xk
i and Uk

i refer to the values of the design vari-
able and field variable of CA in location i and outer loop
iteration k.

HCATWS has two loops, namely inner loop and outer
loop. In the outer loop, as is given in Fig. 1, FEA is con-
ducted to derive the field variables (Uk

i ) and global output
(Ok). A new target mass mk

t will be calculated based on the
current structure’s response and the predefined constraint
threshold. The goal of the inner loop is to distribute the mass
according to the values of the field variable, Uk

i , for each
cell and its neighborhood, therefore homogenizing the field
variable in the design domain. After the completion of the
inner loop, mass correction is conducted to assure that the
real mass is exactly the same as the target mass. HCATWS
will stop when the outer loop convergence is reached.

(a) (b)

Fig. 4 Optimized topology for both optimization methods (a) and
deformation of crash tube (b) (Duddeck et al. 2016)

2.2 Outer loop of HCATWS

HCA tends to make the design more homogeneous and does
not explicitly minimize the mass. In HCATWS, the extra
constraint considered here is a displacement constraint.
There exists a monotonic relationship between the mass and
displacement response. HCATWS tries to reduce mass when
the design is feasible and increase mass when violated. By
this way, it pushes the design’s displacement response to be
just within its boundary, therefore minimizing the mass. The
main goal of the outer loop is to define a proper target mass
for the inner loop. The idea in Duddeck et al. (2016) is that
if the design is feasible, it reduces mass while if the design
is infeasible it adds mass. The degree of adding or reducing
mass is proportional to the gap between the current response
and the predefined boundary. It works quite well for compa-
rably small number of design variables. However, the idea
of bi-section search with limited length shows its advantage
in optimization problems with comparably large number of
design variables. The reason is that for designs with differ-
ent mass, they can have similar responses. Let’s assume the
mass of design A is higher than the mass of design B, and
their responses of the constraint are just within its boundary.
If HCATWS (Duddeck et al. 2016) obtains design A, then
the change of target mass is very small. If this happens, for
the previous HCATWS method, the mass goes down very
slowly to design B or even it converges before it obtains

Fig. 3 Axial crash test case (a)
and symmetry planes to reduce
the number of design variables
(b)

(a) (b)
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Table 3 Optimized results
comparison between two
methods (axial crash case)

Method Number of
evaluations

Scaled
mass

Displacement t1 t2 SEA

LS-OPT 187 0.418 74.7 mm 1.58 mm 1.66 mm 7.24 J/g

HCATWS-1 35 0.421 74.2 mm 1.65 mm 1.61 mm 7.23 J/g

HCATWS-2 36 0.414 74.7 mm 1.58 mm 1.63 mm 7.27 J/g

The results of LS-OPT and HCATWS-1 are from Duddeck et al. (2016)

design B. By contrast, bi-section search with limited length
keeps pushing the mass to go down every several iterations.
At the same time, it searches between the feasible and infea-
sible points to improve the design because there exists a
monotonic relationship between the mass and displacement
response. The advantages of this new HCATWS is that it has
a higher chance to get design B compared to the previous
method proposed in Duddeck et al. (2016).

In order to improve this shortcoming, a new idea based
on bi-section search with limited length is proposed for
the outer loop to define a proper target mass. Bi-section
search is a direct search method where no gradient infor-
mation is required (Monahan 2011). It abandons half of the
feasible region in each step. However, bi-section search can-
not be directly used here because the change of mass in
two iterations should not be too big. Therefore, a modified
approach is proposed here, where the bi-section search is
implemented in the outer loop in a sequential way with lim-
ited length. More specifically, this idea tends to increase
mass if it is feasible and decrease mass if it is infeasible until
it encounters a situation where one of the sequential two
designs is feasible and the other is infeasible. Because of the
monotonic relationship between the mass and displacement
response, bi-section search is then conducted within the two
designs. The bi-section search within this search step will
be stopped by some criterion, which will be discussed later.

Compared to the starting point of the bi-section search, the
mass of the latest design is more efficiently distributed.
The algorithm will try to decrease the target mass to check
whether it has more potentiality for a lighter solution. These
processes are conducted repeatedly and the detailed steps
are shown below:

Step(1): FEA is conducted for the initial design. Its mass
is depicted as m0

t . The state of the design is described
as “feasible” or “violated”, which indicates whether the
displacement’s response satisfies the boundary or not.

If the design is feasible, we have

m1
t = m0

t − Δm, (2)

where m1
t is the new target mass for the inner loop and Δm

refers to a predefined search step.
If the design is infeasible, we have

m1
t = m0

t + Δm. (3)

Step (1) is repeated until the situation occurs, where the
two states of the sequential designs are different.

Step(2): For easy explanation, let’s assume the state of
iteration k is “infeasible” and the state of iteration (k−1)
is “feasible”. Then the bi-section search is conducted
within the range [mk−1

t , mk
t ]. The length of the initial

Fig. 5 HCA optimization
history for axial crash case
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section for bi-section search is Δm. The search section is
reduced to half of the previous iteration as:

Δmp =
(
1

2

)p

× Δm (4)

where p indicates the number of bi-section searches
having been conducted in this bi-section search step Δm.

Here, we define p∗
1 and p∗

2 as two threshold numbers
of iterations for bi-section search within this section, and
p∗
2 > p∗

1 .
The value of p∗

1 should satisfy the following
requirements:

(1) After bi-section search is conducted for several steps
within Δm, we expect that the mass distribution is
more efficiently distributed than at the starting point
for bi-section search. Therefore, we can explore the
potentiality for further light weight solutions. Hence,
p∗
1 should be big enough to expect that the mass of

design in step p∗
1 is more efficiently distributed than at

the starting point for bi-section search.
(2) The nature of bi-section search is that it reduces half

of its search length in every step. Then the value of
p∗
1 should not be too big. Otherwise, the change of the

target mass will become very small.

The value of p∗
2 should satisfy the following

requirements:

(1) p∗
2 is defined so as to stop the algorithm when the

search length becomes extremely small but the design
is still infeasible. As a result, the best design is the
most previous feasible design. Therefore, the value of
p∗
2 should not be too big.

(2) p∗
2 is defined bigger than p∗

1 because the algorithmwill
check whether a feasible design can be obtained after
several steps of homogenization of field variables.

To summarize above, the outer loop of this optimization
will stop if one of the following criteria is satisfied:

(1) The maximum number of evaluations Nmax exceeds a
predefined value;

(2) During the bi-section search, the situation that p > p∗
2

and the state is violated takes place;
(3) The change of design variables is very small:

N∑
i=1

|xk+1
i − xk

i | < ε (5)

where N indicates the number of cells and ε is a very
small predefined value.

As indicated in Fig. 1, for each iteration of the outer loop,
it requires only one crash computation. The new approach

Fig. 6 Topology evolution for axial crash case

here doesn’t increase significantly the computational cost
compared to the old approach in Duddeck et al. (2016).

2.3 Inner loop of HCATWS

A new target mass is assigned to the inner loop after every
iteration of the outer loop. The goal of the inner loop is to
distribute the mass according to the field variables of the CA
and make the mass converge to the target mass. To distribute
the mass, the set point S is introduced. The initial value of
this set point S0 is defined as the average value of the inter-
nal energy densities of all cells. The value of the set point is
adjusted in the inner loop according to the current mass and
the target mass,

Sj = Sj−1 × m
j−1
c

mk
t

(6)

where Sj indicates the set point in iteration j of the inner
loop, mk

t the target mass in iteration k of the outer loop,

m
j−1
c the real mass in iteration (j − 1) of the inner loop.

Fig. 7 Three-point bending crash case (1)
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Then the updating of design variables is conducted as,

x
k,j
i = f2(S

j−1, U
k

i , x
k
i ) (7)

where x
k,j
i refers to the value of design variable xi in the

iteration j of the inner loop and iteration k of the outer loop,

f2 is the updating rule, and U
k

i represents the weighted field
variables in iteration k of the outer loop.

In order to increase the stability for updating, this algo-
rithm uses the weighted sum of field variables in its his-
tory instead of the values from only the current iteration
(Duddeck et al. 2016).

For iteration k = 0: U
0
i = U0

i

For iteration k = 1: U
1
i = w1U

1
i + w2U

0
i

For iteration k > 1: U
k

i = w3U
k
i + w4U

k−1
i + w5U

k−2
i

where w1, w2, w3, w4 and w5 are weight factors.
The updating of xi is not only decided by the field

variable itself but also by its neighborhood. We take the
Von Neumann neighborhood (Hunkeler 2013) here. More
specifically, for the current thin-walled structure, if extru-
sion constraints are imposed in longitudinal direction, a cell
belongs to the current cell’s neighborhood when they share
a common node (Fig. 2a.). If the walls are also discretized
in its longitudinal direction, a cell is the current cell’s
neighborhood when they share a common line (Fig. 2b.).

For updating rules, many different ideas have been
proposed in the past, such as two-position control (Tovar
et al. 2006), proportional control (Patel et al. 2009b;
Khandelwal and Tovar 2010; Guo et al. 2012), derivative
control (Penninger et al. 2009), integral control (Mozumder
et al. 2008) or combination of the mentioned (Patel et al.
2006b; Penninger et al. 2009). For the HCATWS in
this paper, we use the hybrid updating rule proposed by
Hunkeler and Duddeck (2014), which takes inspiration from
Bochenek and Tajs-Zielińska (2010) and Patel (2007). This
rule considers separate contributions from each neighbor
cell and accounts for the discrepancies between the set point
and the IED levels of each neighbor (Duddeck et al. 2016).

The strict convergence of the inner loop is ensured by
mass correction as follows,

Step(1): The design variables are scaled to make sure the
summation of the mass to be the same as the target mass:

xk
i new = xk

i × mc/mt (8)

where mc refers to the summation of the current mass.

Table 4 Parameters to define the convergence

Method Nmax ε p∗
2

HCATWS-1 60 0.01 ...

HCATWS-2 60 ... 10

Step(2): Because we have the lower and upper bound for
the design variables, this scaling might make the new
design variables to exceed these bounds. Then we check
the lower bound for deletion: if some of the design vari-
ables are deleted, these “deleted masses” are uniformly
distributed to the remaining design variables.

Step(3): We check the upper bound: if some of the design
variables exceed the bound, they are forced to be the
upper bound while the “extra mass” is uniformly dis-
tributed to the remaining design variables.

Step(4): Check whether all design variables have reached
their upper bounds. If so, the mass correction is stopped.
If not, Step (3) is re-conducted until there is no “extra
mass” requiring for a new distribution or all the design
variables are at the upper bound.

This new modification, i.e. mass correction, of the orig-
inal approach in Hunkeler and Duddeck (2014) smoothens
the optimization performance.

3 Test cases

3.1 General description

For the chosen test cases, the material of the structure is
aluminum. The basic property of this material is given in
Table 1 and its hardening is represented by a piecewise lin-
ear stress-strain curve as shown in Table 2. Instead of using
the real mass directly in the outer loop, we use the average
value of design variables (the wall thicknesses xi), which
is proportional to the real mass here. This scaled mass is
calculated as,

m = 1

N

N∑
i=1

xi (9)

Fig. 8 Symmetry planes to
reduce the number of design
variables
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Fig. 9 HCATWS-1
optimization history for 3P
crash case 1

The optimization statement for the testing cases with
HCA are,

min
xi

N∑
i=1

|Ui − 1
N

N∑
i=1

Ui | and m

s.t. g ≤ g∗
xmin ≤ xi ≤ xmax, i = 1, . . . , N,

where g refers to the displacement response, g∗ is the prede-
fined constraint boundary and xmin and xmax represent the
lower and upper boundary for the design variables.

As shown in the optimization statement, this is a multi-
objective optimization problem. One objective is to make
the structure more homogenized and the nature of the local
rules reflects this feature. The minimization of the mass is
achieved by pushing the displacement response to be just
within the boundary.

One of most widely used criteria to assess crash per-
formance is specific energy absorption (SEA) (Fang et al.

2016). SEA is defined as energy absorption (EA) per unit
mass.

SEA = EA

m
(10)

In HCATWS the mass is minimized and the total amount
of energy absorption is kept constant, because the rigid pole
or wall will bounce back at the end of the simulation. As
a result, SEA will be maximized. Nevertheless, it should
be noted that topologies having better SEA are possible
if the uniformity condition is relaxed. But to the authors’
knowledge there is no method available to identify these
geometries with a comparable low computational effort.

In industrial context, displacement constraints are used
to protect structures like the radiator in a frontal impact
test to assess repair costs as defined by the RCAR orga-
nization (www.rcar.org), or battery packs and fuel tanks in
case of side or rear crashes. In these cases, impact energy

Fig. 10 HCATWS-2
optimization history for 3P
crash case 1

www.rcar.org
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Table 5 Optimized results
comparison between two
methods (3P crash case 1)

Method Number of evaluations Best design (iteration) Scaled mass Displacement SEA

HCATWS 1 60 25 0.601 79.85 mm 1.56 J/g

HCATWS 2 60 58 0.561 79.99 mm 1.96 J/g

has to be absorbed by cross members allowing only limited
intrusions, i.e. relative deformations. Mass-less beams may
be used for measurement of these quantities. In additional
papers of the authors’ research group, methods have been
proposed to enable component-based studies to address full
vehicle crashworthiness (Zimmermann and Hössle 2013;
Fender et al. 2014). This enables component development
by using sub-structures comparable to the studies in this
paper. The value of the constraints in industry is normally
defined by history data. In other words, the displacement
value of the previous component is used for comparison.
However, the purpose of this paper is not on the devel-
opment of a real component but on the assessment of the
proposed algorithm. Hence, the value of the constraint is set
to be a little smaller than the initial response. We expect
that with a more homogenized design, the performance will
be improved. Also the value of the constraint is not set to
be very small to assure that there exists some possibility to
delete some walls during the optimization.

3.2 Axial crash

Axial crash tube box has been widely studied in literature
(Liu 2008; Sun et al. 2014; Yin et al. 2014; Tang et al.
2013). Therefore, it is an appropriate choice for compar-
ison. One end of the beam is fixed. Another end of the
beam is exposed to a rigid wall impacting with a mass of
500 kg and a velocity of 5 m/s in z direction (Fig. 3a). The
outer walls of the tube are not chosen as design variables.
They have a constant value of 1.5 mm. There are 31 inner
walls, which are modeled as different parts in LS-DYNA.
As shown in Fig. 3b, two symmetry planes are used. The
number of design variables are hence reduced from 31 to 10.
Therefore, the number of design variables is small enough
to utilize commercial software, e.g. LS-OPT, for compar-
ison. The initial value of all design variables is 0.50 mm.
The range is set from 0.05 to 1.80 mm. If the value of the
thickness is less than 0.40 mm, the entire wall is deleted.

Fig. 11 Optimized result with HCATWS-1 for 3P crash case 1 (outer
walls not shown)

The constraint in this optimization problem is defined as the
maximum displacement of the rigid wall in z-direction. The
initial response value of the constraint is 84.24 mm. The
constraint is set to be 75.00 mm.

Here, we compare the results from HCATWS in this
paper with the results obtained by LS-OPT and HCATWS
from Duddeck et al. (2016). In LS-OPT, an iterative
response surface method (RSM) using radial basis func-
tions is utilized. In the following, for easy explanation,
HCATWS-1 given with the idea in Duddeck et al. (2016)
is referred to as HCATWS-1, and HCATWS with the
idea of bi-section search with limited length is denoted as
HCATWS-2. In Duddeck et al. (2016), LS-OPT required
a total number of 255 crash simulations. The best result
was found after 187 non-linear simulations. By contrast,
HCATWS-1 and HCATWS-2 stopped after 35 and 36 non-
linear simulations. The topology of the best design obtained
by all three methods is the same and it is shown in Fig. 4a
and b. The comparison between LS-OPT, HCATWS-1 and
HCATWS-2 is shown in Table 3. For the crushing of the
thin-walled tubes, the energy is absorbed through bending
deformation along the bending hinge lines and membrane
deformation. The severe deformation takes place near the
corner. Lee and Wierzbicki (2001) studied this phenomenon
for maximum energy absorption. They found that more
crash energy will be absorbed when the corner is reinforced
with more mass. The results obtained from the LS-OPT
(Duddeck et al. 2016), HCATWS-1 and HCATWS-2 have
good correspondence with this concept. For this comparably
simple optimization problem, HCATWS-1 and HCATWS-2
have similar performance.

As discussed in Section 2.2, the value of p∗
1 should be big

enough for homogenization of field variables but not too big
to make the search length for bi-section search too small. It
is set 5 in this case. For this axial crash case, it is a compara-
bly simple optimization problem with 10 design variables.
Based on the complexity of this optimization problem, it is
not expected that further improvement can be achieved by

Fig. 12 Optimized result with HCATWS-2 for 3P crash case 1 (outer
walls not shown)
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Fig. 13 Topology evolution
with HCATWS-2 for 3P crash
case 1 (outer walls not shown)

setting p∗
2 with a higher value. Therefore, p∗

2 = 6 is used.
The performance of the improved HCATWS is depicted
in Fig. 5. The initial design is infeasible thus the mass
keeps increasing with a scaled change of mass (Δm = 0.1)
until iteration 2, where the design is feasible. Due to the
monotonic relationship between the mass and displacement
response, we assume that between the solution of iteration
1 (m1

t ) and iteration 2 (m2
t ) there exists a design, of which

displacement response is just within the boundary. The bi-
section search will be used to find this solution. After using
5 (p∗

1) times the bi-section search, the search area is already
very small and the current design (iteration 7) is feasible.
Compared to iteration 2, the mass is more efficiently dis-
tributed in iteration 7. Hence, the algorithm tries to push the
mass down with Δm = 0.1. This step is repeated until the
current design is infeasible (iteration 9). Then the bi-section
search is conducted again between the point of iteration 8
(m8

t ) and iteration 9 (m9
t ). This process is repeated until it

cannot find a feasible design after 6 searches (p∗
2), because

the search length is very small

(
Δm ×

(
1
2

)p∗
2
)
. As a result,

the optimization stopped at iteration 35. The best design is
the most previous feasible design in iteration 29.

The topology change history of the improved HCATWS
is shown in Fig. 6. As can be seen, most of the inner walls
are deleted first. The mass is pushed to the corner where

Fig. 14 Deformation shape of the optimized result with HCATWS-2
for 3P crash case 1

more energy is absorbed. It can be seen that it only requires
17 evaluations to obtain the best topology. As indicated in
Fig. 5, the first feasible design obtained by HCATWS-2 is in
iteration 2 and its SEA is 5.94 J/g. During the optimization,
SEA is increased by minimizing the mass and the optimized
structure’s SEA is 7.27 J/g.

3.3 3 Point bending crash case 1

The loading case studied here is a three-point bending crash
case (3P Crash 1). As indicated in Fig. 7, the beam is
impacted transversely by a pole with an initial velocity of
10 m/s and mass of 85 kg. Two ends of the beam’s outer
walls are fixed (all degrees of freedom). The length of the
beam is 800 mm and its cross-section is 80×120 mm2. The
thickness of the outer walls is 1.8 mm and they are again
not chosen as design variables. The inner walls of this struc-
ture are modeled with different parts and they are chosen
as design variables. The initial value for all design variables
is 0.60 mm. The range of these design variables is set from

Fig. 15 Three-point bending crash case 2
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Fig. 16 Design domain for crash case 2

0.05 to 3.00 mm. If the thickness is less than 0.50 mm,
it is deleted. The total number of inner walls is 446. Two
symmetry planes, namely x-y plane and y-z plane as indi-
cated in Fig. 8, are used to reduce the number of design
variables from 446 to 123. The constraint of this optimiza-
tion problem is the maximum displacement of the pole in
y-direction. The initial response of the constraint is 99.53 mm.
The constraint limitation is chosen to be 80.00 mm.

As discussed in Section 2.2, compared to Duddeck et al.
(2016), the improved HCATWS proposed here has a higher
chance to obtain a better design. To prove this, two crash
optimizations are conducted, where all the operators are
the same except for the definition of target mass in the
outer loop. The values for the stopping index in HCATWS-
1 and HCATWS-2 are shown in Table 4. The value of p∗

1
is defined as 5. For this optimization problem, the number
of design variables is comparably higher. Thus we expect
that there is a certain probability to obtain a better design by
setting p∗

2 with a comparably higher value. Hence, we set
p∗
2 = 10.
The performance of HCATWS-1 and HCATWS-2 can

be found in Figs. 9 and 10. The optimized results are
summarized in Table 5. HCATWS-1 and HCAT-WS-2
stopp-ed because the maximum number of iteration is
exceeded. The best design obtained by HCATWS-1 has a
scaled mass (m) of 0.601 while in HCATWS-2 it is 0.561.
In HCATWS-1, when it obtains a design at iteration 25, its
displacement response is 79.85 mm. Thus the gap between
the current response and predefined boundary is very small.
This results in a very small change of target mass. In Fig. 9,
from iteration 25 to iteration 40 the mass goes down very

Fig. 17 Symmetry planes to reduce the number of design variables

Table 6 Optimized results comparison between two methods (3P
crash case 2)

Method Number of
evaluations

Best design
(iteration)

Scaled
mass

Displacement SEA

HCATWS-1 60 59 0.611 59.92 mm 1.66 J/g

HCATWS-2 44 34 0.590 59.86 mm 1.68 J/g

slowly. By contrast, as depicted in Fig. 10, it obtains the first
feasible design at iteration 3 with a scaled mass of 0.9. Then
bisection search is done between feasible point at iteration
3 and infeasible point at iteration 2. This bisection search is
stopped after 5 iterations because here we have set p∗

1 = 5.
Then because the current design is feasible, it pushes the
target mass to reduce Δm (0.1) to explore more potentiality
for a lighter solution. As the design in iteration 9 is infea-
sible again, bi-section search is conducted between m8

t and
m9

t . This process is repeated until the maximum number of
evaluations 60 is achieved.

Both responses of the best design obtained by HCATWS-
1 and HCATWS-2 are very close to its predefined boundary.
The advantage of HCATWS-2 shown in this result is that it
can obtain a design with less mass. When it obtains a design
whose response is just within its boundary, it will still try to
push the mass down. During the optimization process, the
structural response becomes more homogeneous and thus
the mass is better distributed than in the initial design. Thus
there exists some potential to decrease the mass while still
satisfying the constraint. By contrast, the idea in Duddeck
et al. (2016) might get stuck in a design with more mass
when its response is just within its boundary.

The best design’s topology for both methods can be
found in Figs. 11 and 12. As depicted in Fig. 12, the mass
tends to go to the middle where the beam is impacted by the
pole. This helps increasing energy absorption and prevents
the pole to move in y direction. At the two ends of the beam
mass is also added. This helps preventing local buckling
of the structure. The deformation shape for the optimized
results from HCATWS-2 is given in Fig. 14. The topol-
ogy change during the optimization for HCATWS-2 can be
found in Fig. 13. As depicted in Fig. 10, HCATWS-2 obtains
the first feasible design in iteration 3 with its SEA (1.51 J/g).

Table 7 Parameters to define the convergence

Method Nmax ε p∗
2

HCATWS 1 60 0.01 ...

HCATWS 2 60 ... 10
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Fig. 18 HCATWS-1
optimization history for 3P
crash case 2

In the later iterations, SEA is gradually maximized with the
minimization of mass and final feasible design’s SEA is
1.96 J/g (Fig. 14).

3.4 3 Point bending crash case 2

Another advantage of the new method is that it requires no
significant increase of the number of finite element analysis
when the number of design variables increases. To prove
this, the next test example is also a three-point bending crash
case (as illustrated in Fig. 15), but it has 1520 inner walls (as
indicated in Fig. 16) and they are modeled as different parts
in LS-DYNA. As shown in Fig. 17, two planes are used as
symmetry planes to reduce the number of design variables
from 1520 to 380.

As indicated in Fig. 15, the beam is impacted transversely
by a pole with an initial velocity of 10 m/s and mass of
85 kg. Two ends of the beam are fully fixed (all degrees of

freedom). The length of the beam is 800 mm and its cross-
section is 80 × 120 mm2. The thickness of the outer walls
is 1.80 mm, which are not chosen as design variables. For
the inner walls, they are regarded as design variables. The
initial value for all design variables is 0.60 mm. The range
of these design variables is set from 0.05 to 3.00 mm. If the
thickness is less than 0.50 mm, it is deleted. The constraint
of this optimization problem is the maximum displacement
of the pole in y-direction. The initial response of the con-
straint is 83.28 mm. The structure in the 3 point bending
crash case 2 has one more outer wall than the structure of
the 3 point bending crash case 1. This extra outer wall will
prevent the structure from buckling when it is impacted by
the pole. Moreover, the layouts of the inner walls of the two
cases are different. In the 3 point bending crash case 1, the
thickness is kept to be uniform in y-direction. In 3 point
bending crash case 2, the thickness of the walls is the same
as in x- direction. The difference in topology results in the

Fig. 19 HCATWS-2
optimization history for 3P
crash case 2
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different initial values of the displacements. The constraint
limitation defined here is 60.00 mm (Table 6).

The values for the stopping index in HCATWS-1 and
HCATWS-2 are shown in Table 7. The values of p∗

1 and
p∗
2 are defined as in the 3 point bending crash case 1.

The performance of HCATWS-1 and HCATWS-2 can be
found in Figs. 18 and 19. HCATWS-1 stopped because the
maximum number of evaluations is reached. HCATWS-2
stopped because p∗

2 is higher than a predefined value 10. As
shown in Table 6, the best design obtained by HCATWS-1
obtained at iteration 59 with a scaled mass of 0.611 while
the best design obtained by HCATWS-2 has a scaled mass
of 0.590 (iteration 34). This shows again that when the num-
ber of design variables is quite large, the new idea for the
outer loop has a higher potential to lead to a lighter design.
The displacement responses of the best designs obtained by
both methods are just within the boundary. This reflects the
idea that HCATWS tries to minimize the mass by pushing
the displacement response to be just within the boundary.

As can be seen in Fig. 18, although the number of
design variables has increased a lot compared to the axial
crash case, the number of evaluations required by the pro-
posed method (HCATWS-2) is not increased significantly.
This advantage is beneficial for automotive crashworthiness
design where the simulation cost is high.

The thicknesses distribution for the optimized results
obtained from HCATWS-1 and HCATWS-2 can be found in
Figs. 20 and 21. The mass tends to be distributed to the part
where the pole impacts the beam. It makes sense, because
this part contributes strongly to energy absorption and pre-
vents the beam from deforming too much in y direction. The
mass also tends to be increased around the corner, while
this part prevents local buckling (as indicated in Fig. 22).
The topology change history for HCATWS-2 is shown in
Fig. 23). In HCATWS-2 (Fig. 19), the first feasible design
occurs in iteration 3 with its SEA (1.40 J/g). SEA is then
maximized with the minimization of mass and final feasible
design’s SEA is 1.68 J/g.

Fig. 20 Optimized topology with HCATWS-1 for 3P crash case 2
(outer walls not shown)

Fig. 21 Optimized topology with HCATWS-2 for 3P crash case 2
(outer walls not shown)

4 Manufacturing possibility

In the past, the difficulty in interpreting the optimized
component obtained by topology optimization prevents its
usage in industrial applications. However, the development
of Additive Manufacturing (AM) in recent years fills the
gap between topology optimization and application (Zegard
and Paulino 2016). Additive Manufacturing is defined by
a range of technologies that are capable of translating vir-
tual solid model data into physical models in a quick and
easy process (Gibson et al. 2014). These virtual solid model
data are often generated by 3D computer aided design. AM
machines use a layer-based approach to manufacture these
3D models and the various types of AM machines lie in
what material they use, how the layers are created and how
these layers are bound together (Gibson et al. 2014).

However, the optimized results from traditional element-
based topology optimization might still have some difficul-
ties related to manufacturing. For example, in Zegard and
Paulino (2016), unnatural thinning at the ends of its opti-
mized structure has to be avoided. They utilized a cubic
weighting functions of the filter matrix with weight coeffi-
cients to solve this problem and concluded that the resultant
structure is more possible for AM. Therefore, some special
techniques have to be used to make the optimized design
more manufacturable for AM. By contrast, the optimized
topology from HCATWS can be more easily manufactured
by AM.

Fig. 22 Deformation shape of the optimized result with HCATWS-2
for 3P crash case 2 (outer walls not shown)
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Fig. 23 Topology evolution
with HCATWS-2 for 3P crash
case 2 (outer walls not shown)

5 Conclusion

An improved HCA for thin-walled structure is proposed
in this paper. This method tries to homogenize the field
variable and minimizes the mass at the same time. The
efficiency of the algorithm is compared with a standard
approach (LS-OPT) for axial crash case, where similar
results are obtained by the new method with a significantly
smaller number of FEA evaluations. The bi-section search
within limited length outperforms first approach based on
HCA for thin-walled structures (Duddeck et al. 2016) such
that it has higher possibility to find a lighter design. The 3P
bending crash case shows that even with a quite large num-
ber of design variables, the number of FEA evaluations for
the convergence of the proposed method is not increased
significantly. As discussed above, this method requires no
gradient information for updating and it improves the struc-
ture fast even with large number of design variables. All
these advantages are beneficial for automotive crashworthi-
ness design.
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