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Abstract The paper is concerned with the sensitivity anal-
ysis of structural responses in context of linear and non-
linear stability phenomena like buckling and snapping.
The structural analysis covering these stability phenomena
is summarised. Design sensitivity information for a solid
shell finite element is derived. The mixed formulation is
based on the Hu-Washizu variational functional. Geometri-
cal non-linearities are taken into account with linear elastic
material behaviour. Sensitivities are derived analytically
for responses of linear and non-linear buckling analysis
with discrete finite element matrices. Numerical examples
demonstrate the shape optimisation maximising the smallest
eigenvalue of the linear buckling analysis and the directly
computed critical load scales at bifurcation and limit points
of non-linear buckling analysis, respectively. Analytically
derived gradients are verified using the finite difference
approach.

Keywords Sensitivity analysis · Solid shell · Structural
stability · Buckling and snapping · Eigenvalue buckling ·
Direct computation of critical points

1 Introduction

The need for efficient structures making use of modern
materials with high specific stiffness and strength leading
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to filigree structures makes structural optimisation a popu-
lar tool. The vulnerability to stability phenomena and the
sensitivity to imperfections increases with the slenderness
of structures. Thus, Thompson (1972) called structural opti-
misation ’a generator of structural instability’. It might be
desirable to include the stability behaviour in the optimi-
sation problem. Two main tasks arise, (i) stability analysis
to cover the stability behaviour in the structural analysis,
(ii) the sensitivity analysis of appropriate quantities to pro-
vide the basis for efficient gradient based mathematical
optimisation schemes.

The structural analysis covering stability behaviour like
buckling and snapping can be categorised in linear and non-
linear buckling analysis, cf. Fig. 1, where references to cor-
responding sections are given. The linear buckling analysis
(LBA), also called eigenvalue buckling analysis, includes
the estimation of critical load levels based on eigenvalue
problems. Here, the eigenvalue gives information about
the critical load scale. The eigenvector gives information
about the buckling mode shape. Different eigenvalue prob-
lems can be set up by using information of one or two
states of the load-displacement diagram, see the standard
textbooks of Bathe (1996) and Wriggers (2008) for an
overview. The non-linear buckling analysis (NBA) includes
the full non-linear computation of the load-displacement
diagram. The development of continuation or path-follow-
ing methods enables the computation of load-displacement
curves far beyond critical points. Limitations of load or
displacement control methods are removed by simultane-
ous iteration on the load and displacement variables. So
called arc-length methods (Wempner 1971; Riks 1972;
1979) are very common in this context. They constrain the
arc-length within equilibrium iterations. Several improve-
ments including spherical, cylindrical, elliptical, and lin-
earised versions of arc-length control have been developed
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Fig. 1 Stability and sensitivity
analysis

(Crisfield 1981; Ramm 1981; Schweizerhof and Wriggers
1986; Hellweg and Crisfield 1998). Alternatively work con-
trol method (Powell and Simons 1981; Bathe and Dvorkin
1983), generalised displacement control method (Yang and
Shieh 1990; Leon et al. 2014) or orthogonal residual pro-
cedure (Krenk 1995) have been proposed. A brief review
of non-linear solution techniques is given by Ritto-Correa
(2008) and Leon et al. (2011). Collateral measures can
detect the appearance of singular points within the contin-
uation methods. Different strategies for the computation of
singular points have been developed (Wriggers and Simo
1990; Fujii and Ramm 1997; Fujii et al. 2001). A direct
computation scheme in the framework of finite element
method was presented by Wriggers et al. (1988). The equi-
librium condition is extended with a constraint equation that
characterises the critical point. The consistent linearisation
leads to a Newton-type method that directly converges to the
critical point. A brief overview of the mentioned procedures
is given by Wagner (1991).

The optimisation is either based on the eigenvalue prob-
lem of the LBA or on the critical load scale determined
within the NBA, cf. Fig. 1, where references to correspond-
ing sections are given.

Design sensitivity analysis (DSA) provides gradient
information for mathematical optimisation. The total deriva-
tives of all objectives and constraints with respect to all
design variables are determined. Approaches to DSA are

overall finite differences, analytical and semi-analytical
computation, see review articles by Tortorelli and Micha-
leris (1994) and van Keulen et al. (2005) for an overview.
The analytical DSA can be derived on a discrete or a vari-
ational basis. In the discrete approach, governing equations
are discretised and subsequently differentiated. Within the
variational approach, sensitivity information is derived on
the continuous level and discretised afterwards. Here, the
material derivative approach (Haug et al. 1986; Arora 1993)
and the domain parametrisation approach (Haber 1987; Tor-
torelli and Zixian 1993) are well known in the literature.
Our alternative approach is introduced by Barthold (2002),
where continuum mechanics is decomposed into physical
and geometrical parts. The subsequent variations can be
derived easily (Barthold et al. 2016).

Optimisation based on eigenvalue buckling analysis is
performed in many publications e.g. in shape (Khot et al.
1976; Khot 1983; Khot and Kamat 1985; Gu et al. 2000),
topology (Pedersen 2000; Achtziger and Kočvara 2008;
Lund 2009; Gao and Ma 2015) and material (Choi et al.
1982; Lindgaard et al. 2010; Lindgaard and Lund 2010)
optimisation. Weight minimisation with stability constraint
based on an eigenvalue problem and optimality criteria is
performed by (Khot et al. 1976) and (Khot 1983) for truss
structures. Later stability constraints have been regarded
based on non-linearly determined critical loads by Khot
and Kamat (1985). An overview on sensitivity analysis for
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eigenvalues especially for multiple eigenvalues is given by
Seyranian et al. (1994). Detailed computational procedures
for direct and adjoint approach to DSA regarding eigen-
value buckling are presented by Gu et al. (2000) for shape
optimisation.

The sensitivities for limit points from the non-linear
load-displacement diagram were derived by Wu and Arora
(1988). A modification applicable to bifurcation points is
presented by Noguchi and Hisada (1993). Design sensitivity
analysis for non-linearly determined arbitrary critical points
points (including limit and bifurcation points) is presented
by Reitinger et al. (1994a) and Reitinger et al. (1994b).
This gradient information are applied to topology optimisa-
tion by Kemmler et al. (2005). Handling bifurcation points
is in many cases more difficult. Thus, strategies have been
applied to try to cause a transition of bifurcation point buck-
ling to limit point buckling like it is presented for shell
structures by Kegl et al. (2008). Due to the singularity of the
tangent stiffness matrix in singular points, different inter-
polation schemes have been developed (Ohsaki and Uetani
1996; Kwon et al. 1999) to avoid the evaluation in the crit-
ical state. A survey on sensitivities of non-linear critical
states is given by Ohsaki (2005).

In many publications semi-analytical gradients are used
(Haftka 1993; Lund and Olhoff 1994; Hu 1994; Reitinger
et al. 1994b; de Boer and van Keulen 2000; Özakça et al.
2003). Analytical gradients have been computed by Mateus
et al. (1997). Parente and Vaz (2003) applied analytical
approach to isoparametric displacement based finite ele-
ments. The variational approach to DSA was used for
the critical load factor estimated by an eigenvalue prob-
lem for linear structural systems by Haug et al. (1986)
and Haug and Rousselet (1980) and for non-linear struc-
tural systems by (Park and Choi 1990). Repeated eigen-
values were treated by (Choi et al. 1982). Kirikov and
Altus (2011) derived analytical gradients by functional
differentiation of the governing equations for beams and
plates. Choi (2007) presented a variational derivation of
the gradients based on the continuum formulation of sta-
bility for the geometrically linear case. However, in this
recent paper analytical gradients are derived for the discrete
solid shell finite element formulation. To the best of the
authors knowledge these analytical sensitivities for mixed
solid shell finite elements have not been presented in the
literature.

Additionally, the sensitivity to imperfections of the struc-
tural behaviour is of major interest for design purposes.
Imperfections are unavoidable differences between the real
physical structure and the analytical model. These dis-
crepancies can be geometrical, load, material or boundary
imperfections. Geometrical imperfections, which are devi-
ations of the perfect shape, can be realistic or worst case
imperfections. Worst case imperfections minimising the

critical load level can be found by solving an inverse prob-
lem using stability criteria (Deml and Wunderlich 1997;
El Damatty and Nassef 2001; Kristanič and Korelc 2008).
Another approach was presented by Gerzen and Barthold
(2013). The influence of design changes on the equilibrium
is represented by the pseudo load matrix for shape varia-
tions. This overhead of sensitivity information is analysed
by a singular value decomposition to detect design changes
with major influence on equilibrium.

Imperfections can be regarded in the optimisation prob-
lem. The most simple way is the optimisation of imperfect
structures with initial imperfections, see Reitinger (1994)
and Kemmler (2004). More costly is to include imper-
fection parameters in the optimisation model (Mróz and
Piekarski 1998; Ohsaki et al. 1998). A recurrence optimisa-
tion is presented by Lindgaard et al. (2010). An eigenvalue
maximisation finding the optimal fibre angle distribution
of laminated composites and a minimisation finding the
worst imperfections are performed alternating to achieve a
structure insensitive to imperfections. A simultaneous anal-
ysis and design procedure is presented by Ohsaki (2002).
Elishakoff and Ohsaki (2010) give an overview on hybrid
optimisation.

Of special interest for stability phenomena are thin-
walled shell structures. Many finite element formulations
have been developed due to the need for robust and efficient
analysis tools. An overview about shell finite element for-
mulations, which are popular due to efficiency and accuracy,
is given by Bischoff et al. (2004). The underlying element
formulation of this paper is a non-linear solid shell. This
robust mixed finite element was presented by Klinkel et al.
(2006) and Klinkel and Wagner (2008). Its design sensitivity
analysis, providing the pseudo load and sensitivity operators
for shape variations, was derived by Gerzen et al. (2013).

The outline of this paper is as follows. In Section 2 the
element formulation is presented in a compact form. Details
are presented in Appendix A. The eigenvalue problem of
the LBA and the direct computation scheme of the NBA
is compiled in Section 3. Specifics for solid shells are pre-
sented in Section 4. A static condensation to obtain a pure
displacement problem is included. The theoretical sensitiv-
ity information for single eigenvalues of LBA as well as for
single limit and bifurcation points of NBA with respect to
shape variations are summarised in Section 5. All quantities
of the sensitivity analysis are derived in a discrete analytical
way for the underlying solid shell finite element formulation
in Section 6. Multiple eigenvalues and critical points are not
considered. The smallest eigenvalue of the LBA and criti-
cal load scales of NBA are respectively used as objective for
shape optimisation under volume constraint. Imperfections
are out of the scope of this paper. The investigations are
restricted to static and quasi-static processes with conserva-
tive loading. Only linear elastic materials of St. Venant-type
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are employed. In Section 7 notes on the computational effort
are given. Section 8 shows illustrative numerical examples,
and Section 9 concludes the paper.

2 Structural analysis for solid shells

The solid shell finite element formulation which was pre-
sented by Klinkel et al. (2006) and Klinkel and Wagner
(2008) is adopted. A low order isoparametric eight noded
quadrilateral with trilinear shape functions is employed.
Static condensation will be performed to obtain pure dis-
placement based problems. Concepts of assumed natural
strains (ANS) and enhanced assumed strains (EAS) are
employed to treat different locking effects. The element has
24 displacement, 25 internal strain and 18 internal stress
degrees of freeom, see literature above for more details.
In these publications quantities for the structural analysis
by means of the physical residual and the tangent stiffness
operator have been provided. The notation was adjusted for
design sensitivity analysis by Gerzen et al. (2013). Here,
the sensitivity relations, by means of the material residual,
pseudo load operator and sensitivity operator, have been
derived for shape variations on a variational basis.

2.1 Variational relations

The solid shell formulation is based on the Hu-Washizu
variational principle. The three-field functional depends on
the state v and on the design X

Π(v, X) =
∫

ΩR

(
WR(Ē) + Ŝ : (

E − Ē
))

dΩ

−
∫

ΩR

u · b dΩ −
∫

ΓN

u · t dΓ. (1)

The generalised state function v = (u, Ŝ, Ē) is used to
reduce paperwork. It contains the displacement field u, the
assumed stress field Ŝ and the assumed strain field Ē. The
quantity E is the Green-Lagrangian strain measure derived
from the kinematics. b and t are body and surface loads,
respectively. The first variation with respect to the state v

provides the weak form of equilibrium or physical residual

δvΠ(v, X)(δv) = δuΠ(v, X)(δu) + δ
Ŝ
Π(v, X)(δŜ)

+δĒΠ(v, X)(δĒ),

R(v, X; δv) = Ru(v, X; δu) + R
Ŝ
(v, X; δŜ)

+RĒ(v, X; δĒ). (2)

It can be written as a system of equations

Ru(v, X; δu) =
∫

ΩR

(
δE : Ŝ − δu · b

)
dΩ

−
∫

ΓN

δu · t dΓ = 0,

R
Ŝ
(v, X; δŜ) =

∫

ΩR

δŜ : (
E − Ē

)
dΩ = 0,

RĒ(v, X; δĒ) =
∫

ΩR

δĒ :
(

∂WR

∂Ē
− Ŝ

)
dΩ = 0. (3)

The second variation of the energy functional with respect
to the state v or the linearisation of the weak form of
equilibrium yields the tangential stiffness

k(v, X; δv, Δv)

= ku,u(v, X; δu, Δu) + k
u,Ŝ

(v, X; δu, ΔŜ)

+k
Ŝ,u

(v, X; δŜ, Δu) + kĒ,Ē(v, X; δĒ, ΔĒ)

+k
Ē,Ŝ

(v, X; δĒ, ΔŜ) + k
Ŝ,Ē

(v, X; δŜ, ΔĒ). (4)

Relation (4) contains the following parts

ku,u =
∫

ΩR

(
ΔδE : Ŝ

)
dΩ,

k
u,Ŝ

=
∫

ΩR

(
δE : ΔŜ

)
dΩ,

k
Ŝ,u

=
∫

ΩR

(
δŜ : ΔE

)
dΩ,

kĒ,Ē =
∫

ΩR

(
δĒ : ∂2WR

∂Ē∂Ē
: ΔĒ

)
dΩ,

k
Ē,Ŝ

=
∫

ΩR

(
−δĒ : ΔŜ

)
dΩ,

k
Ŝ,Ē

=
∫

ΩR

(
−δŜ : ΔĒ

)
dΩ. (5)

2.2 Discretised relations

The notation of discretised physical residual and tangent
stiffness has been shown by Gerzen et al. (2013) and only
the final results are repeated briefly. Some more details can
be found in Appendix A. Note that the assumed strain field
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is additively decomposed in two parts Ē = Ê + Ẽ. The
physical residual in discrete form reads

Rh
u = nel

A
e=1

(δûe(f
int
e − f ext

e )),

Rh

Ŝ
= nel

A
e=1

(δβebe),

Rh

Ē
= nel

A
e=1

(δα1
ea

1
e + δα2

ea
2
e). (6)

Here,
nel
A

e=1
denotes the assembly over all elements e =

1, 2, ..., nel. The virtual displacements, stresses and strains
on element level are δûe, δβe, δαe = [δα1

e, δα
2
e]T , respec-

tively. The global vector containing all degrees of freedom
is v̂ = [û,α, β]T . Note, that the enhanced assumed strain
field Ẽ, α2 is presumed to be orthogonal to the independent
stress field (Klinkel and Wagner 2008) and corresponding
quantities vanish in the finite element formulation. Thus, the
tangent stiffness matrix in discrete form contains

kh
u,u = nel

A
e=1

(δûeKeΔûe),

kh

u,Ŝ
= nel

A
e=1

(δûeL
T
e Δβe),

kh

Ŝ,u
= nel

A
e=1

(δβeLeΔûe),

kh

Ē,Ŝ
= kh

Ê,Ŝ
= nel

A
e=1

(−δα1
eC

T
e Δβe),

kh

Ŝ,Ē
= kh

Ŝ,Ê
= nel

A
e=1

(−δβeCeΔα1
e),

kh

Ē,Ē
= kh

Ê,Ê
+ kh

Ê,Ẽ
+ kh

Ẽ,Ê
+ kh

Ẽ,Ẽ
(7)

= nel
A

e=1
(δα1

eA
11
e Δα1

e + δα1
e(A

21
e )T Δα2

e

+δα2
eA

21
e Δα1

e + δα2
eA

22
e Δα2

e).

The incremental displacements, stresses and strains are
Δûe, Δβe, Δαe = [Δα1

e, Δα2
e]T , respectively.

3 General remarks on analysis

An eigenvalue problem for LBA and a direct computation
scheme for NBA are presented.

3.1 Eigenvalue buckling

Different schemes to set up an eigenvalue problem for
LBA are known (Bathe 1996; Wriggers 2008). Here, the
generalised eigenvalue problem

(
Km + ΛKg

)
ϕ = 0 (8)

is solved. The decomposition of the tangent stiffness matrix

Ku = Km + Kg (9)

is used. The subscript u denotes quantities after static
condensation only including displacement degrees of free-
dom. The stiffness matrix is decomposed into a material
Km and geometric part Kg , respectively. The material part
depends on the initial displacements and strains. A further
split in displacement independent and dependent parts is
avoided. The geometric part depends on the initial stress
state. The overall procedure of the LBA is shown in Algo-
rithm 1. It is possible to evaluate the eigenvalue problem
in arbitrary states λ, û = [û,α, β]T . The choice of the
state can have a significant influence. The closer this state
is located at the critical point, the better fits the estima-
tion with the actual critical behaviour. Investigations by
Lindgaard and Lund (2010) show an example, where LBA
predicts bifurcation point buckling, the actual effect of NBA
is limit point buckling. In this example the overestimation
of the critical load scale is maximised within optimisa-
tion based on LBA. The actual critical load scale is hardly
changed. For states close to singular points determined by
non-linear structural analysis, Lindgaard et al. (2010) call
the eigenvalue buckling analysis non-linear buckling analy-
sis. The discrete quantities for LBA are summarised for the
underlying solid shell formulation in Section 4.1.

=

=

=

3.2 Direct computation of singular points

To determine the actual critical load level within the NBA
a direct computation of critical points is presented. Direct
computation means a Newton-type method which directly
converges towards singular points. Due to the fact, that the
starting point for the iteration procedure is important, it
can be combined with path-following methods and collat-
eral measures indicating the appearance of critical points.
In this paper a cylindrical arc-length procedure is used for
path-following, see survey given by Leon et al. (2011) for
an overview on non-linear solution schemes. If the eigen-
value with smallest magnitude of the eigenvalue problem
(24) becomes non-positive, indicating the loss of positive
definiteness of the tangent stiffness matrix, the direct com-
putation scheme is started. The direct computation scheme
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is based on an extended equation system. The physical
residual

Rv = Rint
v − λF v (10)

is augmented with a constraint equation, that characterises
critical states, an overview is given by Wagner (1991). In
critical points the tangent stiffness matrix loses its posi-
tive definiteness. The smallest eigenvalue Λ̄ of the standard
eigenvalue problem

(
Kv − Λ̄I

)
φ = 0 (11)

becomes zero, which means that there are non-trivial solu-
tions for Kvφ = 0. The pre-multiplication of the transposed
eigenvector yields the scalar valued constraint equation
φT Kvφ = 0, see right hand side of (12). In contrast to the
eigenvector of the eigenvalue buckling analysis ϕ, φ refers
to the uncondensed stiffness matrix and thus it includes
entries corresponding to internal degrees of freedom, φ =
[φû, φα, φβ ]T . The consistent linearisation of the extended
equation system reads

[ ∂Rv

∂ v̂
∂Rv

∂λ

∂
(
φT Kvφ

)
∂ v̂

∂
(
φT Kvφ

)
∂λ

][
Δv̂

Δλ

]
= −

[
Rv

φT Kvφ

]
. (12)

The desired derivatives on the left hand side of (12)
are ∂Rv

∂ v̂
= Kv and ∂Rv

∂λ
= −F v . Additionally, the quan-

tity
∂
(
φT Kvφ

)
∂λ

vanishes for conservative loading. For the last
remaining quantity one can equivalently write

∂
(
φT Kvφ

)
∂ v̂

= φT ∂ (Kv)

∂ v̂
φ = φT ∂ (Kvφ)

∂ v̂
. (13)

The latter part is the directional derivative of the tangen-
tial stiffness in the direction of the vector φ

∂ (Kvφ)

∂ v̂
= d

dε

[
Kv(v̂ + εφ)

]
ε=0 = δKv. (14)

This relation will be introduced on a variational basis and
discretised in Sections 4.3 and 4.4. The extended equation
system can be solved using a block elimination procedure
preserving the symmetry of the system matrices like it was
presented by Chan (1984). The vector φ has to be pro-
vided initially. One possibility is to solve the eigenvalue
problem (11). The choice of φ significantly influences the
iterative solution scheme. Within the iteration procedure it
can be updated by one step of the inverse iteration method.

The overall procedure of the direct computation scheme is
shown in Algorithm 2, where the solid shell specifics are
already included. They are summarised in Section 4.2

4 Stability analysis for solid shells

The split of the tangent stiffness matrix for LBA is intro-
duced additionally to the representations by Klinkel et al.
(2006) and Klinkel and Wagner (2008). The linearisation of
the extended equation system for NBA is derived for the
underlying solid shell formulation.

4.1 Eigenvalue buckling

The generalised eigenvalue problem (8) is obtained by

Km = nel
A

e=1
Kme, Kg = nel

A
e=1

Kge , ϕ = nel
A

e=1
ϕe. (15)

The eigenvalue problem is constructed from the decomposi-
tion of tangent stiffness matrix after static condensation and
only includes entries referring to displacement degrees of
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freedom. The material and geometric parts of the stiffness
on element level are

Kme = LT
e C−T

e AeC
−1
e Le,

Kge = Ke, (16)

respectively. The eigenvalue problem can be constructed
with these element matrices known from (120) and the
abbreviation Ae = A11

e − A12
e (A22

e )−1A21
e .

4.2 Direct computation of singular points

The global quantities in uncondensed form of (12) are

Kv = nel
A

e=1
Kve , Rv = nel

A
e=1

(
Rint

ve
− λF ve

)
,

δKv = nel
A

e=1
δKve , φ = nel

A
e=1

φe.

(17)

Here, the uncondensed tangent stiffness matrix and the
physical residual Rve = (Rint

ve
− λF ve ) on element level are

Kve =

⎡
⎢⎢⎣

Ke 0 0 LT
e

0 A11
e A12

e −CT
e

0 A21
e A22

e 0
Le −Ce 0 0

⎤
⎥⎥⎦ , Rve =

⎡
⎢⎢⎣

f e

a1
e

a2
e

be

⎤
⎥⎥⎦ (18)

with f e = f int
e − λf ext

e , respectively. Element vectors are
known from (121). The variation of the tangent stiffness
matrix and the eigenvector on element level are

δKve =

⎡
⎢⎢⎣

δKe 0 0 δLT
e

0 δA11
e δA12

e 0
0 δA21

e δA22
e 0

δLe 0 0 0

⎤
⎥⎥⎦ , φe =

⎡
⎢⎢⎣

φûe

φα1
e

φα2
e

φβe

⎤
⎥⎥⎦ , (19)

respectively. Element matrices are known from (31). The
static condensation of (12) eliminates the internal degrees of
freedom and provides[

Ku −F u

KT
φ 0

] [
Δû

Δλ

]
= −

[
Ru

Ru

]
. (20)

The assembly over all elements yields

Δû = nel
A

e=1
Δûe, Rint

u = nel
A

e=1
f int

ue
,

F u = nel
A

e=1
f ext

e , KT
φ = nel

A
e=1

KT
φe

,

Ru = nel
A

e=1
Rue (21)

with the quantities on element level

f int
ue

= f int
e + LT

e C−T
e AeC

−1
e be + LT

e C−T
e ae.

KT
φe

= φT
ûe

δKe + φT
βe

δLe + φT
ûe

δLT
e C−T

e AeC
−1
e Le,

Rue = φT
ve

Kveφve
+ φT

ûe
δLT

e C−T
e AeC

−1
e be

+ φT
ûe

δLT
e C−T

e ae. (22)

This expression is restricted to St.Venant-type elasticity with
vanishing δA

ij
e , i, j = 1, 2. A used abbreviation is ae =

a1
e −A12

e (A22
e )−1a2

e . The increments of mixed variables can
be computed with

Δα1
e = C−1

e (LeΔûe + be),

Δα2
e = −(A22

e )−1(a2
e + A21

e Δα1
e),

Δβe = C−T
e (AeΔα1

e + ae). (23)

To provide an initial vector φ the eigenvalue problem (11)
can be solved. A previous static condensation yields the pure
displacement problem(
Ku − Λ̄I

)
φû = 0, (24)

which is equivalent to the uncondensed eigenvalue problem
(11) in singular points, but only an approximation if Λ̄ �= 0.
The remaining eigenvector contributions corresponding to
internal degrees of freedom can be computed with

φα1
e

= C−1
e Leφûe

,

φα2
e

= −(A22
e )−1A21

e φα1
e
,

φβe
= C−T

e Aeφα1
e

(25)

on element level. The extended equation system (20) can be
solved using a block elimination scheme as

ΔûF = K−1
u F u, Δλ = −Ru + KT

φ ΔûR

KT
φ ΔûF

,

ΔûR = −K−1
u Ru, Δû = ΔλΔûF + ΔûR. (26)

The increments of internal degrees of freedom are given by
(23). The eigenvector can be updated by one step of the
inverse iteration scheme

φûk+1
= K−1

u φûk
. (27)

The subscript k denotes the current iteration step and
is introduced in the summarised procedure in Algorithm
2. The eigenvector contribution corresponding to internal
degrees of freedom is given by (25). With this direct compu-
tation scheme it is possible to accurately compute singular
points of the load-displacement diagram. The sensitivities
for limit and bifurcation points are presented in Section 5.3.

4.3 Variational relations

The third variation of the energy functional with respect to
the state v or directional derivative of the tangential stiffness
reads

t (v, X; δv, Δv, Δ̂v) = tu,u(v, X; δu, Δu, Δ̂Ŝ)

+t
u,Ŝ

(v, X; δu, ΔŜ, Δ̂u)

+t
Ŝ,u

(v, X; δŜ, Δu, Δ̂u)

+tĒ,Ē(v, X; δĒ, ΔĒ, Δ̂Ē). (28)
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Here, the quantities

tu,u =
∫

ΩR

(
ΔδE : Δ̂Ŝ

)
dΩ,

t
u,Ŝ

=
∫

ΩR

(
Δ̂δE : ΔŜ

)
dΩ,

t
Ŝ,u

=
∫

ΩR

(
δŜ : Δ̂ΔE

)
dΩ,

tĒ,Ē =
∫

ΩR

(
δĒ :

(
∂3WR

∂Ē∂Ē∂Ē
: Δ̂Ē

)
: ΔĒ

)
dΩ (29)

are needed for the direct computation as a directional deriva-
tive in the direction of prescribed values Δ̂v, which contains
the eigenvector φ in discrete form.

4.4 Discretised relations

For the directional derivative of the tangent stiffness matrix
in the direction of the discrete values containing the eigen-
vector Δ̂v̂ = [Δ̂û, Δ̂α, Δ̂β]T = φ, following terms are
needed

thu,u = nel
A

e=1
(δûeδKeΔûe),

th
u,Ŝ

= nel
A

e=1
(δûeδL

T
e Δβe),

th
Ŝ,u

= nel
A

e=1
(δβeδLeΔûe),

th
Ē,Ē

= th
Ê,Ê

+ th
Ê,Ẽ

+ th
Ẽ,Ê

+ th
Ẽ,Ẽ

= nel
A

e=1
(δα1

eδA
11
e Δα1

e + δα1
eδ(A

21
e )T Δα2

e

+δα2
eδA

21
e Δα1

e + δα2
eδA

22
e Δα2

e). (30)

The element matrices are

δKe =
∫

ΩRe

H dΩe, δLe =
∫

ΩRe

NT
S P dΩe,

δA11
e =

∫

ΩRe

NT
EŪ

h
NE dΩe,

δA21
e =

∫

ΩRe

MT
EŪ

h
NE dΩe,

δA22
e =

∫

ΩRe

MT
EŪ

h
ME dΩe. (31)

NS, NE, ME are known, see Gerzen et al. (2013)
or Appendix A. The third derivative of the strain
energy function scalar multiplied with discrete values

Δ̂Ē
h = NEΔ̂α1

e + MEΔ̂α2
e

Ū
h = ∂3WRe

∂Ē
h
∂Ē

h
∂Ē

h
· Δ̂Ē

h
(32)

vanishes for materials of St. Venant-type. Finally, only the
matrices H and P are missing. The matrix

H =
⎡
⎢⎣

H 11 · · · H 18
...

. . .
...

H 81 · · · H 88

⎤
⎥⎦ , ∈ R

24×24 (33)

is needed to approximate

(ΔδE : Ŝ)h = δûT
e HΔûe. (34)

The submatrix H IJ = diag[HIJ , HIJ , HIJ ] ∈ R
3×3 for

the node combination I , J is defined by the scalar

HIJ =
(
Δ̂Ŝ

h
)T

BIJ , with BIJ = T −T
S B l

IJ (35)

and

B l
IJ =

[
Bl

IJ1
Bl

IJ2
Bl

IJ3
Bl

IJ4
Bl

IJ5
Bl

IJ6

]T

(36)

containing

Bl
IJ1

= NI,1NJ,1,

Bl
IJ2

= NI,2NJ,2,

Bl
IJ3

=
iv∑

L=i

1

4
(1 + ξ1

Lξ1)(1 + ξ2
Lξ2)NL

I,3N
L
J,3,

Bl
IJ4

= NI,1NJ,2 + NI,2NJ,1,

Bl
IJ5

= 1

2
(1 − ξ2)(NB

I,1N
B
J,3 + NB

I,3N
B
J,1)

+1

2
(1 + ξ2)(ND

I,1N
D
J,3 + ND

I,3N
C
J,1),

Bl
IJ6

= 1

2
(1 − ξ1)(NA

I,2N
A
J,3 + NA

I,3N
A
J,2)

+1

2
(1 + ξ1)(NC

I,2N
C
J,3 + NC

I,3N
C
J,2). (37)

The term Δ̂Ŝ
h = NSΔ̂βe includes the discrete values

of assumed stresses in which the directional derivative is
performed. Voigt notation yields Δ̂Ŝ

h = [Δ̂Ŝ11, Δ̂Ŝ22,

Δ̂Ŝ33, Δ̂Ŝ12, Δ̂Ŝ13, Δ̂Ŝ23]T . The matrix P is needed to
approximate

(
δŜ : Δ̂ΔE

)h = δβT
e NT

S PΔûe. (38)
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It is not the pseudo load matrix here and reads

P = [P 1, ..., P 8] ∈ R
6×24, with

P I =
8∑

J=1

BIJ (Δ̂û
J
e )T ∈ R

6×3 (39)

and is composed of Δ̂ûe and BIJ . The displacement vec-
tor in which the directional derivative is performed Δ̂ûe =
[Δ̂û

1
e, ..., Δ̂û

8
e]T ∈ R

24 is build by the subvectors Δ̂û
J
e =

[Δ̂ûJx, Δ̂ûJy, Δ̂ûJz]T ∈ R
3 containing the x-, y- and z-

components at nodes J . BIJ is known from (35). Due to
symmetry the approximation of Δ̂δE : ΔŜ reads
(
Δ̂δE : ΔŜ

)h = δûeP
T NSΔβT

e . (40)

Here, all element quantities for eigenvalue buckling and
direct computation are provided.

5 Sensitivity analysis for stability quantities

To include the estimated critical load scale of the LBA
(Seyranian et al. 1994) or the actual critical load scale of the
NBA (Wu and Arora 1988; Reitinger 1994; Reitinger et al.
1994b) into a mathematical optimisation framework, gradi-
ent information for these quantities is summarised in this
section.

5.1 Introduction to sensitivity analysis

The discrete finite element problem for non-linear solid
shell and its linearisation read

Rv(v̂(s), s) = 0 and KvΔv̂ = −Rv, (41)

respectively. Sensitivity analysis predicts state variations δv

caused by design variations δs. The total variation of the
physical residual reads

δRv = δvRv + δsRv = Kvδv + P vδs, (42)

where P v is the pseudo load matrix. For solid shells these
matrices include parts corresponding to displacement and
internal strain and stress degrees of freedom denoted by the
subscript v. They are derived by Gerzen et al. (2013) for
shape variations, see Appendix B. These relations can be
used to determine the effect of design modifications on an
arbitrary objective

dJ =
[
∂J

∂s
− ∂J

∂v
K−1

v P v

]
ds =

[
∂J

∂s
+ ∂J

∂v
Sv

]
ds. (43)

The sensitivity matrix Sv is used to determine total deriva-
tives of the eigenvalue of LBA (46) including (47) and the
critical load scale of NBA (55), which are derived in the
following sections.

5.2 Sensitivity analysis for eigenvalue buckling analysis

The sensitivity information of the eigenvalue Λ by means of
total derivatives with respect to an arbitrary design variable
s is needed. Applying the product rule on the eigenvalue
problem (8) yields(

dKm

ds
+ dΛ

ds
Kg + Λ

dKg

ds

)
ϕ

+ (
Km + ΛKg

) dϕ

ds
= 0. (44)

Pre-multiplication by the transposed eigenvector ϕT yields

ϕT

(
dKm

ds
+ dΛ

ds
Kg + Λ

dKg

ds

)
ϕ

+ ϕT
(
Km + ΛKg

)
︸ ︷︷ ︸

0

dϕ

ds
= 0, (45)

where the under-braced quantity vanishes due to symme-
try of the tangent stiffness and its parts, cf. (8). Reordering
provides the total derivative of the eigenvalue

dΛ

ds
= −

ϕT

(
dKm

ds
+ Λ

dKg

ds

)
ϕ

ϕT Kgϕ
. (46)

Central quantities of interest are the total derivatives of
the material and geometric stiffness

dKm

ds
= ∂Km

∂s
+ ∂Km

∂û

dû

ds
+ ∂Km

∂α

dα

ds
,

dKg

ds
= ∂Kg

∂s
+ ∂Kg

∂β

dβ

ds
. (47)

They are presented with respect to the arbitrary design vari-
able s, but needed as derivatives with respect to the vector
of FE-nodal coordinates X̂. The material part of the tan-
gent stiffness matrix depends on the displacement state û

and on the design X̂. For the restriction on materials of St.
Venant-type the dependency of the internal strain degrees
of freedom α vanishes. The geometric part of the tangent
stiffness matrix depends on the initial stress β and on the
design X̂. The partial derivatives of the discrete matrices
Km and Kg from (47) are derived analytically in Section 6.
The derivative of the state v̂, including û and β, with respect
to design X̂ can be identified as sensitivity matrix, which
was derived by Gerzen et al. (2013), cf. Appendix B.

5.3 Sensitivity analysis for non-linear buckling analysis

The critical point (v̂cr , λcr ) which can be computed with the
direct computation scheme from Section 3.2 is characterised
by

Rv(v̂cr (X̂), λcr (X̂), X̂) = 0,

Kv(v̂cr (X̂), λcr (X̂), X̂)φ(X̂) = 0. (48)
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The derivative with respect to an arbitrary design variable s

yields

Kv

d v̂cr

ds
− F v

dλcr

ds
+ ∂Rv

∂s
= 0,

(
∂Kv

∂ v̂

d v̂cr

ds
+ ∂Kv

∂s

)
φ + Kv

∂φ

∂s
= 0, (49)

for conservative loading with ∂Kv

∂λcr
= 0. Pre-multiplying the

eigenvector yields

φT Kv

d v̂cr

ds
− φT F v

dλcr

ds
+ φT ∂Rv

∂s
= 0,

φT

(
∂Kv

∂ v̂

d v̂cr

ds
+ ∂Kv

∂s

)
φ + φT Kv

∂φ

∂s
= 0. (50)

The well-known distinction of limit and bifurcation points

φT F v

{ = 0 → bifurcation point
�= 0 → limit point

(51)

enables a case differentiation. For limit points reordering of
(50)1 yields

dλcr

ds
= φT ∂Rv

∂s

φT F v

, (52)

due to the fact that φT Kv vanishes in critical points. For
arbitrary critical (bifurcation and limit) points reordering
(49)1 yields

d v̂cr

ds
= K−1

v F v

dλcr

ds
− K−1

v

∂Rv

∂s
. (53)

Plugging this condition into (50)2 and reordering yields

dλcr

ds
=

φT
(

∂Kv

∂ v̂
K−1

v
∂Rv

∂s
− ∂Kv

∂s

)
φ

φT ∂Kv

∂ v̂
K−1

v F vφ
. (54)

Like presented by Reitinger (1994), rearranging (54) yields

dλcr

ds
=

φT
(
δKT

v K−1
v

∂Rv

∂s
− ∂Kv

∂s
φ
)

φT δKT
v K−1

v F v

, (55)

where δKv(Δ̂v = φ) is the directional derivative of the tan-
gent stiffness matrix in the direction of the eigenvector φ.
A known quantity is δKv , see Sections 4.3 and 4.4. Cen-
tral quantity of interest is the derivative of the uncondensed
tangent stiffness matrix Kv with respect to the design vari-
able s. The sensitivity matrix Sv = −K−1

v
∂Rv

∂s
for direct

approach to DSA is summarised in Appendix B. Missing
quantities for analytical derivatives are shown in Section 6.

6 Sensitivity equations for solid shells

Gradient information for LBA and NBA are derived within
this section for the solid shell finite element formulation.
Quantities to be derived are the partial derivatives of the tan-
gent stiffness matrix with respect to state and design. The

derivatives of the condensed material and geometric stiff-
ness (47) as well as the partial derivative of the uncondensed
stiffness matrix included in (55) are shown explicitly.

6.1 General remarks

To avoid third order tensors the post-multiplication of the
eigenvectors ϕ and φ is considered respectively

∂(Kmϕ)

∂X̂
,

∂(Kmϕ)

∂û
,

∂(Kmϕ)

∂α
,

∂(Kgϕ)

∂X̂
,

∂(Kgϕ)

∂β
,

∂(Kvφ)

∂X̂
, (56)

where the eigenvectors are assumed to be state and design
independent. The matrix vector product of the material
and geometric stiffness with the eigenvectors ϕ and φ is
obtained respectively by the assembly over all elements

Kmϕ =
nel

A
e=1

Kmeϕe, (57)

Kgϕ =
nel

A
e=1

Kgeϕe, (58)

Kvφ =
nel

A
e=1

Kveφe. (59)

To depict the derivatives of material, geometric and uncon-
densed stiffness in an appropriate and compact form avoid-
ing index notation a special product is introduced. For any
z, x, y ∈ N

+, B ∈ R
z×y , c ∈ R

y and d ∈ R
x the mapping

P̄ is defined as

P̄ : Rz×y × R
y × R

x −→ R
z×x

(B, c),d −→ E (60)

with

Eil =
y∑

k=1

∂Bik

∂dl

ck, i = 1, ..., z, l = 1, ..., x. (61)

The special product P introduced by Gerzen et al. (2013)
is generalised. For any z, x, y ∈ N

+, M ∈ R
z×y , T ∈

R
y×x×24 and V ∈ R

x the mapping P is defined as follows

P : Rz×y × R
y×x×24 × R

x −→ R
z×24

(M,T, V ) −→ Q (62)

with

Qkn =
y∑

l=1

x∑
m=1

MklTlmnVm,
k = 1, ..., z,

n = 1, ..., 24.
(63)
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6.2 Shape variations

The partial derivatives with respect to design by means of
the vector of FE nodal co-ordinates X̂ from (56) are derived
in this section.

6.2.1 Shape variations of material stiffness

The derivative of the third quantity of (56) is obtained using
product rule as

∂(Kmϕ)

∂X̂
=

nel

A
e=1

(
P̄(LT

e , β2),X̂e

+α2P̄(Le, ϕe),X̂e

+α1P̄(A11
e , β3),X̂e

−α1P̄(A12
e , β1),X̂e

−α3P̄(A21
e , β3),X̂e

+α3P̄(A22
e , β1),X̂e

−α1P̄(CT
e , β2),X̂e

−α2P̄(Ce, β3),X̂e

)
, (64)

using the abbreviations

β1 = (A22
e )−1A21

e C−1
e Leϕe,

β2 = C−T
e AeC

−1
e Leϕe, α1 = LT

e C−T
e ,

β3 = C−1
e Leϕe, α2 = LT

e C−T
e AeC

−1
e ,

β4 = Leϕe, α3 = LT
e C−T

e A12
e (A22

e )−1. (65)

The first desired quantity reads

P̄(LT
e , β2),X̂e

=
∫

ΩR

(
BT NSβ2

)
D dΩe

+
∫

ΩR

P
(
BT , T0

S, NLβ2

)
dΩe

−
∫

ΩR

P
(
BT

LT −1
S , TS, T −1

S NSβ2

)
dΩe

+
∫

ΩR

(
(BT

L)
,X̂e

T −1
S NSβ2

)
dΩe. (66)

The only unknown part is
(
(BT

L)
,X̂e

T −1
S NSβ2

)
= F ∈ R

24×24, (67)

with

F =
⎡
⎢⎣

F 11 · · · F 18
...

. . .
...

F 81 · · · F 88

⎤
⎥⎦ ∈ R

24×24, (68)

which is build by submatrices

F IJ = diag[FIJ , FIJ , FIJ ], FIJ = βT
2 NT

S BIJ . (69)

Note that F is not the deformation gradient here. The second
quantity of (64) reads

P̄(Le, ϕe),X̂e
=

∫

ΩR

(
NT

S Bϕe

)
D dΩe

+
∫

ΩR

P
(
NT

L, (T0
S)T , Bϕe

)
dΩe

−
∫

ΩR

P
(
NT

S T −T
S , (TS)T, T −T

S BLϕe

)
dΩe

+
∫

ΩR

(
NT

S T −T
S (BLϕe),X̂e

)
dΩe. (70)

Here, the only unknown part is

(BLϕe),X̂e
= [(BL1ϕe),X̂e

, ..., (BL8ϕe),X̂e
] ∈ R

6×24 (71)

containing (BLIϕe),X̂e
∈ R

6×3 with

(BLIϕe),X̂e
= [

e1 e2 e3 e4 e5 e6
]T

(72)

and

e1 = ϕT
e

(
NI,1N

T
,1

)
,

e2 = ϕT
e

(
NI,2N

T
,2

)
,

e3 = ϕT
e

( iv∑
L=i

1

4
(1 + ξ1

Lξ1)(1 + ξ2
Lξ2)NL

I,3(N
L
3 )T

)
,

e4 = ϕT
e

(
NI,1N

T
,2 + NI,2N

T
,1

)
, (73)

e5 = 1

2
ϕT

e

(
(1 − ξ2)(NB

I,1(N
B
3 )T + NB

I,3(N
B
1 )T )

+(1 + ξ2)(ND
I,1(N

D
3 )T + ND

I,3(N
D
1 )T )

)
,

e6 = 1

2
ϕT

e

(
(1 − ξ1)(NA

I,2(N
A
3 )T + NA

I,3(N
A
2 )T )

+(1 + ξ1)(NC
I,2(N

C
3 )T + NC

I,3(N
C
2 )T )

)
.

The quantities three to six of (64) corresponding to virtual
and incremental strains are

P̄(A11
e , β3),X̂e

=
∫

ΩR

(
NT

EC̄
h
NEβ3

)
D dΩe (74)

+
∫

ΩR

P
(
NT

L, (T0
E)T , C̄

h
NEβ3

)
dΩe

+
∫

ΩR

P
(
NT

EC̄
h
, T0

E, NLβ3

)
dΩe,
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P̄(A12
e , β1),X̂e

=
∫

ΩR

(
NT

EC̄
h
MEβ1

)
D dΩe (75)

+
∫

ΩR

P
(
NT

L, (T0
E)T , C̄

h
MEβ1

)
dΩe

+
∫

ΩR

P
(
NT

EC̄
h
, TM, MLβ1

)
dΩe,

P̄(A21
e , β3),X̂e

=
∫

ΩR

(
MT

EC̄
h
NEβ3

)
D dΩe (76)

+
∫

ΩR

P
(
MT

EC̄
h
, T0

E, NLβ3

)
dΩe

+
∫

ΩR

P
(
MT

L, (T0
M)T , C̄

h
NEβ3

)
dΩe,

P̄(A22
e , β1),X̂e

=
∫

ΩR

(
MT

EC̄
h
MEβ1

)
D dΩe (77)

+
∫

ΩR

P
(
MT

L, (TM)T , C̄
h
MEβ1

)
dΩe

+
∫

ΩR

P
(
MT

EC̄
h
, TM, MLβ1

)
dΩe.

All quantities are known here. The last two quantities of (64)
read

P̄(CT
e , β2),X̂e

=
∫

ΩR

(
NT

ENSβ2

)
D dΩe

+
∫

ΩR

P
(
NT

E, T0
S, NLβ2

)
dΩe (78)

+
∫

ΩR

P
(
NT

L, (T0
E)T , NSβ2

)
dΩe

and

P̄(Ce, β3),X̂e
=

∫

ΩR

(
NT

S NEβ3

)
D dΩe

+
∫

ΩR

P
(
NT

L, (T0
S)T , NEβ3

)
dΩe (79)

+
∫

ΩR

P
(
NT

S , T0
E, NLβ3

)
dΩe,

where no new quantities appear.

6.2.2 Shape variations of geometric stiffness

The derivative with respect to design of the geometric
stiffness is given by one quantity which reads

∂(Kgϕ)

∂X̂
=

nel

A
e=1

P̄(Ke, ϕe),X̂e
=

nel

A
e=1

∫

ΩR

a dΩe. (80)

It contains the matrix

a = [a1, ..., a8]T ∈ R
24×24, (81)

which is composed in

aI =
8∑

J=1

ϕJ
e aIJ ∈ R

3×24, with aIJ ∈ R
1×24,

aIJ =
∫

ΩR

((
Ŝ

h
)T

BIJ

)
D dΩ

+
∫

ΩR

P
((

Ŝ
h

L

)T

, (T0
S)T , BIJ

)
dΩe

−
∫

ΩR

P
((

Ŝ
h
)T

T −T
S , (TS)T , BIJ

)
dΩe. (82)

Quantities which are not explicitly mentioned by Gerzen
et al. (2013) are Ŝh

L = NLβe, and ϕe = [ϕ1
e, ..., ϕ

8
e]T ,

containing ϕJ
e = [ϕxJ

e , ϕ
yJ
e , ϕzJ

e ]T , cf. Appendix A and B.

6.2.3 Shape variations of uncondensed stiffness

The derivative with respect to design of the uncondensed
stiffness matrix includes quantities needed for geometric
and material part in a slightly modified way. The desired
derivative reads

∂(Kvϕ)

∂X̂
=

nel

A
e=1

(
P̄(Ke, φûe

)
,X̂e

+P̄(LT
e , φβ e

)
,X̂e

+P̄(Le, φûe),X̂e

+P̄(A11
e , φα

1
e),X̂e

+P̄(A12
e , φα

1
e),X̂e

+P̄(A21
e , φα

1
e),X̂e

+P̄(A22
e , φα

2
e),X̂e

−P̄(CT
e , φβ e

)
,X̂e

−P̄(Ce, φα
1
e),X̂e

)
. (83)

Implementation is straight forward compared to geomet-
ric and material parts, further details are omitted.
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6.3 State variations

The partial derivatives with respect to state by means of
the vectors of FE-nodal displacements û and internal stress
degrees of freedom β from (56) are derived in this section.
The dependency on strain degrees of freedom α vanishes for
materials of St. Venant-type.

6.3.1 State variations of material stiffness

The derivative with respect to the displacement degrees of
freedom of the material stiffness reads

∂(Kmϕ)

∂û
=

nel

A
e=1

(
α2P̄(Le, ϕe),ûe

+ P̄(LT
e , β2),ûe

)
(84)

Here, the first quantity on element level is

P̄(Le, ϕe),ûe
=

∫

ΩR

P
(
NT

S , A, ϕe

)
dΩe. (85)

The third order tensor A ∈ R
6×24×24 is composed of sub

tensors of third order AIJ ∈ R
6×3×3. The symbolic relation

reads

A =
⎡
⎢⎣
A11 . . . A18
...

. . .
...

A81 . . . A88

⎤
⎥⎦ , with AIJ = BIJ ⊗ I . (86)

With the transposed relation A
T
ijk = Ajik , the second

quantity from (84) reads

P̄(LT
e , β2),ûe

=
∫

ΩR

P
(
I , (A)T , NSβ2

)
dΩe. (87)

6.3.2 State variations of geometric stiffness

The derivative with respect to the stress degrees of freedom
of the geometric stiffness reads

∂(Kgϕ)

∂β
=

nel

A
e=1

P̄(Ke, ϕe),βe
=

nel

A
e=1

∫

ΩR

d dΩe. (88)

It contains the matrix

d = [d1, ..., d8]T ∈ R
24×18, (89)

which is composed in

dI =
8∑

J=1

ϕJ
e BT

IJ NS ∈ R
3×18, I = 1, 2, . . . , 8. (90)

7 Benefits of analytical approach to DSA

To motivate the computation of analytical gradient infor-
mation, two comparisons are conducted. First, the ratio of

computation times between structural analysis and analyti-
cal sensitivity analysis is observed. Second, the computation
times of analytically and semi-analytically derived gradient
information on element level is evaluated.

7.1 Comparison to overall finite differences

The computational time of one structural analysis is ta .
Here, structural analysis means the determination of the
objective, which is the eigenvalue of the LBA (8) or the
directly computed critical load scale (cf. Algorithm 2) of
NBA. The computational time of one sensitivity analysis
is ts . Sensitivity analysis means the computation of gra-
dient information on analytically derived basis including
complete assembly of total derivatives of the LBA (46)
and NBA for limit (52) and (55) bifurcation points, respec-
tively. The overall finite difference (OFD) method provides
information of the desired total derivatives by e.g. forward
difference approximation. For ndv design variables, ndv

additional function evaluations are needed to compute the
desired gradient with OFD. Thus, the computation time
of gradients with OFD approch is approximately tOFD

s ≈
ndv · ta . For the central difference approximation twice as
much function evaluations are needed and the computation
time doubles. If

ndv > ts/ta, (91)

the analytically computed gradients save computational
time compared to the OFD approach with forward finite dif-
ference approximation. For both examples (the cantilever
in Section 8.2 and the deep arch in Section 8.3) the struc-
tural analysis for LBA includes three Newton iterations
and the solution of the eigenvalue problem. Ratios are
ts/ta = 3.1306 and ts/ta = 2.46874 for the cantilever and
arch example, respectively. For NBA the structural analysis
includes eight (for the cantilever example, three for the arch
example) steps of path-following with 29 Newton iterations
overall (for the cantilever example, 14 for the arch exam-
ple) and a direct computation with eight (for the cantilever
example, three for the arch example) iterations. Ratios of
computation time are ts/ta = 0.0200 and ts/ta = 0.6409
for cantilever and arch examples, respectively. Due to high
effort for path-following, OFD approach is way more time
consuming. A further speed up for sensitivity analysis is
reached by using previously determined quantities e.g. the
factorised stiffness matrix. This is not done here.

7.2 Comparison to semi-analytical approach

All needed quantities on element level are the partial deriva-
tives from (56) and the pseudo load matrix derived by
Gerzen et al. (2013), cf. Appendix B. The computational
time to determine these quantities for one finite element is
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tes . Within the semi-analytical (SA) approach these quanti-
ties are determined by finite difference approximation from
evaluations of physical residual and tangent stiffness matrix
on element level. The computational time for the evalua-
tion of the physical residual and tangent stiffness matrix
for one finite element is tea . Partial derivatives are needed
with respect to 24 nodal co-ordinates, 24 displacement
components and 18 stress degrees of freedom for the under-
lying solid shell formulation. For forward finite difference
approximation na = 24 + 24 + 18 = 66 additional evalu-
ations of the physical residual and tangent stiffness matrix
are needed for each finite element. The computation time
for sensitivity quantities on element level is approximately
tSAe
s ≈ na · tea . With the ratio tes /tea = 15.320 and

na

tes /tea
= 4.308 (92)

the computation of partial derivatives on element level with
SA approach increases the computation time on element
level by a factor of 4. For the examples in Section 8 the
computation time on element level is about 50 % to 70 % of
total computation time for the analytical DSA. This semi-
analytical approach is used to verify the derived quantities
on element level. To reduce paperwork only the comparison
to OFD approach is presented in the paper, see Sections 8.2
and 8.3.

8 Numerical examples

The presented sensitivity information is used for two shape
optimisation examples in Sections 8.2 and 8.3 after the
structural optimisation framework is briefly summarised in
Section 8.1.

8.1 Structural optimisation framework

The optimisation framework includes a short overview on
used mathematical algorithm and optimisation techniques.
The optimisation problem to be solved reads

J (s) → max
s∈Rn

s.t. g(s) ≤ 0, sl ≤ s ≤ su. (93)

The objective J is the smallest eigenvalue of the LBA
(8) or the first critical load scale from direct computation
(Algorithm 2) within NBA. The inequality constraint g is
introduced to constrain the volume of the structure. Lower
and upper bounds for design variables s are sl and su,
respectively. For an overview on structural optimisation see
e.g. Baier et al. (1996). Following the concept of design
velocity fields, the arbitrary mapping

X̂ = �(s) (94)

is defined. The FE-nodal co-ordinates X̂ are defined as a
function of the vector of design variables s. Here, the vec-
tor of design variables s includes the parameters of the
computer aided geometric design (CAGD) description of
the geometry based on Bézier patches, see Farin (2002)
for details. Derivatives with respect to design variables can
be computed from derivatives with respect to FE-nodal
co-ordinates X̂ by chain rule

∂(·)
∂s

= ∂(·)
∂X̂

∂X̂

∂s
= ∂(·)

∂X̂
Q, (95)

where the latter quantity Q is the design velocity fields
matrix. For details on the concept of design velocity fields
see Choi and Kim (2005a, b). The non-linear optimisation
problem is solved using sequential quadratic programming
(SQP). A BFGS-approximation (named after Broyden-Flet-
cher-Goldfarb-Shanno) of the Hessian avoids the compu-
tation of higher order derivatives. For an overview on
non-linear optimisation techniques see (Nocedal and Wright
2006).

8.2 Cantilever

The first example is the sizing of the cantilever depicted in
Fig. 2. The U-profile is well known for limit point buck-
ling. Sensitivity relations for LBA (46) and the reduced
form for limit points of NBA (52) are applied for shape
optimisation in this example. The cantilever is clamped at
the right hand side (x = 0m) and loaded at the upper left
corner of the profile at the left hand side (x = 36m) of
Fig. 2. Its profile thicknesses tuf , t lf and tw are allowed to

Fig. 2 Mechanical system and model data
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vary over the length. The initial value for all thicknesses is
0.075m. For each thickness, eight parameters (design vari-
ables) define the CAGD description of the geometry based
on Bézier patches in global x-direction. With three thick-
nesses 24 design variables describe the cross section of the
cantilever continuously over the length. The upper bound
for the thicknesses is 0.1m, the lower bound is 0.05m.
The volume of the structure is not allowed to increase,
only the material distribution is changed. The optimisation
is perfomed maximising the minimum eigenvalue of the

LBA (Λ-optimised) and maximising the critical load scale
of NBA (λcr -optimised), respectively. The LBA is evalu-
ated in the state λ, v̂ = [û,α, β]T , which is obtained by
applying a load of F = 1MN. Results of structural opti-
misation are shown in Fig. 3 on page 16. The optimisation
data is shown in Fig. 3f. The smallest eigenvalue increases
from 323.59 to 485.66 for Λ-optimised design. The crit-
ical load scale of NBA increases from 268.90 to 355.33
for λcr -optimised design. To judge the optimisation results,
the non-linear load-displacement diagrams are shown in

0 6 12 18 24 30 36
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0.1

0 2 4 6 8 10 12
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300

350
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0 6 12 18 24 30 36
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Fig. 3 Results for cantilever
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Table 1 Comparison of analytical and OFD approach for limit point
buckling

perturbation ||∇ΛOFD−∇Λ||
||∇Λ||

||∇λOFD
cr −∇λcr ||
||∇λcr ||

3.75 × 10−3 1.24546640 × 10−2 4.03737054 × 10−4

7.5 × 10−4 4.95142104 × 10−4 2.32337545 × 10−5

7.5 × 10−5 6.72173641 × 10−6 9.24273366 × 10−7

7.5 × 10−6 4.73733088 × 10−5 7.17922417 × 10−6

7.5 × 10−7 4.22639593 × 10−4 6.31988167 × 10−5

7.5 × 10−8 4.06009635 × 10−3 8.94009710 × 10−4

7.5 × 10−9 3.97724902 × 10−2 1.34894643 × 10−2

Fig. 3g. The actual critical load scale of Λ-optimised design
is with 329.56 below the critical load scale of the λcr -
optimised design. Figure 3d shows the thickness distribution
over the length of the Λ-optimised structure where the co-
ordinate x = 0m denotes the clamped end of the cantilever
and x = 36m denotes the loaded end of the cantilever. Cor-
responding scaled cross sections are depicted in Fig. 3e. The
material distribution differs compared to the λcr -optimised
design in Fig. 3h with corresponding scaled cross section in
Fig. 3i. The most significant difference is the distribution
of the web thickness tw, which reaches the upper bound for
Λ-optimised design but the lower bound for λcr -optimised
design at loaded end of the cantilever.

To verify derived gradient information from (46) and
(52) the gradients of the objective functions are computed
by OFD approach (∇ΛOFD, ∇λOFD

cr ) with central finite dif-
ference approximation for the initial design with thickness
perturbation of 7.5 × 10−3m to 7.5 × 10−9m. The analyt-
ically computed gradients with respect to 24 shape design
variables are ∇Λ and ∇λcr , respectively. Relative errors are
depicted in Table 1 and Fig. 4. The truncation criteria for
equilibrium iterations is in the order of 10−8 for the norm
of the physical residual vector. Thus, it does not make sense
to choose the order of perturbation for finite difference
approximation smaller than this order due to numerical dif-
ficulties. If the order of perturbation is chosen to rough finite

10-8 10-7 10-6 10-5 10-4 10-3 10-2
0

0.2

0.4

0.6

0.8

1
× 10-3

Fig. 4 Comparison of analytical and OFD appoach to DSA for limit
point buckling

Fig. 5 Mechanical system and model data

difference approximation again becomes more inaccurate.
The best approximation of analytically derived gradients
can be achieved with perturbation of design variables in the
order of 10−4 to 10−5 for this example.

8.3 Deep arch

The second numerical example is the deep arch depicted
in Fig. 5. This example is well known for bifurcation point
buckling and limit point buckling.

Sensitivity relations for LBA (46) and the general form
for NBA (55) are applied for shape optimisation in this
example. The analytical approach to DSA is verified in
Fig. 6. The arch is hinged at both ends. A point load is
applied at the top of the arch. The initial structure has a
width in paper direction of w = 10m. For optimisation,
this width is allowed to change continuously. Ten parame-
ters (design variables) define the CAGD description based
on Bézier patches, which only allow symmetric structures.
Lower and upper bounds for the width are 3m ≤ w ≤
30m. Again Λ- and λcr -based optimisation is performed
with fixed amount of material. Only the distribution of w

is optimised. The load-displacement diagram of the initial
structure is shown in Fig. 7g on page 18. Far below the
limit point a bifurcation point is located. Data points of sec-
ondary equilibrium paths are not connected by solid lines.
For optimisation only the bifurcation point is regarded. The
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Fig. 6 Comparison of analytical and OFD approach to DSA for
bifurcation point buckling
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Fig. 7 Results for deep arch

limit point or mode switching does not play a role. The
optimisation data is depicted in Fig. 7e. The LBA is eval-
uated in the state λ, v̂ = [û, α, β]T , which is obtained by
applying a load of F = 1kN. Within the Λ-based optimi-
sation, the initial value of the objective 370.93 is increased
up to 439.79. The eigenvalue from λcr -optimised design
(438.76) is as expected below this value, but only slightly.
Within the λcr -based optimisation the critical load scale is
increased from 339.60 to 413.60. The actual critical load
scale of Λ-optimised design (411.34) is again only slightly
below this value.

In this example different objective functions yields sim-
ilar results as can be seen from the material distribution
shown in Fig. 7f. Here θ = −17.5◦ and θ = 90◦ denote
the right supported end and the top of the arch, respectively
(cf. Fig. 5). Due to symmetry of the structure only one half
of the system is described. The load-displacement diagram
of Λ- and λcr -optimised designs are quite similar as well as
can be seen in Fig. 7g. The bifurcation point for both struc-
tures is above the bifurcation point of the initial structure,
due to the fact that the optimisation is based on bifurca-
tion point buckling. The limit point buckling has not been
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Table 2 Comparison of analytical and OFD approach for bifurcation
point buckling

perturbation ||∇ΛOFD−∇Λ||
||∇Λ||

||∇λOFD
cr −∇λcr ||
||∇λcr ||

5 × 10−1 1.12401009 × 10−4 1.00426594 × 10−3

5 × 10−2 1.17275596 × 10−6 1.26732674 × 10−6

5 × 10−3 2.08813580 × 10−6 4.99373405 × 10−6

5 × 10−4 1.73749733 × 10−5 5.48431999 × 10−5

5 × 10−5 2.19441440 × 10−4 5.72580154 × 10−4

5 × 10−6 1.07237917 × 10−3 7.18255070 × 10−3

5 × 10−7 1.87896375 × 10−2 6.57229743 × 10−2

regarded, thus the limit point load is decreased in both cases.
To verify derived gradient information from (46) and (55)
the gradients of the objective functions are computed by
OFD approach with central finite difference approximation.
relative errors are given in Table 2 and Fig. 6 for perturba-
tions of design variables from 5 × 10−1 to 5 × 10−7m. For
this example the perturbation in the order of 10−2 to 10−3

yields best approximation of analytically derived gradients.

9 Conclusion

The structural analysis covering stability effects has been
summarised for solid shell finite elements. LBA and NBA
is included. Sensitivity information for the eigenvalue of the
LBA has been derived for discrete finite element equations
of the solid shell formulation. Sensitivity information for
critical load scales of NBA are derived for limit and bifur-
cation points. The optimisation based on LBA and NBA is
compared in two numerical examples covering limit point
and bifurcation point buckling.

For future work, the influence of imperfections is of
major interest and should be included in the optimisation
procedure. The approach of Gerzen and Barthold (2013)
seems to be promising for this purpose, due to the fact
that no iterations are needed to obtain imperfection. The
imperfections are computed from quantities that are avail-
able within the optimisation procedure. For the numerical
examples presented only single critical points needed to be
regarded. Thus, no attention was payed to mode switching,
which is an important issue for the treatment of arbitrary
structures.
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Appendix A: Structural analysis for solid shells

A brief summary of the element formulation presented by
Klinkel et al. (2006) and Klinkel and Wagner (2008) for
structural analysis is given. Additional sensitivity quanti-
ties by means of the pseudo load and sensitivity matrices
presented by Gerzen et al. (2013) and (Gerzen 2014) are
summarised as well. The shell continuum ΩR is divided
in element domains ΩRe, which can be expressed with the

assembly over all elements ΩR =
nel

A
e=1

ΩRe. A low order he-

xahedral solid shell element is build. Isoparametric trilinear
approximations of geometry and displacement field result
in an eight node solid shell element with three displacement
degrees of freedom per node. The superscript h indicates the
field variables after discretisation. The subscript e indicates
quantities on element level.

A.1 Approximation of kinematic quantities

Geometry, displacements and its variations are interpolated
in the same manner

Xh = NX̂e, uh = Nûe and δuh = Nδûe. (96)

The discrete nodal coordinates, displacements and varia-
tions are arranged in the vectors X̂e ∈ R

24×1, ûe ∈ R
24×1

and δûe ∈ R
24×1, respectively. The shape functions for the

nodes I = 1, 2, ..., 8

NI = 1

8
(1 + ξ1

I ξ1)(1 + ξ2
I ξ2)(1 + ξ3

I ξ3), (97)

with −1 ≤ ξ i ≤ +1 are organised in the interpola-
tion matrix N = [N1, ..., N8] with the submatrix N I =
diag[NI , NI , NI ]. The Cartesian coefficients of the Green-
Lagrangian strain tensor E are ordered in the vector E =
[E11, E22, E33, 2E12, 2E13, 2E23]T in Voigt notation. The
covariant basis vectors in discrete form are

Gh
i = N,iX̂e, gh

i = N,i(X̂e + ûe), (98)

with N ,i containing the derivatives of the shape functions
with respect to the convective coordinates ξ i . The necessary
derivatives of the shape functions with respect to the global
coordinates

∂NI

∂X
= [Gh

1 Gh
2 Gh

3]−T ∂NI

∂ξ
(99)

can be computed.
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A.2 Approximation of strains and their variations.

The local convective strain components are approximated
with

Eh
L =⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 (gh

11 − Gh
11)

1
2 (gh

22 − Gh
22)

iv∑
L=i

1
4 (1 + ξ1

Lξ1)(1 + ξ2
Lξ2) 1

2 (gL
33 − GL

33)

(gh
12 − Gh

12)
1
2 ((1 − ξ2)(gB

13 − GB
13) + (1 + ξ2)(gD

13 − GD
13))

1
2 ((1 − ξ1)(gA

23 − GA
23) + (1 + ξ1)(gC

23 − GC
23))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(100)

The corresponding strains are computed via ANS interpola-
tion. A transformation to Cartesian coordinates

Eh = T −T
S Eh

L (101)

can be done using the transformation matrix T −T
S . It is

defined via T S = T (ā, b̄) with ā = 2, b̄ = 1 and

T =

⎡
⎢⎢⎢⎢⎢⎣

(J11)
2 (J12)

2 (J13)
2 . . .

(J21)
2 (J22)

2 (J23)
2 . . .

(J31)
2 (J32)

2 (J33)
2 . . .

bJ11J21 bJ12J22 bJ13J23 . . .
bJ11J31 bJ12J32 bJ13J33 . . .
bJ21J31 bJ22J32 bJ23J33 . . .

. . . aJ11J12 aJ11J13 aJ12J13

. . . aJ21J22 aJ21J23 aJ22J23

. . . aJ31J32 aJ31J33 aJ32J33

. . . J11J22 + J12J21 J11J23 + J13J21 J12J23 + J13J22

. . . J11J32 + J12J31 J11J33 + J13J31 J12J33 + J13J32

. . . J21J32 + J22J31 J21J33 + J23J31 J22J33 + J23J32

⎤
⎥⎥⎥⎥⎥⎦

.

(102)

and Jik = ei · Gh
k . The vectors Gh

k are the well known con-
vective tangent vectors and ei are the orthogonal unit base
vectors of Cartesian space. On element level the approxima-
tion of the virtual and incremental Green-Lagrangian strains
reads

δEh = Bδûe, ΔEh = BΔûe, (103)

respectively. For the approximation the interpolation matrix
reads

B = T −T
S BL with BL = [BL1, ..., BL8]. (104)

The submatrix BLI at I -th node is given by

BLI = [B1
LI , B

2
LI , B

3
LI , B

4
LI , B

5
LI , B

6
LI ]T (105)

with

B1
LI = NI,1(g

h
1)T ,

B2
LI = NI,2(g

h
2)T ,

B3
LI =

iv∑
L=i

1

4
(1 + ξ1

Lξ1)(1 + ξ2
Lξ2)NL

I,3(g
L
3 )T ,

B4
LI = NI,1(g

h
2)T + NI,2(g

h
1)T ,

B5
LI = 1

2
((1 − ξ2)(NB

I,1(g
B
3 )T + NB

I,3(g
B
1 )T ))

+1

2
((1 + ξ2)(ND

I,1(g
D
3 )T + ND

I,3(g
D
1 )T )),

B6
LI = 1

2
((1 − ξ1)(NA

I,2(g
A
3 )T + NA

I,3(g
A
2 )T ))

+1

2
((1 + ξ1)(NC

I,2(g
C
3 )T + NC

I,3(g
C
2 )T )). (106)

The superscripts A, B, C, D denote collocation points of
assumed natural strain (ANS) interpolation for the treatment
of transverse shear locking A = (−1, 0, 0), B = (0, −1, 0),
C = (1, 0, 0) and D = (0, 1, 0) in convective coordinates
ξ i . To overcome curvature thickness locking the collocation
points i = (−1, −1, 0), ii = (1, −1, 0), iii = (1, 1, 0) and
iv = (−1, 1, 0) in convective coordinates ξ i are chosen.
They are denoted with superscript L = i, ii, iii, iv. Details
on how to choose these collocation points can be found in
Klinkel et al. (2006) and references therein. Due to the ANS
interpolations from now on the element formulation is not
isotropic any more and ξ3 denotes the thickness direction.
The quantity ΔδE : Ŝ from the linearisation of the weak
form (120) is approximated in the following way The first
quantity Ke is obtained by the discretisation of

(ΔδE : Ŝ)h = δûT
e GΔûe, G =

⎡
⎢⎣

G11 · · · G18
...

. . .
...

G81 · · · G88

⎤
⎥⎦ (107)

given by the submatrices GIJ = diag[GIJ , GIJ , GIJ ] for
the node combination I , J defined by the scalar

GIJ =
(
Ŝh

)T

BIJ . (108)

The required matrix BIJ is known from (35).

A.3 Approximation of assumed strain fields

The strain tensor Ē is additively decomposed

Ē = Ê + Ẽ = ÊijGi ⊗ Gj + ẼijG
i ⊗ Gj . (109)

The components of the strain fields Ê and Ẽ are interpo-
lated in local convective co-ordinates and transformed to
Cartesian coordinates using Voigt Notation. The transfor-
mation of the contravariant components Êij is done by the
transformation matrix T E = T (ā, b̄) with ā = 1, b̄ = 2,
cf. (102). The approximation of the strain field in vector
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notation is

Êh = NEα1
e, α1

e ∈ R
18, NE = T 0

ENL (110)

with

NL = [I N̂
ˆ̂
N]. (111)

Quantities evaluated at the centre of the element are denoted
with the superscript 0. I ∈ R

6×6 is the identity matrix. The
interpolation matrices in natural coordinates are

N̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

ξ3 ξ2ξ3 0 0 0
0 0 ξ3 ξ1ξ3 0
0 0 0 0 0
0 0 0 0 ξ3

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(112)

and

ˆ̂
N =

⎡
⎢⎢⎢⎢⎢⎢⎣

ξ2 0 0 0 0 0 0
0 ξ1 0 0 0 0 0
0 0 ξ1 ξ2 ξ1ξ2 0 0
0 0 0 0 0 0 0
0 0 0 0 0 ξ2 0
0 0 0 0 0 0 ξ1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (113)

Klinkel et al. (2006) call Ẽ the enhanced assumed strain
field. Its covariant components are interpolated and trans-
formed to Cartesian space using the relations

Ẽ
h = ME α2

e, α2
e ∈ R

7 with ME = T MM (114)

and

T M = det J 0

det J
(T 0

S)−T . (115)

J = [Gh
1, Gh

2, Gh
3]T is the Jacobian matrix. The interpola-

tion matrix for the enhanced assumed strain field in natural
coorinates reads

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

ξ1 ξ1ξ2 0 0 0 0 0
0 0 ξ2 ξ1ξ2 0 0 0
0 0 0 0 ξ3 ξ1ξ3 ξ2ξ3

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (116)

The interpolation of the total strain can now be expressed as

Ē
h = NEα1

e + MEα2
e . (117)

Derivatives of strain energy function yield the 2nd Piola-
Kirchhoff stresses and the material matrix

S̄
h = ∂WRe

∂Ē
h

, C̄
h = ∂2WRe

∂Ē
h
∂Ē

h
, (118)

respectively.

A.4 Approximation of assumed stress fiels

The interpolation of the stress field Ŝh reads

Ŝ
h = NSβe, βe ∈ R

18 with NS = T 0
SNL. (119)

The same procedure is used for the virtual stresses δŜh and
the incremental stresses ΔŜh. The transformation to global
co-ordinates is done by the transformation matrix T 0

S =
T (ā, b̄) with ā = 2, b̄ = 1. The superscript 0 denotes quan-
tities evaluated at the element centre. The transformation
matrix T is given by (102).

A.5 Element matrices and vectors

Element matrices are

Ke =
∫

ΩRe

G dΩe,

Le =
∫

ΩRe

NT
S B dΩe,

Ce =
∫

ΩRe

NT
S NE dΩe,

A11
e =

∫

ΩRe

NT
EC̄

h
NE dΩe,

A12
e =

∫

ΩRe

NT
EC̄

h
ME dΩe,

A21
e =

∫

ΩRe

MT
EC̄

h
NE dΩe,

A22
e =

∫

ΩRe

MT
EC̄

h
ME dΩe (120)

and element vectors are

f int
e =

∫

ΩRe

BT Ŝ
h

dΩe,

f ext
e =

∫

ΩRe

NT bdΩe +
∫

Γ e
N

NT t dΓe,

a1
e =

∫

ΩRe

NT
E

(
S̄

h − Ŝ
h
)

dΩe,

a2
e =

∫

ΩRe

MT
E S̄

h
dΩe,

be =
∫

ΩRe

NT
S

(
Eh − Ê

h
)

dΩe. (121)
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Appendix B: Sensitivity analysis for solid shells

Quantities for design sensitivity analysis by means of the
pseudo load and sensitivity matrices derived by Gerzen et al.
(2013) are summarised briefly.

B.1 Variational relations

For the computation of total derivatives of objectives and
constraints after (43) pseudo load and sensitivity operator
are desired. The pseudo load operator is obtained as vari-
ation of the physical residual with respect to the design

p = δXRu + δXRŜ + δXRĒ = pu + pŜ + pĒ (122)

with the partial derivatives

pu(v,X; δu, δX) =
∫

ΩR

(
δuE : Ŝ − δu · b

)
DivδX dΩ

+
∫

ΩR

(
δX(δuE) : Ŝ + δuE : δXŜ

)
dΩ,

pŜ(v,X; δŜ, δX) =
∫

ΩR

δŜ : (
E − Ē

)
DivδX dΩ

+
∫

ΩR

δX

(
δŜ : (

E − Ē
))

dΩ,

pĒ(v,X; δĒ, δX) =
∫

ΩR

δĒ :
(

∂WR

∂Ē
− Ŝ

)
DivδX dΩ

+
∫

ΩR

δX

(
δĒ :

(
∂WR

∂Ē
− Ŝ

))
dΩ. (123)

B.2 Discretised relations

For the discretisation of the pseudo load matrix, derivatives
of transformation matrices and strains as well as the approx-
imation of a divergence are desired. The term DivδX is
approximated with

(DivδX)h=DδX̂e (124)

and

D = [d1, ..., d8], dI = [NI,1 NI,2 NI,3]. (125)

The derivative of the transformation matrix T from (102)
with respect to X̂e is denoted with T ∈ R

6×6×24. Its
coefficients are

Tijk1(I ) := H 1
ij (I ), k1(I ) = 3I − 2,

Tijk2(I ) := H 2
ij (I ), k2(I ) = 3I − 1,

Tijk3(I ) := H 3
ij (I ), k3(I ) = 3I, (126)

with I = 1, ..., 8 . Submatrices are

H 1(I ) =
[
H 11 H 12

]
(127)

with

H 11 =

⎡
⎢⎢⎢⎢⎢⎢⎣

2J11NI,1 2J12NI,2 2J13NI,3

0 0 0
0 0 0

J21NI,1b J22NI,2b J23NI,3b

J31NI,1b J32NI,2b J33NI,3b

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(128)

and

H 12 =

⎡
⎢⎢⎢⎢⎢⎢⎣

H 12
11 H 12

12 H 12
13

0 0 0
0 0 0
H 42

41 H 12
42 H 12

43
H 52

51 H 12
52 H 12

53
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(129)

including

H 12
11 = J11NI,2a + J12NI,1a,

H 12
12 = J11NI,3a + J13NI,1a,

H 12
13 = J12NI,3a + J13NI,2a,

H 12
41 = J21NI,2 + J22NI,1,

H 12
42 = J21NI,3 + J23NI,1,

H 12
43 = J22NI,3 + J23NI,2,

H 12
51 = J31NI,2 + J32NI,1,

H 12
52 = J31NI,3 + J33NI,1,

H 12
63 = J32NI,3 + J33NI,2, (130)

H 2(I ) =
[
H 21 H 22

]
(131)

with

H 21 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
2J21NI,1 2J22NI,2 2J23NI,3

0 0 0
J11NI,1b J12NI,2b J13NI,3b

0 0 0
J31NI,1b J32NI,2b J33NI,3b

⎤
⎥⎥⎥⎥⎥⎥⎦

(132)

and

H 22 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
H 22

21 H 22
22 H 22

23
0 0 0

H 22
41 H 22

42 H 22
43

0 0 0
H 22

61 H 22
62 H 22

63

⎤
⎥⎥⎥⎥⎥⎥⎦

(133)
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including

H 22
21 = J21NI,2a + J22NI,1a,

H 22
22 = J21NI,3a + J23NI,1a,

H 22
23 = J22NI,3a + J23NI,2a,

H 22
41 = J11NI,2 + J12NI,1,

H 22
42 = J11NI,3 + J13NI,1,

H 22
43 = J12NI,3 + J13NI,2,

H 22
61 = J31NI,2 + J32NI,1,

H 22
62 = J31NI,3 + J33NI,1,

H 22
63 = J32NI,3 + J33NI,2, (134)

and finally

H 3(I ) =
[
H 31 H 32

]
(135)

with

H 31 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0

2J31NI,1 2J32NI,2 2J33NI,3

0 0 0
J11NI,1b J12NI,2b J13NI,3b

J21NI,1b J22NI,2b J23NI,3b

⎤
⎥⎥⎥⎥⎥⎥⎦

(136)

and

H 32 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0

H 32
31 H 32

32 H 32
33

0 0 0
H 32

51 H 32
52 H 32

53
H 32

61 H 32
62 H 32

63

⎤
⎥⎥⎥⎥⎥⎥⎦

(137)

including

H 32
31 = J31NI,2a + J32NI,1a,

H 32
32 = J31NI,3a + J33NI,1a,

H 32
33 = J32NI,3a + J33NI,2a,

H 32
51 = J11NI,2 + J12NI,1,

H 32
52 = J11NI,3 + J13NI,1,

H 32
53 = J12NI,3 + J13NI,2,

H 32
61 = J21NI,2 + J22NI,1,

H 32
62 = J21NI,3 + J23NI,1,

H 32
63 = J22NI,3 + J23NI,2. (138)

The transposed T
T is defined as T

T
ijk = Tjik . The deriva-

tives of applied transformation matrices read for the stresses
TS = T(ā, b̄) with ā = 2, b̄ = 1 and for strains
TE = T(ā, b̄) with ā = 1, b̄ = 2. Note that the notation
means T

ij,X̂k
= Tijk . The derivative of the transforma-

tion matrix T M with respect to X̂e is TM ∈ R
6×6×24.

With (TM)
ij,X̂k

= (TM)ijk the derivative (T M)
,X̂k

can be

computed with J = [G1G2G3] and J 0 = [G0
1G

0
2G

0
3]

resulting in

(T M)
,X̂k

=
((

(J 0)−T : J 0
,X̂k

− J−T : J
,X̂k

)
(T 0

S)−T

−(T 0
S)−T (T 0

S)T
,X̂k

(T 0
S)−T

)∣∣J 0
∣∣

|J | . (139)

The scalar product (· : ·) is applied to matrices, as it is
defined for tensors. The computation of J 0

,X̂k
and J

,X̂k
is

straightforward, details are omitted here. The first derivative
of local strains Eh

L with respect to X̂e is (Eh
L)

,X̂
= Q =

[Q1, ..., Q8] with

QI = [QI1, QI2, QI3, QI4, QI5, QI6]T (140)

and

QI1 = NI,1(u
h
,1)

T ,

QI2 = NI,2(u
h
,2)

T ,

QI3 =
iv∑

L=i

1

4
(1 + ξ1

Lξ1)(1 + ξ2
Lξ2)NL

I,3(u
L
,3)

T

QI4 = NI,1(u
h
,2)

T + NI,2(u
h
,1)

T ,

QI5 = 1

2

(
(1 − ξ2)(NB

I,1(u
B
,3)

T + NB
I,3(u

B
,1)

T )

+(1 + ξ2)(ND
I,1(u

D
,3)

T + ND
I,3(u

D
,1)

T
)
,

QI6 = 1

2

(
(1 − ξ1)(NA

I,2(u
A
,3)

T + NA
I,3(u

A
,2)

T )

+(1 + ξ1)(NC
I,2(u

C
,3)

T + NC
I,3(u

C
,2)

T )
)
. (141)

B.3 Sensitivity and pseudo load matrices

The parts of the pseudo load are approximated as

ph
u = δûeP

e
uδX̂e, ph

Ŝ
= δŜhP e

Ŝ
δX̂e,

ph

Ē
= δÊhP e

Ê
δX̂e + δẼhP e

Ẽ
δX̂e (142)

with matrices

P e
u = ∫

ΩRe

(
BT Ŝ

h − NT b
)

D dΩe

+ ∫
ΩRe

G + P
(
BT , T0

S, NLβe

)
dΩe

− ∫
ΩRe

P
(
BT

LT −1
S , TS, T −1

S Ŝ
h
)

dΩe, (143)
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P e

Ŝ
=

∫

ΩRe

(
NT

S (Eh − Ê
h
)
)

D dΩe

+
∫

ΩRe

P
(
NT

L, (T0
S)T , (Eh − Ê

h
)
)

dΩe

−
∫

ΩRe

P
(
NT

S , T0
E, NLα1

e

)
dΩe

+
∫

ΩRe

NT
S T −T

S Q dΩe

−
∫

ΩRe

P
(
NT

S T −T
S , TT

S , T −T
S Eh

L

)
dΩe, (144)

P e

Ê
= ∫

ΩRe

(
NT

E(S̄
h − Ŝ

h
)
)

D dΩe

+ ∫
ΩRe

P
(
NT

L, (T0
E)T , (S̄

h − Ŝ
h
)
)

dΩe

+ ∫
ΩRe

P
(
NT

EC̄, T0
E, NLα1

e

)
dΩe

+ ∫
ΩRe

P
(
NT

EC̄, TM, Mα2
e

)
dΩe

− ∫
ΩRe

P
(
NT

E, T0
S, NLβe

)
dΩe

(145)

and

P e

Ẽ
= ∫

ΩRe

(
MT

ES̄h
)
D dΩe

+ ∫
ΩRe

(
P

(
MT , TT

M, S̄h
))

dΩe

+ ∫
ΩRe

P
(
MT

EC̄, T0
E, NLα1

e

)
dΩe

+ ∫
ΩRe

P
(
MT

EC̄, TM, Mα2
e

)
dΩe.

(146)

The pseudo load and sensitivity matrices P v and Sv are
obtained by assembly over all finite elements of

P v =
nel

A
e=1

P e, Sv =
nel

A
e=1

Se (147)

of the element quantities

P e =

⎡
⎢⎢⎢⎣

P e
u

P e

Ê

P e

Ẽ

P e

Ŝ

⎤
⎥⎥⎥⎦ , Se =

⎡
⎢⎢⎢⎣

Se
u

Se

Ê

Se

Ẽ

Se

Ŝ

⎤
⎥⎥⎥⎦ . (148)

respectively. To compute the sensitivity matrix their relation

P v = −KvSv. (149)

is used. Static condensation yields

P u = −KuSu (150)

with

P u =
nel

A
e=1

P ue (151)

and the element quantity

P ue = P e
u + LT

e C−T
e AeC

−1
e P e

Ŝ
+ LT

e C−1
e P e

E (152)

using the abbreviation P e
E = P e

Ê
− A12

e (A22
e )−1P e

Ẽ
. After

solving the unknown displacement sensitivities, the sensi-
tivities of stresses and strains can be calculated on element
level as follows

Se

Ê
= C−1

e (LeS
e
u + P e

Ŝ
),

Se

Ẽ
= −(A22

e )−1(P e

Ẽ
+ A21

e Se

Ê
),

Se

Ŝ
= C−T

e (AeS
e

Ê
+ P e

E).

(153)
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