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Abstract A design sensitivity analysis for the transient re-
sponse of the non-viscously damped dynamic systems is pre-
sented. The non-viscously (viscoelastically) damped system is
widely used in structural vibration control. The damping
forces in the system depend on the past history of motion
via convolution integrals. The non-viscos damping is modeled
by the generalized Maxwell model. The transient response is
calculated with the implicit Newmark time integration
scheme. The design sensitivity analysis method of the history
dependent system is developed using the adjoint variable
method. The discretize-then-differentiate approach is adopted
for deriving discrete adjoint equations. The accuracy and the
consistency of the proposed method are demonstrated through
a single dof system. The proposed method is also applied to a
multi-dof system. The validity and accuracy of the sensitivi-
ties from the proposed method are confirmed by finite differ-
ence results.

Keywords Non-viscous damping . Viscoelastic material .

Sensitivity analysis . Adjoint variable method . Dynamic
analysis

1 Introduction

Design sensitivity analysis (DSA) involves the determination
of the rate change of performance measures with respect to a
set of design variables. Sensitivity analysis plays an important
role in structural optimization and system identification
(Haftka and Adelman 1989). It can also be applicable in many
fields such as model updating (Mottershead et al. 2011), struc-
tural reliability (Xiao et al. 2011) and damage detection (Yan
and Ren 2011). In general, there are three approaches to sen-
sitivity analysis: the finite difference method, the direct differ-
entiation method and the adjoint method (Komkov et al.
1986). The finite difference method is a direct and simple
approach. However, the finite difference method suffers from
computational inefficiency. Therefore, the direct differentia-
tion method (DDM) or the adjoint variable method (AVM)
are generally preferred despite their relative complexity. The
efficiency of these methods depends on the number of design
variables and the number of active constraints.When the num-
ber of design variable is large, e.g., topology optimization
problems, then AVM is preferred (Ryu et al. 1985; Kang
et al. 2006).

Design sensitivity analysis of dynamic responses has been
widely studied by several authors. The steady-state response
of mechanical and structural system is of interest in design
problems which are subject to harmonic loadings caused by
rotating machines such as fans, electric motors and reciprocat-
ing engines. Choi and Lee (Choi and Lee 1992) developed the
sensitivity analysis method of dynamic frequency response
using the adjoint variable and direct differentiation methods
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for viscously damped systems. Based on mode superposition
method, Qu developed the sensitivities of undamped system
(QU 2000) and viscously damped system (QU and SELVAM
2000). Lewandowski and Łasecka-Plura (Lewandowski and
Łasecka-Plura 2016) presented a design sensitivity analysis of
structures with viscoelastic dampers.

The above studies addressed frequency responses under
harmonic loadings. However, transient responses of dynamic
systems are important when structures are subject to sudden
loadings e.g. impact, shock and seismic loadings. The design
sensitivity analysis of linear transient problem has been also
studied by many authors (van Keulen et al. 2005; Kang et al.
2006). In most studies on linear dynamic problems, the sensi-
tivities are computed via the differentiate-then-discretize ad-
joint method (Kang et al. 2006; Zhao and Wang 2015; Zhang
and Kang 2014; Dahl et al. 2008). Another approach is devel-
oped to produce consistent sensitivities by differentiating the
discretized response, which is called the discretize-then-
differentiate method (Le et al. 2012). Jensen et al. (Jensen
et al. 2013) discussed consistency issues of the two above
approaches. The discretize-then-differentiate approach is ex-
tended to nonlinear problems (Nakshatrala and Tortorelli
2015).

The above-mentioned studies of transient problems consid-
er only viscously damped systems. However, the viscous
damping is rarely physically present in most systems
(Adhikari and Woodhouse 2003). Woodhouse (Woodhouse
1998) presented the general damping model via convolution
integrals. This model is commonly referred to as non-viscous
(viscoelastic) damping model. In the non-viscously damped
system, the damping force depends on the past history of
motion, which causes time- and history-dependent behavior.
Thus, the response sensitivity at a given time depends on the
response and the response sensitivities at all previous times in
consequence of the history-dependent behavior (Vidal and
Haber 1993). Therefore, design sensitivity analysis for tran-
sient responses is a challenging task in the non-viscously
damped system. Compared to the above-mention publications
on viscous damping systems, very limited research has been
carried out on the design sensitivity analysis of the non-
viscously damped dynamic systems. Poldneff and Arora
(Poldneff and Arora 1996) addressed design sensitivity for
coupled thermoviscoelasticity systems by utilizing the semi-
analytical method. Li et al. (Li et al. 2013) presented the sen-
sitivity analysis of non-viscously damped system using in-
verse Fourier transform. However, these methods require ap-
proximate methods for calculating the sensitivity of transient
responses. The approximate methods may lead to inaccurate
or inconsistent sensitivities.

In this paper, a consistent sensitivity analysis method is
developed for non-viscously damped systems. The transient
responses are evaluated with an implicit time integration
scheme. The adjoint variable method is employed based on

the discretize-then-differentiate approach. The accuracy and
the consistency of the proposed method are demonstrated by
several numerical examples.

The rest of the paper is organized as follows; in Section 2,
the equations of motion and the time integration method are
introduced. In Section 3, the procedure to obtain the design
sensitivity is described in detail. In Section 4, the usage of the
proposed method is demonstrated by several numerical exam-
ples. The calculated sensitivities are compared with analytical
solutions or the finite difference ones. Finally, conclusions are
presented in Section 5.

2 Dynamics of non-viscously damped system

2.1 Non-viscous damping model

In a non-viscous damping model, the damping force depends
on the past history of motion (Adhikari and Woodhouse
2003). From the Boltzmann superposition principle
(Christensen 1982), the non-viscous damping force f d(t) is
expressed in terms of the past history of velocities via convo-
lution integrals over suitable kernel functions.

f d tð Þ ¼
Z t

0
g t−sð Þ ∂u sð Þ

∂s
ds ð1Þ

Where u is the displacement, and s is any arbitrary time
between time 0 and t. The kernel function g (t) is also called
retardation function, heredity function and relaxation func-
tion. The viscous damping model is a special case of the
non-viscous damping model when the kernel function be-
comes a delta function (i.e., g(t− s) =Cδ(t− s) where C is a
damping coefficient). Then, the damping force becomes

f d tð Þ ¼ C ∂u tð Þ
∂t , and thus has no memory (Adhikari and

Woodhouse 2001). The kernel function g (t) of the non-
viscous damping force is typically modelled by the general-
ized Maxwell model as shown in Fig. 1.

Fig. 1 Generalized Maxwell model
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The model consists of several spring-dashpot Maxwell el-
ements in parallel and an isolated spring. This type of model
results in a Prony series expression as follows.

g tð Þ ¼ g∞ þ
Xm
j¼1

g je
−t=τ j ð2Þ

Where m is the number of Maxwell elements, and g∞ is the
long-term elastic stiffness coefficient when the Maxwell ele-
ments are totally relaxed. The parameters gj and τj are the
Prony coefficient and relaxation time, respectively.

Using (2) in (1), the damping force is split into elastic and
non-viscous parts.

f d tð Þ ¼ g∞u tð Þ−g∞u 0ð Þ þ
Z t

0

Xm
j¼1

g je
− t−sð Þ=τ j

∂u sð Þ
∂s

ds ð3Þ

For simplicity, it is convenient to introduce an auxiliary
history variable ht

j.

h j
t ¼

Z t

0
g je

− t−sð Þ=τ j
∂u sð Þ
∂s

ds ð4Þ

Then, the damping force becomes

f d tð Þ ¼ g∞u tð Þ−g∞u 0ð Þ þ
Xm
j¼1

hj
t ð5Þ

2.2 Equations of motion

The equations of motion for linear non-viscously damped sys-
tem can be written in the following form (Adhikari 2002; Li
et al. 2013).

Ma tð Þ þ
Z t

−∞
G t−sð Þ ∂u sð Þ

∂s
dsþKu tð Þ ¼ f ext tð Þ ð6Þ

Where M, G and K are mass, non-viscous damping and
stiffness matrices, respectively. Moreover, a(t), u(t) and fext(t)
denote the acceleration vector, the displacement vector and
forcing vector, respectively. In general, the motion starts at
t=0. Therefore, taking u(t) =0 for t<0, and imposing the fol-
lowing the initial conditions

u t ¼ 0ð Þ ¼ u0 and v t ¼ 0ð Þ ¼ v0 ð7Þ

The equations of motion becomes

Ma tð Þ þG tð Þu 0ð Þ þ
Z t

0
G t−sð Þ ∂u sð Þ

∂s
dsþKu tð Þ

¼ f ext tð Þ ð8Þ

where the damping matrix G(t) is given by

G tð Þ ¼ G∞ þ
Xm
j¼1

G je−t=τ j ð9Þ

where G∞ is the stiffness matrix consists of the long-term
elastic stiffness g∞ in (2), and Gj is the stiffness matrix of the
Prony series coefficient gj in (2).

2.3 Implicit time integration

In this paper, the Newmark-β algorithm (Newmark 1959) is
used for the time discretization of the equations of motion.
The time-discrete displacement vector is represented by un= -
u(t

n
) for t1, t2,…, tNwhereN is the number of time steps. Then,

the equations of motion become

Man þGnu0 þ fdn þKun ¼ f extn ð10Þ

where an, fn
d, un and fn

ext denote the acceleration, damping
force, displacement and external force vectors at time tn. The
time domain is divided into N equally-sized time steps. Then
the Newmark time integration procedure involves the follow-
ing equations with the time step Δt= tn− tn − 1.

un ¼ un−1 þΔtvn−1 þΔt2
1

2
−β

� �
an−1 þ βan

� �
ð11Þ

vn ¼ vn−1 þΔt 1−γð Þan−1 þ γanð Þ ð12Þ

Where β and γ are the Newmark stability parameters. The
initial displacement u0 and velocity v0 are prescribed, and the
initial acceleration a0 is obtained viaMa0 +G0u0+Ku0= f0

ext.
From (5), the damping force vector fn

d is given by

fdn ¼ G∞un−G∞u0 þ
Xm
j¼1

H j
n ð13Þ

where Hn
j is a history variable vector at time tn. In order to

evaluate the history variable, the history variable is approxi-
mately divided into discrete variables.

H j
n ¼ e− tn−tn−1ð Þ=τ j

Z tn−1

0
e− tn−1−sð Þ=τ jG j

∂u sð Þ
∂s

ds

þ
Z tn

tn−1
e− tn−sð Þ=τ jG j

∂u sð Þ
∂s

ds ð14Þ

The history variable Hn
j is calculated from the previous

history variable using the following recursive equation.

H j
n ¼ e−Δt=τ jH j

n−1 þ
Z tn

tn−1
e− tn−sð Þ=τ jG j

∂u sð Þ
∂s

ds ð15Þ

Sensitivity analysis of non-viscously damped dynamic systems 2199



It is assumed that ∂/∂s[u(s)] is constant for s∈ [tn − 1, tn].
Then, (15) becomes

H j
n≅e

−Δt=τ jH j
n−1 þG j

un−un−1
Δt

Z tn

tn−1
e− tn−sð Þ=τ j ds ð16Þ

The exponential term is integrated analytically. Then, the
history variable is given by

H j
n ¼ e−Δt=τ jH j

n−1 þ AjG j un−un−1ð Þ ð17Þ

where Aj is defined as

Aj ¼ 1−e−Δt=τ j

Δt=τ j
ð18Þ

The recursive formula can also be expressed in terms of the
past history of displacement.

H j
n ¼

Xn
i¼1

e− tn−tið Þ=τ jA jG j ui−ui−1ð Þ ð19Þ

Finally, the damping force of the system is defined as

fdn ¼ G∞un−G∞u0 þ
Xn
i¼1

Xm
j¼1

e− tn−tið Þ=τ jA jG j ui−ui−1ð Þ ð20Þ

Then, the discretized equations of motion of the non-
viscously damped system is given by

Man þGnu0 þG∞un−G∞u0

þ
Xn
i¼1

Xm
j¼1

e− tn−tið Þ=τ jA jG j ui−ui−1ð Þ þKun

¼ f extn ð21Þ

Rewriting the above equation, it becomes

Man þGnu0−G∞u0 þKTun−Khistun−1

þ
Xn−1
i¼1

Xm
j¼1

e− tn−tið Þ=τ jA jG j ui−ui−1ð Þ ¼ f extn

ð22Þ

where KT ¼ G∞ þ ∑
m

j¼1
AjG j þK

 !
and Khist ¼ ∑

m

j¼1
AjG j.

Using the Newmark relation in (11) and (12), the a-form of
the Newmark method can be written as

~Man ¼ f extn −Gnu0 þG∞u0−KT un−1 þΔtvn−1 þΔt2
1

2
−β

� �
an−1

� �
þKhistun−1

−
Xn−1
i¼1

Xm
j¼1

e− tn−tið Þ=τ jA jG j ui−ui−1ð Þ
ð23Þ

where ~M ¼ MþKTΔt2βð Þ. Then, the acceleration vector an
at time tn is obtained by solving (23) based on velocity vn − 1,
acceleration an − 1 at the previous time step, and the past his-
tory of displacement ui. Once an is computed, the displace-
ment un and velocity vn at the current time step are computed
from (11) and (12), respectively.

3 Design sensitivity analysis

The transient response of the non-viscously damped sys-
tem depends on the past history of motion. Therefore,
the response sensitivity at any given time also depends
on the response and the response sensitivities at all pre-
vious times. In this paper, the design sensitivity analysis
method of the history-dependent system is developed
using the adjoint variable method (AVM) (Haftka and
Adelman 1989; Adelman and Haftka 1986). The
discretize-then-differentiate AVM approach (Jensen
et al. 2013; Le et al. 2012; Nakshatrala and Tortorelli
2016) is adopted for deriving discrete adjoint equations.
For the design sensitivity analysis, a general response
function f is considered which depends on displacement
u, velocity v, acceleration a and the design parameter d.

f ¼ f d; aN ; aN−1;…; a0; vN ; vN−1;…; v0; uN ; uN−1;…; u0ð Þ
ð24Þ

where tN is the terminal time in the simulation. Then, the
sensitivity of the response function is obtained from the de-
rivative with respected to design parameter d.

f
0 ¼ ∂ f

∂d
þ
XN
i¼0

∂ f
∂ai

a
0
i þ

∂ f
∂vi

v
0
i þ

∂ f
∂ui

u
0
i

� �
ð25Þ

It is difficult to compute the response derivative, since it
contains implicit derivatives of the acceleration, velocity and
displacement. The strategy to obtain the sensitivity is to eval-

uate the sensitivity of the acceleration (i.e., a
0
i ) prior to eval-

uating the sensitivities of both the velocity and the displace-

ment (i.e., vi
′
and ui

′
), since both the velocity and the displace-

ment depend on the acceleration. To obtain the sensitivity of
the acceleration, the residual equations are considered. From
the equations of motion in (23), there are N+1 residual equa-
tions corresponding at each time ti.

Ri ¼ ~Mai þGiu0−G∞u0 þKT ui−1 þΔtvi−1 þΔt2
1

2
−β

� �
ai−1

� �
−Khistui−1

þ
Xi−1
k¼1

Xm
j¼1

e− ti−tkð Þ=τ jA jG j uk−uk−1ð Þ− f exti ¼ 0

ð26Þ
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Rewriting (11) and (12), the displacement u and the veloc-
ity v can be expressed in recursive forms as follows.

ui ¼ u0 þΔtiv0 þΔt2
1

2
−β

� �
a0 þΔt2 1−γð Þ i−1ð Þa0

þ
Xi−1
k¼1

Δt2 iþ γ−k−
1

2

� �
ak þΔt2βai ð27Þ

vi ¼ v0 þ 1−γð ÞΔta0 þΔt
Xi−1
k¼1

ak þΔtγai ð28Þ

Note that the above recursive equations only depend on the
acceleration. Substituting these recursive equations into the
residual equations (26), and rearranging the involved terms,
the residual equation can be expressed in terms of the past
history of the accelerations (29).

Ri ¼ ~Mai þGiu0−G∞u0 þ KT−Khistð Þ u0 þΔt i−1ð Þv0 þΔt2
1

2
−β

� �
a0 þΔt2 1−γð Þ i−2ð Þa0

� �

þ KT
1

2
þ γ

� �
−Khistβ

� �
Δt2ai−1 þKT Δtv0 þ 1−γð ÞΔt2a0

� �þXi−2
k¼1

Δt2 KT−Khistð Þ iþ γ−k−
3

2

� �
þKT

� �
ak

þ
Xi−1
k¼1

Xm
j¼1

e− ti−tkð Þ=τ jA jG j Δtv0 þΔt2 1−γð Þa0 þΔt2 γ−β þ 1

2

� �
ak−1 þΔt2βak þ

Xk−2
l¼1

Δt2al

 !
− f exti

ð29Þ

Then, each residual is expressed as a function of the acceler-
ation history.

Ri ¼ Ri d; ai; ai−1;…; ; a1; a0ð Þ ¼ 0
for i ¼ 0; 1; 2;…;N

ð30Þ

However, the derivative of the acceleration in Equation (25)
remains an implicit quantity. To resolve the implicit derivative,
adjoint variableλ is introduced (Haug andArora 1978), and then
multiplied by each residual to annihilate the implicit derivative.

ai ¼ ai þ
Xi

k¼0

λT
kRk ð31Þ

where the multiplier λk is the adjoint variable corresponding
each residual equation. Then, the sensitivity is obtained by
taking the derivative of the acceleration ai with respect to d.

a
0
i ¼ a

0
i þ
Xi

k¼0

λT
k
∂Rk

∂d
þ
Xi

k¼0

λT
k

Xk
l¼0

∂Rk

∂al
a

0
l

 !
ð32Þ

Rearranging (32) yields

a
0
i ¼

Xi

k¼0

λT
k
∂Rk

∂d
þ Iþ λT

i
∂Ri

∂ai

� �
a

0
i

þ
Xi−1
k¼0

Xi

l¼k

λT
l
∂Rl

∂ak

 !
a

0
k ð33Þ

In the above equation, the adjoint variable λi is arbitrary. To
vanish the implicit derivatives of the acceleration at the last

time step a
0
i, the multiplier of the last residual equation is

assigned by

λi ¼ −
∂Ri

∂ai

� 	−1
ð34Þ

Also, the implicit derivatives of the previous acceleration
should vanish. Expanding the last summation in (33), it be-
comes

a
0
i ¼

Xi

k¼0

λT
k
∂Rk

∂d
þ Iþ λT

i
∂Ri

∂ai

� �
a

0
i

þ λT
0

∂R0

∂a0
þ λT

l

∂R1

∂a0
þ⋯þ λT

i
∂Ri

∂a0

� �
a

0
0

þ λT
1

∂R1

∂a1
þ λT

2

∂R2

∂a1
þ⋯þ λT

i
∂Ri

∂a1

� �
a

0
1

⋯
þ λT

i−1
∂Ri−1

∂ai−1
þ λT

i
∂Ri

∂ai‐1

� �
a

0
i−1

ð35Þ

In order to annihilate the implicit derivatives, the adjoint
problem is defined by

λT
i−1

∂Ri−1

∂ai−1
þ λT

i
∂Ri

∂ai−1
¼ 0

⋯ ¼ 0

λT
1

∂R1

∂a1
þ λT

2

∂R2

∂a1
þ⋯þ λT

i
∂Ri

∂a1
¼ 0

λT
0

∂R0

∂a0
þ λT

1

∂R1

∂a0
þ⋯þ λT

i
∂Ri

∂a0
¼ 0

ð36Þ

Sensitivity analysis of non-viscously damped dynamic systems 2201



Rewriting the above equation, the multipliers of previous
steps are given by

λk ¼ ∂Rk

∂ak

� 	−1
−
Xi

l¼kþ1

λT
l
∂Rl

∂ak

 !

for k ¼ i−1; i−2; …; 1; 0

ð37Þ

where λi at time ti is the multiplier given in (34). The deriva-
tives of the residuals with respect to the acceleration is given
by

∂Rl

∂ak
¼ δl;k ~Mþ KT

1

2
þ γ

� �
−Khistβ

� �
Δt2δl−1;k

þΔt2 KT−Khistð Þ l þ γ−k−
3

2

� �
þKT

� �

þ
Xm
j¼1

e− tl−tkþ1ð Þ=τ jA jG j Δt2 γ−β þ 1

2

� �� �
þ
Xm
j¼1

e− tl−tkð Þ=τ jA jG j Δt2β

 �

þ
Xl−1
k¼1

Xm
j¼1

e− tl−tkð Þ=τ jA jG jΔt2

ð38Þ

Then, the derivative of the acceleration ai with respect to
the density d is given by

a
0
i ¼

Xi

k¼0

λT
k
∂Rk

∂d
ð39Þ

This procedure may be considered as an extension of the
time-dependent adjoint method (James andWaisman 2015) to
dynamic problems. After obtaining the sensitivity of the ac-
celeration, the sensitivities of the velocity and the displace-
ment with respect to the design variables d are easily obtained
by the chain rule.

v
0
i ¼

Xi

k¼0

∂vi
∂ak

a
0
k and u

0
i ¼

Xi

k¼0

∂ui
∂ak

a
0
k ð40Þ

The derivatives of the velocity and the displacement with
respect to the acceleration are obtained by differentiating (27)
and (28).

∂vi
∂ak

¼ Δt þ δi;kΔtγ ð41Þ

∂ui
∂ak

¼ Δt2 iþ γ−k−
1

2

� �
þ δi;kΔt2β ð42Þ

Then, the sensitivity of the response function f can be ob-
tained by inserting (39) and (40) into (25).

The entire procedure of the sensitivity analysis is
illustrated in Fig. 2. The sensitivity analysis loop is
started with the transient responses (i.e., ai, vi and ui)
obtained by the Newmark method (23). In the loop, the
adjoint equations are solved to evaluate the adjoint var-
iable λ ((34) and (37)). The derivative of the residual
equations can be obtained by modifying the residual
equations as a-form residual equations which are de-
rived by using the recurrence formulas of the velocity
and the displacement ((27) and (28)). Then, the sensi-
tivity of the acceleration vector at time ti is evaluated
using the adjoint variables. The sensitivities of the ve-
locity and the displacement are obtained by applying the
chain rule ((41) and (42)). These steps are repeated until
the time step reaches the final time step. Finally, the
sensitivity of the response function is calculated by
using the transient responses and the response sensitiv-
ities (25). Note that the response function f is the most
general form. Therefore, any type of function (e.g.,
∫0Tf(a, v,u)dt and f=uN

2 ) can be treated. The sensitivities
of various response functions are demonstrated in the
next section.

Fig. 2 Flow chart of the proposed sensitivity analysis method
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4 Numerical examples

In this section, three numerical examples are presented
to demonstrate the validity of the proposed method. The
first example is a single-dof non-viscously damped sys-
tem under free vibration. In this simple example, the
sensitivity analysis results are compared with the analyt-
ical solutions. The second example is a single-dof sys-
tem subject to a transient loading. The last example is a
three-dof dynamic vibration absorber subject to a dy-
namic loading with non-zero initial condition. All exam-
ples are solved using unconditionally stable implicit
second-order scheme (i.e., the Newmark approach with
β= 1/4 and γ= 1/2).

4.1 Free response of a single-dof system

In the first example, a single dof non-viscously damped
system shown in Fig. 3 is considered. There is no ex-
ternal force acting on the mass, and non-zero initial
conditions are prescribed. In this example, the mass
m= 27 kg, the non-viscous damper g(t) = 0.2 + 8e− t N/m
and the stiffness k= 0.8 N/m are assumed. The initial
conditions are chosen as initial displacement u0 = 0.1 m
and velocity v0 = 0 m/s.

For the single-dof non-viscously damped system, an
analytic solution can be obtained by employing the
Laplace transformation of the equations of motion.
Taking the Laplace transform of the equations of motion
(6) gives

U sð Þ ¼ F sð Þ þMv0 þ sMu0
s2Mþ sG sð Þ þK

ð43Þ

where G(s) is the Laplace transform of the generalized
Maxwell model given by

G sð Þ ¼ G∞

s
þ
Xm
j¼1

G j

sþ 1

τ j

ð44Þ

Then, the displacement in the time domain can be obtained
by taking inverse Laplace transformation u(t) =ℒ− 1{U(s)}.
The sensitivity of the displacement can also be obtained

by taking inverse Laplace transformation of the following
equation.

u
0
tð Þ ¼ ℒ −1 U

0
sð Þ

n o
ð45Þ

For different time step sizes, the displacement and its
sensitivities are compared with the exact ones. Figure 4
shows the accuracy of the displacement response. The
accuracy is low when a relatively large time increment
(i.e., Δt= 1) is considered. The discrepancy between the
approximate displacement and the exact one gradually
decreases as the time increment size decreases. In the
sensitivity calculation, the mass m and the stiffness k
are chosen as the design variables. The sensitivity re-
sults for different time steps are shown in Figs 5 and 6.
The discrepancies between the calculated sensitivities
and the exact ones also decrease as the time increment
size decreases. However, these discrepancies are inher-
ent in time discretization. The errors might be negligible
when a small enough time step is considered.

In this example, the consistency of the sensitivity is dem-
onstrated by introducing a response function. For transient
problems, a quadratic function of time integral of

Fig. 4 Displacement of the single dof system for different time steps

Fig. 3 Single-dof non-viscously damped system
Fig. 5 The sensitivity of the displacement with respect to mass m for
different time steps
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displacement or velocity is often chosen as a response func-
tion (Yan et al. 2016; Jensen et al. 2013).

f ¼
Z T

0
αu2 þ 1−αð Þv2
 �

dt ð46Þ

where α is the weighting parameter. In this example, the
weighting parameter is set as α=0.5. The response function
is integrated over T=50 s. To demonstrate the consistency of
the sensitivity, the response function and its sensitivity are
compared with exact solutions. For numerical integration over
the time interval, the response function and its sensitivity can
be approximately evaluated by the trapezoidal summation.

f ≈
XN
n¼0

ωn f tnð Þ and f
0
≈
XN
n¼0

ωn f
0
tnð Þ ð47Þ

where N is the number of time steps, and the weighting factors
of the trapezoidal rule are

2ω0 ¼ ω1 ¼ ω2 ¼ … ¼ ωN−1 ¼ 2ωN ¼ Δt ð48Þ

The relative errors of the objective function and its sensi-
tivity are evaluated by comparing with analytic solutions. The
accuracy of the discrete approximation for the response

function and its sensitivity is depicted in Fig. 7. In the figure,
the difference is normalized by the analytical solutions.

Figure 7 shows the convergence rate of the response func-
tion (blue line) and its sensitivities (yellow and red lines). As
already mentioned, a second-order accurate algorithm is used
to integrate the equations of motion. Therefore, the response
function (blue line) naturally shows second-order conver-
gence rate. Note that both the sensitivities (yellow and red
lines) also show same second-order convergence rate. It dem-
onstrates that the sensitivities are consistent with those of the
time-discretized solutions.

4.2 Forced response of a single-dof system

To demonstrate the proposed method under general tran-
sient loads, a single-dof system is considered with zero
initial condition. The non-viscous damper is expressed
with 3-term Prony series, i.e., g(t) = 3 + 4e− t/0.1 + 2e− t/1 +
1e− t/10 N/m. The mass m = 5 kg and the stiffness
k= 10 N/m are considered. When an arbitrary load is
applied at the system, unlike the previous example, the
solution cannot be obtained analytically even for simple
single dof system. That is, the Laplace transform in

Fig. 7 The accuracy of the discrete approximation for the response
function and sensitivity versus the number of time steps

Fig. 6 The sensitivity of the displacement with respect to stiffness k for
different time steps Fig. 8 Applied loading of the single-dof system

Fig. 9 Forced responses of the single-dof system
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(42) cannot be inverted analytically. The time history of
the applied load is shown in Fig. 8. The time step used
in the time integration is Δt= 0.1 s (Fig. 9).

To illustrate the accuracy of the sensitivities, the sen-
sitivities are compared with the results from the finite
difference method. (i.e., the approximated sensitivity is
f ′ ≈ f d þΔdð Þ− f dð Þð Þ=Δd. Figure 10 shows the accura-
cy of sensitivities for the transient responses with re-
spect to the mass m compared to the results from the
finite difference method with Δm= 0.5 (10% perturba-
tion) and Δm= 0.005 (0.1% perturbation). The sensitiv-
ities analysis results show good agreements with the
results from the finite difference method. The sensitivi-
ties with respect to the stiffness k are shown in Fig. 11.
The sensitivities obtained by the proposed method also
show good agreements with the results approximated by

the finite difference method. Therefore, it is verified that
the proposed method is also applicable to non-viscously
damped systems under general transient loads.

Fig. 10 The sensitivities of the transient responses with respect to mass
m obtained by the proposed method and finite difference method; (a)
acceleration; (b) velocity; (c) displacement

Fig. 11 The sensitivities of the transient responses with respect to
stiffness k obtained by the proposed method and finite difference
method; (a) acceleration; (b) velocity; (c) displacement

Fig. 12 Schematic of a dynamic vibration absorber system
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4.3 Dynamic vibration absorber

Apractical application is considered to demonstrate the proposed
approach in themulti-dof system,which is represented in Fig. 12.
The dynamic vibration absorber generally consists of springs and
non-viscous dampers, which are connected to a primary system.
For the non-viscous damping materials, rubbers are typically
used for vibration control in real engineering applications.

The objective of the absorber is to mitigate transient vibra-
tions of the primary system. In this system, m1, k1 and g1(t)
represent mass, spring and non-viscous damper of the primary
system. Two dynamic absorbers (i.e.,m2 and m3) are connect-
ed to the primary system m1 by springs and non-viscous
dampers in parallel.

The systemmatrices of the equations of motion are given by

M ¼
m1 0 0
0 m2 0
0 0 m3

2
4

3
5; K

¼
k1 þ k2 þ k3 −k2 −k3

−k2 k2 0
−k3 0 k3

2
4

3
5; and Fext ¼

f tð Þ
0
0

2
4

3
5

with the damping matrix

G tð Þ ¼

g1∞ þ g2∞ þ g3∞ þ
Xm
j¼1

g1j þ g2j þ g3j
� 


e−t=τ j −g2∞−
Xm
j¼1

g2j e
−t=τ j −g3∞−

Xm
j¼1

g3j e
−t=τ j

−g2∞−
Xm
j¼1

g2j e
−t=τ j g2∞ þ

Xm
j¼1

g2j e
−t=τ j 0

−g3∞−
Xm
j¼1

g3j e
−t=τ j 0 g3∞ þ

Xm
j¼1

g3j e
−t=τ j

2
66666666664

3
77777777775

For the numerical calculation, it is assumed that
m1=5 kg,m2 =2 kg,m3 =1 kg, k1 =10 N/m,k2=15 N/m and
k3 =5 N/m. The prony series coefficients of the non-viscous
dampers are given in Table 1. In the table, the terms in
brackets denote the relaxation times.

4.3.1 Sensitivity analysis of the transient response

The sensitivities of the displacement and the velocity are cal-
culated. The initial conditions are u0= [ 0.2 0.1 0 ]T m and

v0 = [ 0 0 0.1 ]Tm/s. It is assumed that the primary systemm1

is excited by a transient external load f(t) shown in Fig. 13.

Table 1 Prony series coefficients of the non-viscous dampers.

N/m g∞ g1(0.1s) g2(1s) g3(10s) g4(100s)

g1(t) 3.0 4.0 2.0 1.0 0

g2(t) 5.0 0 2.0 1.5 0

g3(t) 4.0 0 5.0 3.0 1.0

Fig. 13 Applied loading of the three-dof dynamic absorber Fig. 14 Displacements and velocities of the vibration absorber
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The transient responses can be obtained by solving the
equations of motion. The time step used in the time inte-
gration is Δt= 0.1 s. The displacements and the velocities
of each dof are illustrated in Fig. 14. In the initial stage,
each mass oscillates due to the initial conditions. Then,
the responses also depend on the excited load after
t= 1.0 s. These conditions are the most general condition
in dynamic problems since the dynamic responses depend
on both initial conditions and excited loads. In this gen-
eral condition, the sensitivities of the displacement and
the velocity of each dof are verified.

The sensitivities of the displacement of the velocity with
respect to mass of primary system m1 are shown in Fig. 15.
The sensitivities of the responses of both the primary system
and the dynamic absorbers are compared with the results from
the finite difference method. Figure 16 shows the sensitivities
with respect to the stiffness of the primary system k1. The
results are also compared with the results from the finite dif-
ference method. In both cases, the results from the finite

difference method are obtained using 0.1% perturbation of
each design variable. The results show excellent agreements
with the results from the finite difference method.

4.3.2 Sensitivity analysis of response functions

In the time-domain dynamic problems, various types of re-
sponse functions may be considered (Zhao and Wang 2015;
Zhang and Kang 2014). Among them, two different kinds of
response functions are considered as follows. Firstly, the mean
squared displacement of a target dof during the whole time
interval is chosen as the response function.

f ¼
Z T

0
u2target tð Þdt ð49Þ

The squared displacement can be considered as vibration
response in the time interval. The second one is the mean
dynamic compliance during the whole time interval. It is

Fig. 15 Sensitivity of the
displacement and the velocity
with respect to mass m1
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defined as the work done by the external force F(t) against the
corresponding displacements.

f ¼
Z T

0
uT tð ÞF tð Þdt ð50Þ

In this example, a pulse-like input excitation is applied to
the primary system assuming zero initial conditions.

f tð Þ ¼ sin πtð Þ; 0≤ t≤1
0; 1 < t≤5

�
ð51Þ

The terminal time is T=5.0 s and the time step used in the
time integration is Δt=0.1 s.

The sensitivity analysis results are given in Table 2. The
sensitivity analysis results are compared with the results from
the finite difference method (consider a 0.01% perturbation).
The errors are evaluated as the relative difference between the
two sensitivities which are normalized by the results from the
finite difference method. There are good agreements between
calculated sensitivities and the results from the finite differ-
ence method. In this result, the mass of the second dynamic
vibration absorber m2 is found out to be the most

Fig. 16 Sensitivity of the
displacement and the velocity
with respect to stiffness k1

Table 2 Sensitivity analysis
results of the vibration absorber Design variable Mean dynamic compliance Vibration response

Sensitivity FDM error (%) Sensitivity FDM error (%)

m2 −8.497E-5 −8.497E-5 0.009 −6.148E-4 −6.148E-4 −0.002
m3 −1.645E-5 −1.645E-5 0.008 −2.305E-4 −2.305E-4 0.009

k2 −2.730E-5 −2.730E-5 0.002 2.818E-5 2.818E-5 0.006

k3 −2.177E-5 −2.177E-5 0.001 −2.517E-7 −2.526E-7 0.360
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sensitive design variable in both response funtions. Therefore,
both the dynamic mean compliance and the vibration response
can be effectively reduced with the increase of the mass of the
second vibration absorber. Also, the obtained sensitivities are
applicable to design optmization problems.

5 Conclusions

The design sensitivity analysis method is developed for tran-
sient response of non-viscously damped dynamic systems. It
is assumed that the non-viscous damping force depends on the
past history of velocities via convolution integrals with the
kernel function. The kernel function is modeled by the
Generalized Maxwell model, which has been widely used
for interpreting experimental data. The transient response is
calculated with the Newmark time integration scheme in time
domain. The sensitivity depends on the past history of the
response and the response sensitivity, since the non-viscous
damping force depends on the past history motion. To resolve
this problem, the sensitivity analysis method is developed
using the adjoint variable method (AVM). The discretize-
then-differentiate approach is adopted for deriving discrete
adjoint equations. The accuracy and the consistency are dem-
onstrated by comparing with analytic sensitivity for the single
dof system. The proposed method is also applied to the anal-
ysis of the multi-dof system, and the accuracy of the sensitiv-
ities obtained by the proposed method are confirmed by the
results from the finite difference method. The proposed meth-
od may easily be extended to large-dof systems or finite ele-
ment models.
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