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Abstract This paper presents a new hybrid Particle Swarm
Algorithm (PSO) for optimization of laminated composite
structures. The method combines the standard PSO heuris-
tics with Genetic Algorithm operators in order to improve
the algorithm performance. Thus, operations that are impor-
tant to the optimization of laminated composites such as
mutation and layer swap are incorporated into the method.
A specially designed encoding scheme is used to repre-
sent the laminate variables and the associated velocities. A
study is carried-out to select the best variant of the pro-
posed method for the optimization of laminated composites,
considering different swarm topologies and genetic opera-
tors. Both strength maximization and weight minimization
problems are considered. A meta-optimization procedure is
used to tune the parameters of each variant in order to avoid
biased results. The results showed that the proposed method
led to excellent results for both traditional and dispersed
laminates, representing a significant improvement over the
standard PSO algorithm.
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1 Introduction

Fiber reinforced composite materials have been intensively
studied in last decades, since these materials have high
resistance/weight and stiffness/weight ratios, corrosion and
fatigue resistance, and other interesting properties for struc-
tural applications. These composites are formed from high
strength fibers (e.g. carbon and glass) embedded in a poly-
meric matrix (resin). Typically, several layers with differ-
ent fiber orientations are stacked to obtain more efficient
designs, resulting in a laminated structure.

The design of laminated structures requires the determi-
nation of the number of layers and the characteristics of each
layer (material, thickness and fiber orientation). Since there
are large number of possibilities, the standard trial and error
procedure is not appropriate, and the use of optimization
techniques is attractive (Gürdal et al. 1999).

Due to the presence of discrete variables such as type
of material, thickness, and orientation of fibers, the use
of gradient based optimization methods (Mathematical
Programming) is not suitable. Furthermore, the laminated
optimization is a combinatorial optimization problem NP-
hard (Suresh et al. 2007) and have many local minima
(Kathiravan and Ganguli 2007).

Bio-inspired optimization methods such as Genetic
Algorithms (Kogiso et al. 1994; Liu and Toropov 2013),
Particle Swarm Optimization (Kovács et al. 2004; Chang
et al. 2010; Ghashochi Bargh and Sadr 2012; Lakshmi
and Rao 2013) and Ant Colony Optimization (Aymerich
and Serra 2008; Koide et al. 2013) have been successfully
applied for optimization of composite structures. Moreover,
new meta-heuristics as Quantum Behaved Particle Swarm
Optimization (Omkar et al. 2009; Lakshmi and Rao 2013),
Artificial Bee Colony (Omkar et al. 2011; Apalak et al.
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2014) and Shuffled Frog Leaping Optimization Algorithm
(Fakhrabadi et al. 2013; Lakshmi and Rama Mohan Rao
2013) have also been applied to the optimization of lami-
nated composites.

Although many new metaheuristics have been introduced
recently and some of them may lead to real improve-
ments in the optimization algorithms, this is not always
the case (Weyland 2010; Sörensen 2015; Weyland 2015).
Therefore, instead of proposing a new metaheuristic, this
paper presents a hybrid method for optimization of com-
posite laminates. The standard aspects of PSO are kept, as
swarm neighborhood interaction and particle velocity, but
a hybridization was made by considering other heuristic
operators, as mutation from Genetic Algorithm and specific
operators for laminate optimization, improving the search
strategy of the PSO method for laminated composites.

The proposed algorithm includes a specially designed
encoding scheme for position and velocity of the particles
and an efficient procedure for constraint handling, ensuring
that all particles positions computed along the optimiza-
tion process generate valid layups, which increases the
computation efficiency. The algorithm is validated using
well-known benchmarks and the numerical results show that
the proposed algorithm is efficient for both conventional
and dispersed laminates. Since the algorithm can be used
with different swarm topologies and operators, a compara-
tive study is carried out to find the best variant for the load
maximization and weight minimization problems. A cali-
bration procedure, known as meta-optimization (Pedersen
and Chipperfield 2010), is performed to guarantee that the
best performance of each variant will be considered in the
comparison.

The rest of the paper is organized as follows. Section 2
presents a brief review of analysis of laminated plates.
Section 3 discusses the basic concepts about Particle Swarm
Algorithm. The proposed hybrid algorithm is presented in
Section 4. Section 5 presents the meta-optimization pro-
cedure. The numerical examples are shown in Section 6.
Conclusions are discussed in Section 7.

2 Structural analysis

Laminated plates can be analyzed through the Classical
Laminated Theory - CLT (Daniel and Ishai 2006). Each lam-
ina is treated macroscopically as orthotropic material in the
local axis system (x1, x2, x3), with the local axis x1 parallel
to the fiber orientation, as illustrated in Fig. 1.

According to kinematic hypotheses of CLT, the strains at
a point (ε), with relative position to laminate midplane z,
can be related with the midplane strains by:

ε = ε0 + z κ (1)

Fig. 1 Laminate local axis system

where ε0 corresponds to the membrane strains and κ cor-
responds to the laminate curvatures. This expression can be
written in matrix format as:
⎡
⎣
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γxy
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assuming an elastic-linear behavior in each lamina, the
stress (σ1) × strain (ε1) relation can be expressed in the local
system by:
⎡
⎣
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σ2
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the components of constitutive matrix Q are:

Q11 = E1

1 − ν12ν21

Q12 = Q21 = ν12E2

1 − ν12ν21

Q22 = E2

1 − ν12ν21

Q66 = G12 (4)

where E1 and E2 are the Young’s modulus, G12 is the shear
modulus, ν12 e ν21 are the Poisson ratios of the composite
material.

In the analysis of plates and shells, it is more conve-
nient to deal with stress resultants. These internal forces and
moments can be evaluated by means of integration over the
laminate thickness (t):
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Considering an elastic behavior, the relation between the
stress resultants and the laminate strains can be written in
matrix format as[

N
M

]
=

[
A B
B D

] [
εεε0

κ

]
(6)

where A is the membrane stiffness matrix, D is the bend-
ing stiffness matrix, and B is the membrane-bending cou-
pling matrix. The components of these matrices are given
by:

Aij =
n∑

k=1

Q
k

ij (zk − zk−1)

Bij =
n∑

k=1

Q
k

ij (z
2
k − z2

k−1)

2

Dij =
n∑

k=1

Q
k

ij (z
3
k − z3

k−1)

3
(7)

where n is the number of plies and Qij are the elements of
the material constitutive matrix in the global axis (Daniel
and Ishai 2006). It is important to note that B = 0 for
symmetric laminates.

3 PSO algorithm

Particle Swarm Optimization was proposed by Kennedy and
Eberhart (1995) based on the behavior of animal packs, as
flocks of birds or schools of fish. In the PSO algorithm,
each particle searches for places with food, moving at each
iteration by its velocity, which depends on its own history
(cognitive aspect) and the swarm history (social aspect). In
design optimization problem, the particle position denotes
a design in the search space. At the beginning, the position
(x) and velocity (v) of each particle is generated randomly.
At each iteration, the velocity and position of each particle
are updated according to:

v(i) = w x(i) + c1 r1(x
(i)
P − x(i)) + c2 r2(x

(i)
G − x(i)) (8)

x(i) = x(i) + v(i) (9)

where w is the particle inertia, c1 is the cognitive factor,
c2 is the social factor, r1 and r2 are uniform random num-
bers between 0 and 1, xP is related to the cognitive learning
of the particle, it is considered the best position obtained
by the particle during the process, and xG is related to the
social learning, it is considered the best position obtained by
particle’s neighborhood.

The position considered for xG depends on the swarm
topology. In the initial version of PSO (Kennedy and
Eberhart 1995), xG was the best position obtained by all
particles. This option is known in the literature as Global

Topology, since the particle neighborhood is the entire
swarm. This topology generally leads to a fast convergence,
but makes the algorithm highly susceptible to premature
convergence to non-optimal solutions. Many attempts have
been made to solve the problem of premature convergence,
one of them is to use other swarm topologies (Kennedy and
Mendes 2002; 2006). Two topologies that present good
results are the Ring Topology and the Square Topology. In
the Ring Topology each particle can only be influenced by
other two. The so-called standard PSO, discussed in Bratton
and Kennedy (2007), use this topology. In the Square Topol-
ogy, the swarm is arranged in matrix format, where each
particle has a neighbor in each direction: above, below, right
and left. Figure 2 illustrates the topologies discussed here
for a swarm with nine particles. It is important to note that
these neighborhoods are defined taking into consideration
the index of the particles, thus disregarding the Euclidean
distance between them.

4 Hybrid PSO for laminate optimization

Genetic Algorithms (GAs) are heuristic optimization meth-
ods based in the principles of natural selection. A population
of individuals (solutions) evolves along generations in order
to find the best individual, meaning the best solution for an
optimization problem. In each generation, a set of new indi-
viduals are generated from the old ones by the application
of genetic operators, as crossover and mutation. Individu-
als with high fitness tend to transmit their characteristics
over generations, leading to convergence to the optimum
solution. GAs present good performance in combinatorial
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optimization problems, as Travelling Salesman Problem
(Larrañaga et al. 1999) and Vehicle Routing Problem (Baker
and Ayechew 2003).

GAs are well suited to discrete optimization problems,
while PSO presents a good performance in continuous
optimization problems. Thus, the combination of both
heuristics can result in a robust optimization method for
both types of problems. In the optimization of composite
structures, it is expected that the hybrid algorithm per-
form well in the optimization of conventional laminates
(θ ∈ {0◦, ±45◦, 90◦}) and dispersed laminates (e.g. θ ∈
{0◦, ±5◦, . . . , ±85◦, 90◦}).

The classical PSO algorithm was developed for the
solution of unconstrained optimization problems with con-
tinuous variables. Therefore, it cannot be applied directly
to the design optimization of laminated composites, since
these problems involve constraints and discrete variables.
Thus, this work presents an improved algorithm for laminate
optimization obtained combining the classical PSO heuris-
tics with some genetic operators. The proposed algorithm
incorporating these features is discussed in the following
sections.

4.1 Codification

A special encoding scheme was adopted to allow the use
of PSO in the optimization of composite laminates with
discrete variables. In this scheme, the particle position is
represented by an integer matrix, where each row repre-
sents a variable type (thickness, orientation and material)
and each column represents a laminate ply.

The decoding process is illustrated in Fig. 3. It is impor-
tant to note that this process is capable of handling sym-
metric and balanced laminates automatically, allowing the
reduction of the number of design variables. In symmetric
laminates, each variable represents two symmetrical layers
in relation to the laminated midplane. Thus, the number of
variables is half the number of layers. When considering
symmetric and balanced laminates, each variable represents
two adjacent layers with the same material and thickness,
but opposite orientations. Then, both layers have their cor-
respondent symmetric pairs, resulting in 4 layers for each
variable. Therefore, the number of variables are the quar-
ter part of the number of layers. As an example, when the
variables shown in the Fig. 3 are decoded as symmetric
and balanced laminate, the generated layup is [0(0.1,CE)

2 ±
45(0.4,GE) 90(0.2,CE)

2 ]s .
The particle velocity is represented by matrix of iden-

tical dimensions, but containing real numbers. Therefore,
after the position update using (9), the resulting values are
rounded to the closest integer.

a) General laminates.

b) Symmetric laminates.

Fig. 3 Decoding process

4.2 Constraint handling

It is important to note that the position update using (9) can
make some particles to leave the search space defined by the
lower and upper bounds of each design variable. In many
works, particles that are outside the search space are not
evaluated and their cognitive learning (xP ) are not updated
until they return into the search space. Furthermore, a max-
imum velocity modulus vmax is considered to limit particle
velocity. This approach is known in the literature as “letting
the particles fly”. The influence of the maximum velocity
modulus in the optimization is studied in Eberhart and Shi
(2000).

In the proposed algorithm the particles are not allowed to
leave the search space and the side constraints are handled
by the method explored in Clerc (2012), in the variant SPSO
2011. Thus, if a particle exits the search space after appli-
cation of (9), the variable that violated the side constraint
assumes the bound value. The component of the particle
velocity associated to the violated variable is modified, as
illustrated in Fig. 4. This procedure ensures that all particles
positions computed along the optimization process generate
valid layups, increasing the computation efficiency.
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a) Position update. b) Check variable bounds. c) Correct variables values and modify velocity. d) Pseudo-code.

xi xi + vi

for each var do
  if (Infvar > xi

var)
    xi

var = Infvar

    vi
var = - 0.5 vi

var

  else if (Supvar < xi
var)

    xi
var = Supvar

    vi
var = - 0.5 vi

var

  end if
end for

Fig. 4 Handling side constraints

The other constraints are considered in the optimization
using the adaptive penalty function proposed by Deb (2000).
Although PSO algorithm can be formulated without using a
penalty function by ignoring the infeasible particles in the
velocity update, the use of a penalty approach allows the
consideration of valuable information from slightly infea-
sible solutions. This aspect is important for the Ring and
Square Topologies, where the neighborhoods are small,
and all particles in the neighborhood may be infeasible at
a given iteration. Thus, the penalized objective (fp) for
minimization problems is defined by:

fp(x) =
⎧⎨
⎩

f (x), if x is feasible.

fmax +
m∑

l=1
max(cl(x), 0), otherwise.

(10)

where fmax is the objective function of the worst feasible
solution, c represents the constraints, and m is the number
of constraints considered in the problem. This function were
chosen since it does not require user defined penalty factors.

4.3 Mutation operator

The mutation operator is used in the Genetic Algorithms to
maintain the diversity of the population and avoid premature
convergence to non-optimal solutions. The use of muta-
tion in the PSO to avoid premature convergence has been
addressed by some authors (Nakisa et al. 2014). Higashi and
Iba (2003) combined the PSO algorithm with a Gaussian
Mutation operator and studied its performance in a set of
benchmarks. The modified PSO version outperformed both
the standard PSO and the standard GA. Ratnaweera et al.
(2004) applied the mutation operator in the particle veloc-
ity, and introduced the use of linear time-varying cognitive
and social factors. The results showed significant improve-
ment in the effectiveness of the modified PSO in multimodal
benchmarks.

On the other hand, in the present work the mutation oper-
ator is applied to the particle position. The operator acts

in each variable of the problem (thickness, orientation and
material), having a small probability (pmut ) to trigger a
mutation event. First, a random number between 0 and 1 is
taken, if this number is less than or equal to pmut , then a new
value is generated for the variable (an integer between the
lower and upper bound of the variable). Figure 5 illustrates
the application of the mutation operator.

4.4 Laminate operators

Special operators have been applied in the optimization of
laminated structures, notably in the context of Genetic Algo-
rithms. The motivation to use these operators is to add local
search mechanisms to the optimization method. The opera-
tors used in this work are Layer Swap, Layer Addition and
Layer Deletion.

The use of permutation operations may play an important
role in optimization strategy for different problems. Chang
et al. (2010) proposed a PSO algorithm for permutation
problems (PDPSO), defining a different position update rule
to handle only permutation operations. Permutation Genetic
Algorithms were also explored in Liu et al. (2011, 2015) in
the context of bilevel optimization of composite structures.

The Layer Swap operator was proposed by Le Riche and
Haftka (1993) to improve the GA performance in the opti-
mization of composite laminates. This operator was also
successfully used in other works (Riche and Haftka 1995;
Soremekun et al. 2001; Rocha et al. 2014). This operator
is applied with a given probability (pswap) and swaps the
positions of two plies in the layup, as shown in Fig. 6. On

3 2

5 1 3

22

Mutate

3 2

5 3 3

22 44

4 444

Fig. 5 Mutation operator acting in the orientation of the second ply
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Fig. 6 Swap operator

the other hand, the probability of a particle update corre-
sponding exactly to a permutation of two plies is very low.
It is important to note that, in the context of the Classical
Laminated Theory, the swap of two plies modifies the bend-
ing stiffness (D), but does not affect the membrane stiffness
(A). Therefore, this operator is important for problems with
deflection, buckling, and natural frequency constraints.

The Layer Addition and Layer Deletion operators are
used in minimization problems, where the number of lami-
nate plies is not constant. In this work, the first code related
to thickness represents zero, and this value is decoded as the
absence of layer, reducing the number of plies of the layup
(see Fig. 7). The Layer Deletion operator has a probability
pdel to set the thickness value to zero, resulting on the layer
removal. The Layer Addition operator has a probability padd

to reactivate a previously removed layer. It is worth pointing
out that the laminate encoding used in this work allows the

Fig. 7 Addition and deletion operators

position update by (9) to add and delete layers, since it can
modify the layer thickness directly.

The flowchart of the proposed Hybrid Laminate PSO
algorithm is presented in the Fig. 8. Furthermore, a pseudo-
code of the proposed algorithm is presented in Fig. 9. It
can be noted that the mutation and laminate operators are
applied after the particle position is updated using (9).
The maximum number of iterations is used as termination

Fig. 8 Flowchart of hybrid laminated PSO
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criteria in this work. Nevertheless, other termination crite-
ria can also be used. Furthermore, it is important to note
that the proposed hybridization has a very small impact in
the running time of the PSO algorithm, since the additional
operations are simple and efficient in comparison with the
evaluation of the structural responses.

4.5 Algorithm variants

Several variants of the proposed algorithm can be obtained
combining different swarm topologies and genetic opera-
tors. The performance of these variants should be properly
assessed. To this end, some variants of the method are
analyzed in the calibration process and numerical exam-
ples. These variants have been selected considering differ-
ent operators and swarm topologies: Particle Swarm with
Global Topology (PSO - G), with Ring Topology (PSO
- R), with Square Topology (PSO - S) and with Global
Topology and Mutation operator (PSO - GM). The method
considering the Swap operator, with Global Topology and
Mutation (PSO - GMS), with Ring Topology (PSO - RS) and
with Square Topology (PSO - SS). The method considering
the laminate operators Addition and Deletion with Global
Topology and Mutation operator (PSO - GMAD), with Ring
Topology (PSO - RAD) and with Square Topology (PSO -
SAD). The variant MOL presented in Pedersen and Chipper-
field (2010), which uses Global Topology and remove the
cognitive learning behavior of the method (setting c1 = 0),
is also considered. Table 1 shows each algorithm variants
with its topology and genetic operators.

Create the vectors x, xP and v;
Initialization(x,v);
Evaluate(x);
Penalty(x);

xP x;

for Each iteration until MaxIter do
for Each particle i do

xG GetNeighborBest(xP, i);
vi EvaluateVelocity(xi,vi,xi

P,xG);
xi xi + vi;

xi Mutate(xi);

xi LayerSwap(xi);
xi LayerAdd(xi);
xi LayerDel(xi);

Evaluate(xi);
Penalty(xi);
Update(xi

P);
end

end

Fig. 9 Pseudo code of the proposed algorithm

Table 1 Algorithm variants

Algorithm variant Topology Genetic operators

MOL Global

PSO - G Global

PSO - R Ring

PSO - S Square

PSO - GM Global [pmut ]

PSO - GMS Global [pmut , pswap]

PSO - GMAD Global [pmut , padd , pdel]

PSO - RS Ring [pswap]

PSO - RAD Ring [padd , pdel]

PSO - SS Square [pswap]

PSO - SAD Square [padd , pdel]

5 Meta-optimization

The parameters used in an optimization method influence
its performance. Unfortunately, the best parameters of an
optimization method can be different for distinct prob-
lems, or even for a single problem if a different number of
evaluations is considered (Pedersen 2010). Therefore, it is
important to consider a set of different problems to define
the default parameters of an optimization method.

Traditionally, the parameter tuning has been done by
trial and error, guided by the user’s experience and rec-
ommendations found in the literature. Some works (Shi
and Eberhart 1998; Trelea 2003) have tuned the parame-
ters of the optimization algorithm using a set of benchmarks
examples, including multimodal functions with many local
minima. Despite being an initial reference, there is no guar-
antee these parameters will lead to a good effectiveness for
other problems.

One way to avoid the choice of the parameters is
to use adaptive parameters. Some works used PSO with
linear time-varying parameters (Shi and Eberhart 1999,
Ratnaweera et al. 2004, Arani et al. 2013). An exploratory
behavior can be obtained at the initial iterations by setting
large values for inertia and cognitive factors while keeping
the social factor small (e.g w = 1.1, c1 = 2.0 and c2 =
0.0). Varying linearly these values during the optimization
results in a exploitation behavior at the final iterations (e.g
w = 0.4, c1 = 0.0 and c2 = 2.0). Rao and Anandakumar
(2007) proposed a PSO algorithm with self-adapted param-
eters during the optimization, showing improvements over
some PSO variants. This self-adaptive strategy are also used
in the multiobjective optimization of laminated composites
in the Rao and Lakshmi (2011).

Although these studies show improvements in spe-
cific problems, the No-Free Lunch theorem (Wolpert and
Macready 1997) ensure that it is not possible to these adap-
tive parameters lead to improvements for all problems.
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Therefore, in this work the problem of choosing the best
parameter values for the optimization algorithm is treated
as an optimization problem. This procedure is known in the
literature as meta-optimization (Pedersen and Chipperfield
2010).

The meta-optimization process uses an optimization
algorithm for tuning the parameters of another optimiza-
tion algorithm, using a given set of problems. Normally,
the objective function in the meta-optimization is the best
value found by the optimizer. It is important to note that due
to the non-deterministic nature of bio-inspired algorithms,
many optimizations have to be processed to evaluate a single
meta-optimization solution, in order to reduce the stochas-
tic noise. For this reason, the meta-optimization process
is very expensive computationally, and the use of parallel
computation is highly recommended.

It is worth noting that there are few papers in this
area, mainly due to the high computing power required.
Grefenstette (1986) used a genetic algorithm to calibrate the
parameters of another instance of GA. A similar approach
was done by Meissner et al. (2006), using PSO to calibrate
PSO parameters. Pedersen and Chipperfield (2010) used
meta-optimization with PSO on neutral networks problems.
Smit and Eiben (2009) discussed alternatives to realize
meta-optimization on evolutionary algorithms.

In this paper, the optimization algorithm is calibrated
for a set of laminated plate problems, considering two
classes of problems: load factor maximization and weight
minimization.

5.1 Swarm size and iteration number ratio

The ratio between swarm size and the number of iterations
(the same as population size and number of generations
in other types of evolutionary algorithms) is an impor-
tant parameter that influences on the algorithm results. To
describe this relation, a new parameter ρ is considered for
each optimized algorithm. With the value of this parame-
ter and the number of evaluations (Neval), the number of
particles on the swarm (SwarmSize) can be evaluated by:

SwarmSize = round(
√

ρ Neval) (11)

After obtained the SwarmSize, the number of iterations
can be evaluated by:

IterNum = round

(
Neval

SwarmSize

)
− 1 (12)

5.2 Algorithm

This work used PSO as meta-optimizer, considering the
swarm topology and parameters given in Bratton and

Table 2 Meta-optimization variables range

Parameters Values

ρ [0.25, 0.26, . . ., 3.99, 4.00]

w [0.00, 0.01, . . ., 1.99, 2.00]

c1 [0.00, 0.01, . . ., 3.99, 4.00]

c2 [0.00, 0.01, . . ., 3.99, 4.00]

pmut [0.00, 0.01, . . ., 0.49, 0.50]

pswap [0.00, 0.01, . . ., 0.49, 0.50]

padd/del [0.00, 0.01, . . ., 0.49, 0.50]

Kennedy (2007), the so-called standard PSO. The optimiza-
tion parameters are treated as discrete variables. The range
of each variable is presented in the Table 2.

The objective function to be maximized in the meta-
optimization procedure is evaluated by the relation between
the mean objective function (fobj ) obtained over Nopt opti-
mizations and the best objective function (fbest ) of the
problem:

Mfobj =

Nopt∑
i=1

fobj

Nopt

fbest

(13)

Considering a set of problems, the meta-objective func-
tion (Mf obj ) is calculated by averaging the meta-objectives
in each problem:

Mf obj =

Nprob∑
i=1

Mfobj

Nprob

(14)

Figure 10 shows the meta-optimization process. It is
important to note that (13) was written for maximization
problems. In the case of minimization problems, the meta
objective function is evaluated by:

Mfobj = fbest

Nopt∑
i=1

fobj

Nopt

(15)

p
Mfobj

MetaOpt

Optimizer

Prob1 Prob2 ProbNp...

Fig. 10 Meta optimization process
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5.3 Problem set

The meta-optimization procedure performed in this work
considered a set of problems of the same class to cali-
brate the parameters of each variant. Two different classes
of laminate optimization problems were considered: load
factor maximization and weight minimization. The number
of optimizations (Nopt ) in each meta objective evaluation
is 100. Due to the high computational cost, the meta-
optimizations were performed on a SGI Cluster, with a total
of 144 cores on processors AMD Opteron (TM) 6234 with
2,4 MHz frequency.

The first problem set used for parameter tuning is the
load factor maximization of a simply supported laminated
plate under biaxial compression (see Fig. 11). This prob-
lem was studied by others researchers (Kogiso et al. 1994;
Aymerich and Serra 2008; Koide et al. 2013). The objective
is to maximize the failure load, considering the Maximum
Strain Criterion and buckling load factor.

According to the Maximum Strain Criterion, the material
fails when it reaches its strain limits. For thin-walled lami-
nates subjected to compressive loads, these limit strains are
εu

1 , εu
2 and γ u

12. A safety factor (Sf ) is used to define an
allowable limit of the material. Thus, the load factor is eval-
uated by the relation

εu
i

εk
i Sf

. These factors are computed at

bottom and top of each ply and the the smallest one is taken
as the laminate load factor:

λs = min
k

(
min

(
εu

1

Sf |εk
1|

,
εu

2

Sf |εk
2|

,
γ u

12

Sf |γ k
12|

))
(16)

The buckling load factor (λb) of simply supported lami-
nate plates can be evaluated by Jones (1999):

λb

π2
= D11

(p
a

)4 + E
(p

a

)2 ( q
b

)2 + D22
( q

b

)4

(p
a

)2
Nx + ( q

b

)2
Ny

(17)

where E = 2(D12 + 2D66), Dij are components of the
bending stiffness matrix of the composite, a and b are the
dimensions of the plate, p and q are the number of half
waves in x axis and y axis, respectively. This expression

Fig. 11 Laminate plate under biaxial loading

Table 3 Material properties for Graphite-Epoxy (GE)

E1 E2 G12 ν12 Ultimate Strain

(GPa) (GPa) (GPa) εu
1 εu

2 γ u
12

138 9.0 7.1 0.3 0.008 0.029 0.015

is evaluated for a large number of p and q values and the
smallest λb is the buckling safety factor.

The objective function is the failure load factor:

λ = min(λb, λs) (18)

The problem considers one constraint limiting the max-
imum number of contiguous plies with same angle. There-
fore, the load factor maximization problem is given by:

Find x = [θ1, θ2, . . . , θNv] that

Maximize λ

Subject to

Max contiguous plies ≤ cpmax

where x is a vector of plies orientation, Nv is the number
of optimization variables, cpmax is the maximum number
of contiguous plies with the same angle. A set of different
problems was generated considering various load cases and
plate sizes. In all cases, the laminate is symmetric and bal-
anced, the material is Graphite-Epoxy (see Table 3) with
thickness of 0.127 mm. The fiber orientation is restricted to
0◦, 45◦ or 90◦. Note that the Layer Addition and Layer Dele-
tion operators are not used in this example, since the number
of layers is fixed.

In all cases the dimension a and load Nx are fixed in
508mm and 175 N/m. The values of b and Ny are defined
according to b/a and Ny/Nx ratios. The following values
are used for b/a: 0.25, 0.50, 0.75, 1.00, 2.00, 3.00, 4.00. For
Ny/Nx : 0.25, 0.50, 0.75, 1.00. Table 4 shows the best objec-
tive function (the maximum load factor) of each case, where
a total of 28 problems are defined. The buckling criterion
was dominant in these results at the ratio b/a = 0.5 onwards.
The Tables 5 and 6 shows the best parameters found by

Table 4 Best objectives (fbest ) in the maximization problem set

Ny/Nx

b/a 0.25 0.50 0.75 1.00

0.25 12690.7 10007.8 7967.54 6617.98

0.50 3447.57 2550.72 2024.23 1677.01

0.75 1517.08 1160.12 939.145 788.882

1.00 936.839 780.699 669.171 585.525

2.00 494.275 466.815 442.246 419.251

3.00 465.200 452.958 441.344 413.043

4.00 455.328 448.430 441.737 413.624
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Table 5 Parameter calibration in the maximization problem set

Algorithm ρ w c1 c2 pmut pswap

PSO - G 3.17 0.89 1.49 0.45

PSO - GM 0.31 0.56 1.35 0.51 19 %

MOL 0.25 1.03 1.00

PSO - R 0.25 1.02 0.81 0.54

PSO - S 2.12 0.79 1.07 0.85

PSO - GMS 0.34 0.28 0.47 0.72 3 % 14 %

PSO - RS 0.25 0.56 1.56 0.83 8 %

PSO - SS 0.37 0.51 0.57 0.9 9 %

each method, as well the best meta-objectives reached by
each one. The three methods that had higher meta-objective
values are marked in bold.

The results show that the use of Layer Swap opera-
tor improves the meta-objective functions, representing an
important feature of the algorithm for this kind of problems.
It can be noted that Mutation operator yields improvement
too. In addition, the variant PSO - GMS obtained the best
results.

The second problem set considers a similar example with
dispersed laminates. These laminates features angles with
differences smaller than the traditional laminates, which
have 
θ = 45◦(θ ∈ [0◦, ±45◦, 90◦]). The use of dis-
persed laminates enables to increase the loading capacity of
fiber reinforced composite structures. Sebaey et al. (2011)
studied the optimization of dispersed laminated using ACO,
increasing the buckling load of composite panels subject to
biaxial loading up to 8 %. It is expected that the PSO meta-
heuristic presents good performance in dispersed laminates,
as the small increments between allowable orientations
allow these variables become almost continuous, for which
PSO was originally formulated.

This meta-optimization consider a 
θ = 15◦, resulting in
the following orientations: 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦.

Table 6 Meta-objective best values in maximization problem set

Algorithm Mf obj

PSO - G 0.9979

PSO - GM 0.9988

MOL 0.9961

PSO - R 0.9964

PSO - S 0.9982

PSO - GMS 0.9997

PSO - RS 0.9989

PSO - SS 0.9995

Table 7 Best objectives (fbest ) in the maximization problem set
considering 
θ = 15◦

Ny/Nx

b/a 0.25 0.50 0.75 1.00

0.25 13442.5 10484.2 8357.13 6900.40

0.50 3564.13 2699.46 2114.29 1737.56

0.75 1569.56 1200.25 971.631 816.170

1.00 936.839 780.699 669.171 585.525

2.00 531.549 501.845 466.904 434.391

3.00 522.398 499.792 464.401 430.641

4.00 519.543 499.766 464.814 431.275

The same material, dimensions and loading used in the last
example are considered. A new set of best solutions was
evaluated and is shown in the Table 7. Is worth emphasiz-
ing that the use of dispersed laminated allowed an increased
load capacity of up to 14 %.

The best parameters and meta-objective are shown in the
Tables 8 and 9. The PSO - GMS was the better variant.

The third problem set used for parameter tuning is the
minimization of simply supported laminated plate subjected
to biaxial and shear loading (see Fig. 12). This problem was
considered by Lopez et al. (2009). The objective is to min-
imize the weight of the laminate, subjected to a strength
constraint evaluated using the Tsai-Wu Criterion (Tsai and
Wu 1971). According to this criterion, a thin-walled lamina
fails when the following condition is satisfied:

F11 σ 2
1 +2 F12 σ1 σ2 +F22 σ 2

2 +F12 τ 2
12 +F1 σ1 +F2 σ2 ≥ 1

(19)

where Fij are parameters that are evaluated in function of
strength properties XT , XC , YT , YC and S12 (Daniel and
Ishai 2006). Considering a safety factor Sf that multiply the

Table 8 Parameter calibration in the maximization problem set for

θ = 15◦

Algorithm ρ w c1 c2 pmut pswap

PSO - G 1.54 0.74 1.37 0.59

PSO - GM 0.26 0.62 0.88 0.62 6 %

MOL 3.23 0.68 0.78

PSO - R 0.25 0.81 0.76 0.77

PSO - S 0.54 0.76 1.22 0.71

PSO - GMS 0.27 0.19 0.50 0.91 4 % 6 %

PSO - RS 0.25 0.66 0.47 0.91 2 %

PSO - SS 0.26 0.64 0.59 0.73 3 %
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Table 9 Meta-objective best values in the maximization problem set
for 
θ = 15◦

Algorithm Mf obj

PSO - G 0.9980

PSO - GM 0.9986

MOL 0.9956

PSO - R 0.9969

PSO - S 0.9984

PSO - GMS 0.9990

PSO - RS 0.9981

PSO - SS 0.9988

stresses so that the material point is in the failure threshold,
it can be shown that:

S2
f c + Sf d − 1 = 0 (20)

where c = F11 σ 2
1 + 2 F12 σ1 σ2 + F22 σ 2

2 + F12 τ 2
12 and

d = F1 σ1 + F2 σ2. The safety factor is the positive root
evaluated by the expression:

Sf = −d ± √
d2 + 4 c

2 c

Fig. 12 Laminate plate under biaxial and shear loads

Table 10 Material strength properties for the minimization problem
set

XT XC YT YC S21

2062 MPa 1701 MPa 70 MPa 240 MPa 105 MPa

The safety factor is evaluated for all layers, the low-
est of them is used in the constraint. Therefore, the weight
minimization problem is defined as:

Find x = [(e1, θ1), (e2, θ2), . . . , (eNv, θNv)] that

Minimize W

Subject to

Sf ≥ 1

In this work, F12 = 0 was used in the numerical
calculations.

A set of different problems was generated considering
various loads. The laminate is symmetric and balanced. The
length and width of the plate are 1.0 m, each ply is 0.1 mm
thick. The material elastic properties are E1 = 116.600 MPa,
E2 = 7673 MPa, G12 = 4173 MPa, Poisson’s ratio v12 =
0.27, and mass density 1605 kg/m3. The strength properties
are presented in the Table 10.

Nine different problems are used in the meta-
optimization. Each one is related to a load case and is
obtained combining biaxial load and shear load, as shown
in Fig. 12 and Table 11. The obtained results for the
meta-optimization are shown in Tables 12 and 13.

The results show that the use of Layer Addition and Layer
Deletion operators improves the methods for the problem
set. In this case, the variant PSO - SAD presented the best
results.

6 Results and discussion

The Hybrid Laminate PSO variants are explored in this
section. Initially, two benchmarks will be used to validate
the proposed algorithm. Next, the variants are compared
in three examples, based on their reliability and mean best
objective function along the number of evaluations. The
number of optimizations used to trace each curve is 100.

Table 11 Best objectives (fbest ) in the minimization problem set

Nxy (MN/m)

Nx, Ny (MN/m) 0.0 0.5 1.0

Nx = 2, Ny = 2 75.576 81.874 94.470

Nx = 2, Ny = -2 62.980 81.874 100.77

Nx = -2, Ny = -2 31.490 37.788 44.086
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Table 12 Parameter calibration in the minimization problem set

Algorithm ρ w c1 c2 pmut padd = pdel

PSO - G 0.77 1.01 1.03 0.3

PSO - GM 0.3 0.32 3.19 0.7 5 %

MOL 1.92 1.01 0.89

PSO - R 0.25 1.01 1.02 0.51

PSO - S 0.51 1.01 0.67 0.64

PSO - GMAD 0.36 0.36 2.4 0.67 4 % 2 %

PSO - RAD 0.27 0.27 3.38 0.78 4 %

PSO - SAD 0.36 0.36 2.43 0.69 4 %

Finally, the proposed algorithm is applied to a multiobjec-
tive optimization problem.

The reliability (Rel) is defined as the ratio between the
number of optimizations that found the problem best value
(Nbest ) and the total number of optimizations (Nopt )

Rel(%) = Nbest

Nopt

(21)

The variants of the proposed algorithm will be compared
with the Standard PSO (PSO - STD) algorithm presented in
Bratton and Kennedy (2007), which considers a fixed num-
ber of 50 particles and the Ring Topology. Moreover, the
Quantum Behaved PSO (QPSO) and Dynamically Recon-
figurable Quantum PSO (DQPSO) presented in Lakshmi
and Rao (2013) will also be considered. In QPSO, the par-
ticle movement is defined based in the principles of the
Quantum Theory. This method only have one parameter β.
The variant DQPSO improves QPSO considering groups of
sub-swarms and a shuffling scheme. Here, both methods
consider a fixed number of 24 particles and β varying lin-
early from 1.0 to 0.3 along the iterations. In the numerical
examples DQPSO will use 4 groups with 6 particles each
and a shuffling process when 20 %, 40 %, 60 % and 80 %
of the total number of iterations is reached.

Table 13 Meta-objective best values in the minimization problem set

Algorithm Mf obj

PSO - G 0.9739

PSO - GM 0.9811

MOL 0.9473

PSO - R 0.9481

PSO - S 0.9588

PSO - GMAD 0.9820

PSO - RAD 0.9828

PSO - SAD 0.9887

Table 14 Optimal layup found in the maximization benchmarks

Nx/Ny Layup λb λs

0.125 [±45◦
3 90◦

2 (0◦
2 ± 45◦)2 0◦

4 ± 45◦ 0◦
2]s 14261.44 13531.54

[±45◦
4 0◦

4 90◦
2 0◦

2(0
◦
2 ± 45◦)2]s 13930.49 13531.54

[±45◦
3 90◦

2 (0◦
4 ± 45◦)2 ± 45◦ 0◦

2]s 13848.39 13531.54

0.250 [±45◦
2 90◦

2 ± 45◦
3 (0◦

2 ± 45◦ 0◦
2)2]s 12755.55 12690.69

[±45◦ 90◦
2 ± 45◦

4 (0◦
2 ± 45◦ 0◦

2)2]s 12737.44 12690.69

6.1 Benchmarks

Two different benchmarks will be used to assess the accu-
racy and efficiency of the proposed algorithm. The first one
is the problem used in the maximization calibration proce-
dure, which was optimized by Kogiso et al. (1994) using
a GA. The plate dimensions are a = 0.508 m and b =
0.127 m. The load cases considered are Ny/Nx = 0.125
and 0.250, with Nx = 175 N/m. Table 14 shows the opti-
mal layup obtained in each case, which are identical to the
solutions obtained by Kogiso et al. (1994). Table 15 shows
the number of generations x reliability for each method con-
sidered. The number of evaluations used in each variant is
similar the values obtained by Kogiso et al. (1994). It is
worth noting that for the Square Topology sometimes it is
not possible to get a closer value for the number of eval-
uations because of the matrix format that the swarm must
satisfy. The results show that the variants of the proposed
algorithm obtained excellent results.

The second benchmark is the problem used in the min-
imization calibration procedure, which was optimized by
Lopez et al. (2009) using a GA. Three load cases are con-
sidered, the load case 1 is Nx = Ny = 3M N/m and Nxy =
0.5M N/m, the load case 2 is Nx = Ny = −3M N/m

and Nxy = 0.5M N/m and the load case 3 is Nx = Ny =

Table 15 Number of generations x Reliability in maximization
benchmarks

Load case Algorithm Neval Rel (%)

1 GA 525 99

PSO - GMS 520 100

PSO - RS 528 97

PSO - SS 456 99

2 GA 975 78

PSO - GMS 972 76

PSO - RS 976 47

PSO - SS 1020 73
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Table 16 Optimal layups found in the minimization benchmarks

Number of layers

Load case 0◦ ±45◦ 90◦ Total Sf Weight (N)

1 8 60 8 76 1.009 119.662

12 52 12 76 1.000 119.662

8 64 4 76 1.000 119.662

2 8 20 8 36 1.035 56.682

4 24 8 36 1.016 56.682

8 64 4 36 1.016 56.682

3 0 40 0 36 1.104 62.980

4 32 4 36 1.053 62.980

−3M N/m and Nxy = 1M N/m. Table 16 shows the opti-
mal layup obtained in each case, which present the same
weights (objective function) obtained in Lopez et al. (2009).
Table 17 shows the number of generations x reliability for
each method considered. The number of evaluations con-
sidered in each variant is similar to the values obtained
by Lopez et al. (2009). Therefore, the proposed algorithm
obtained excellent results in terms of both accuracy and
efficiency.

6.2 Example 1

This problem consists in the optimization of a laminated
plate subjected to biaxial compression and shear loads
(Chang et al. 2010; Liu et al. 2000). The objective is to max-
imize the buckling load factor, but in this problem the shear
buckling (λsh) is also considered. The shear buckling load

Table 17 Minimization benchmarks results

Load Case Algorithm Neval Rel (%)

1 GA 1460 100

PSO - GMS 1449 97

PSO - RS 1460 100

PSO - SS 1575 99

2 GA 560 100

PSO - GMS 560 95

PSO - RS 564 90

PSO - SS 480 94

3 GA 2180 100

PSO - GMS 2180 98

PSO - RS 2184 99

PSO - SS 2340 100

Table 18 Coefficient β1 for λsh (Chang et al. 2010)

� β1

0.0 11.71

0.2 11.80

0.5 12.20

1.0 13.17

2.0 10.80

3.0 9.95

5.0 9.25

10.0 8.70

20.0 8.40

40.0 8.25

∞ 8.13

can be evaluated approximately by the expression obtained
for a plate with infinite length (Whitney 1987), as:

λsh =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4β1
4
√

D11D
3
22

b2Nxy

1 ≤ � ≤ ∞

4β1
√

D22(D12 + 2D66)

b2Nxy

0 ≤ � ≤ 1

(22)

where the parameter � is computed by:

� = D11D22

D12 + 2D66
(23)

and the parameter β1 is interpolated from Table 18. The
combined buckling load factor (λc) can be approximated by:

1

λc

= 1

λb

+ 1

λ2
sh

(24)

The objective function of the problem is the critical buckling
factor defined as:

λ = min(|λsh|, λc) (25)

The plate is square with edge dimension equal to 24 in.
The loads are Nx = 20000 lb/in, Ny = 2000 lb/in and
Nxy = 1000 lb/in. The laminate is symmetric, balanced and
has a total of 144 plies. Each ply has thickness of 0.005 in
and the fiber orientation can be 0◦, 45◦ or 90◦. The material

Table 19 Material properties for Example 1

E1 E2 G12 ν12

(psi) (psi) (psi)

18.5 × 106 1.89 × 106 0.96 × 106 0.3
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Table 20 Optimal layup of Example 1

Layup λb λc λsh

[±45◦
36]s 0.997079 0.995481 24.9168

properties are presented in the Table 19. The problem is
defined as follows:

Find x = [θ1, θ2, . . . , θNv] that

Maximize λ

Subject to

Max contiguous plies ≤ cpmax

where cpmax is 4, the number of variables (Nv) is 36,
corresponding to 144 symmetric-balanced plies. The param-
eters used by each method are the parameters found in the
first meta-optimization of maximization problem set (
θ =
45◦).

The optimal layup of this problem is given in Table 20.
The Figs. 13 and 14 show, respectively, the reliability and
mean of the best objectives obtained by each algorithm.

According to the results, the best variants were PSO -
GMS and PSO - SS. On the other hand, QPSO, DQPSO,
PSO - R and PSO - GM provided poor results for this exam-
ple. The use of the mutation operator alleviates the problem
of convergence to non-optimal solutions, but can also slow
down the convergence rate. It is also worth noting that the
MOL variant performed better than standard PSO, but was
inferior to most of the variants of the proposed algorithm.

The results also show that the consideration of the oper-
ator Layer Swap leads to significant improvement in all
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variants, especially in PSO - RS. Moreover, the square topol-
ogy (PSO - S) led to excellent results, even when used
without the permutation operator.

6.3 Example 2

The second example is the same one used in the min-
imization meta-optimization procedure discussed in the
Section 5.3. The plate dimensions, material properties and
problem variables are the same described previously. How-
ever, a different loading (Nx = −2 MN/m, Ny = 6 MN/m
and Nxy = 0.5 MN/m) are considered here.

The problem has many optimal solutions, with the min-
imum weight of 144.85 N (considering g = 9.81 m/s2). It
is important to note that stacking sequence does not change
the laminate strength, since only the number of layers of
each angle can change it. Therefore, the permutation opera-
tor (Layer Swap) will not be used in this example. Table 21
show the best layups obtained for this problem. The relia-
bilities and mean of the best solutions are shown in Figs. 15
and 16, respectively.

Table 21 Optimal solutions of Example 2

Number of layers Tsai-Wu failure criteria

0◦ ±45◦ 90◦

92 0 0 1.015

64 8 20 1.005

68 4 20 1.001

68 8 16 1.000
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All variants proposed in this work obtained the optimal
solution and presented a much better performance than the
standard PSO. It is interesting to note that the use of Layer
Add and Layer Del operators did not led to performance
improvement. Thus, these operators may not be necessary,
since the encoding adopted in this work (Section 4.1) allows
the addition and deletion of layers to occur naturally.
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Table 22 Optimal layup of Example 3 (
θ = 45◦)

Layup λb λs

[(90◦
2 ± 45◦)3 ± 45◦

2 (±45◦ 90◦
2)2]s 3568.58 10534.30

[±45◦ 90◦
4 ± 45◦

2 90◦
2 (90◦

2 ± 45◦)2 ± 45◦
2]s 3568.58 10534.30

[90◦
4 ± 45◦

4 (90◦
2 ± 45◦)2 ± 45◦ 90◦

2]s 3568.58 10534.30

6.4 Example 3

The third example is the same used in the maximization
meta-optimization procedure discussed in Section 5.3, but
with different data. The material properties and problem
variables are the same ones described previously, but the
geometry and loading are different. The plate dimensions
are a = 508 mm and b = 203.2 mm (b/a = 0.4), and the
loads are Nx = 175 N/m and Ny = 105 N/m (Ny/Nx =
0.6).

The problem was optimized considering conventional
(
θ = 45◦) and dispersed laminates (
θ = 15◦ and

θ = 5◦). The optimization of conventional laminates was
carried-out using the parameters calibrated with the maxi-
mization problem set for 
θ = 45◦ (Table 5), while the
dispersed laminates were optimized using the parameters
obtained for the maximization problem set with 
θ = 15◦
(Table 8).

The optimal solution using conventional orientations has
λ = 3568.58, corresponding to the buckling factor. The opti-
mization algorithms found multiple optimal solutions and
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some of them are shown in the Table 22. The reliabilities
and mean of the best objectives are shown respectively in
the Figs. 17 and 18.

The results show that all variants of the proposed algo-
rithm presented better performance than the standard PSO
for conventional laminates. Once again, the use of the Layer
Swap operator led to significant performance improvement,
specially for the Ring Topology. The variant PSO - GMS
obtained the best results, but PSO - RS and PSO - SS also
performed well. It is important to note that PSO - GM
obtained good results, contrary to its performance in Exam-
ple 2. The quantum variants also performed better in this
case, but were outperformed by the variants of the proposed
algorithm.

The optimal layups for dispersed laminates with 
θ =
15◦ are shown in Table 23. The reliability and mean of the
best objectives are presented in Figs. 19 and 20. The opti-
mal layup found for dispersed laminates with 
θ = 5◦ is
presented in Table 24. The reliability and mean of the best
objectives are presented in Figs. 21 and 22.

The optimization of dispersed laminates is closer to
a continuous problem than the optimization of conven-
tional laminates. However, even for dispersed laminates, the

Table 23 Optimal layup of Example 3 (
θ = 15◦)

Layup λb λs

[±60◦ ± 75◦ ± 60◦
2 (±60◦ ± 75◦)2 ± 60◦

4]s 3780.64 6238.82

[±60◦ ± 75◦ ± 60◦
2 ± 75◦ ± 60◦

4 ± 75◦ ± 60◦
2]s 3780.64 6238.82
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Fig. 19 Reliability x number of evaluations on Example 3 (
θ = 15◦)

variants of the proposed algorithm presented better perfor-
mance than the standard PSO, MOL and the Quantum PSO
variants, specially with respect to the reliability. As in the
previous examples, the results variants including the Layer
Swap operator performed better than the others. The vari-
ants PSO - GMS and PSO - SS obtained the best results for
dispersed laminates.
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Fig. 20 Mean best x number of evaluations on Example 3 (
θ = 15◦)
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Table 24 Optimal layup of Example 3 (
θ = 5◦)

Layup λb λs

[±65◦
4 ± 60◦ ± 65◦

2 (±60◦ ± 65◦)2 ± 70◦]s 3803.67 5807.15

6.5 Multiobjective optimization

The last problem of this work consists in a minimization of
cost and weight of a hybrid laminated plate subjected to a
buckling constraint (Rao and Lakshmi 2009). Each ply has
thickness equal to 0.127 mm and can be made of graphite-
epoxy or glass-epoxy. The properties of these materials are
shown in Table 25. The bi-objective optimization problem
is defined as:

Find x = [(e1, θ1, m1), (e2, θ2, m2), . . . , (eNv, θNv, mNv)] that
Minimize W and C

Subject to
λb ≤ λlim

with λlim = 100. The laminate is symmetric and balanced,
with θ ∈ {0◦, 45◦, 90◦}. The maximum number of layers
is 200. The Pareto front of the multiobjective optimization
problem can be obtained using the Weighted Compromise
Programming Method (WCP) (Athan and Papalambros
1996). In this method, a single objective is defined con-
sidering weighted objectives. Here, the resultant objective
function is:

fobj =
[
w

W − Wmin

Wmax − Wmin

]m

+
[
(1 − w)

C − Cmin

Cmax − Cmin

]m

(26)
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Fig. 21 Reliability x number of evaluations on Example 3 (
θ = 5◦)
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Fig. 22 Mean best x number of evaluations on Example 3 (
θ = 5◦)

where w is the weight factor of the minimization plate
weight objective, W is the plate weight, C is the plate
cost and m is a numerical factor. Wmin, Wmax , Cmin and
Cmax are the limit values used to normalize the objectives.
Cmin and Wmax are obtained considering only the cost min-
imization objective (w = 0), and Wmin and Cmax are
obtained considering only the weight minimization objec-
tive (w = 1).

Using an appropriate m the WCP method can trace con-
vex and non-convex Pareto fronts. The optimal layups are
obtained by performing single objective optimizations for
different values of w. Here, m = 2 and w vary from 0 to
1 in steps of 0.05. The variant PSO - SS with the param-
eters presented in Table 5 without considering the Layer
Addition and Layer Deletion operators was used to obtain
the Pareto optimal solutions presented in Table 26. The
Pareto front obtained here, as well the points given in Rao
and Lakshmi (2009), are shown in Fig. 23. It can be noted

Table 25 Material properties for composites considered in M

Properties Graphite-epoxy (g) Glass-epoxy (gl)

E1 (GPa) 140.68 44.68

E2 (GPa) 9.13 9.07

G12 (GPa) 7.24 4.64

ν12 0.3 0.27

Density (Kg/m3) 1605.434 1992.95

Cost (U/Kg) 8 1
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Table 26 Results obtained in the bi-objective problem

w Cost Weight NLayer Layup fobj λb

0.00 9.171 89.935 52 [±45(gl)

5 0(gl)

2 90(gl)

2 ± 45(gl)

5 90(gl)

2 ]s 0.000 105.647

0.05 9.171 89.935 52 [±45(gl)

3 90(gl)

2 ± 45(gl)

2 0(gl)

2 ± 45(gl)

6 ]s 0.003 105.823

0.10 9.171 89.935 52 [±45(gl)

4 0(gl)

2 ± 45(gl)

3 0(gl)

2 ± 45(gl)

2 90(gl)

2 0(gl)

2 ]s 0.010 105.216

0.15 12.306 81.672 48 [0(gl)

2 ± 45(g) ± 45(gl)

4 90(gl)

2 ± 45(gl) 0(gl)

2 ± 45(gl) 0(gl)

4 ]s 0.018 116.792

0.20 12.306 81.672 48 [±45(g) ± 45(gl)

10 90(gl)

2 ]s 0.028 117.166

0.25 15.441 73.409 44 [±45(g) ± 45(gl) ± 45(g) ± 45(gl)

8 ]s 0.033 115.579

0.30 15.441 73.409 44 [±45(g)

2 ± 45(gl)

3 0(g)

2 90(gl)

2 0(g)

2 90(gl)

2 0(gl)

2 ± 45(g)]s 0.039 115.382

0.35 18.576 65.146 40 [±45(g)

3 ± 45(gl) 0(gl)

2 ± 45(gl)

2 0(gl)

2 ± 45(gl)

2 ]s 0.038 104.392

0.40 18.576 65.146 40 [±45(g)

3 ± 45(gl) 0(gl)

2 ± 45(gl)

5 ]s 0.036 104.403

0.45 18.576 65.146 40 [±45(g)

3 ± 45(gl)

2 0(gl)

2 ± 45(gl) 90(gl)

2 ± 45(gl)

2 ]s 0.036 104.361

0.50 18.576 65.146 40 [±45(g)

3 ± 45(gl) 0(gl)

2 ± 45(gl)

2 90(gl)

2 ± 45(gl)

2 ]s 0.036 104.410

0.55 18.576 65.146 40 [±45(g)

3 ± 45(gl)

2 0(gl)

2 ± 45(gl)

4 ]s 0.037 104.410

0.60 18.576 65.146 40 [±45(g)

3 ± 45(gl)

3 0(gl)

2 ± 45(gl)

3 ]s 0.038 104.410

0.65 22.417 63.800 40 [±45(g)

3 90(gl)

4 ± 45(gl)

3 0(gl)

2 90(g)

2 ]s 0.040 105.104

0.70 26.258 62.455 40 [±45(g) 0(g)

2 ± 45(g)

2 ± 45(gl) 90(gl)

2 0(gl)

2 ± 45(g) 90(gl)

2 ± 45(gl)]s 0.039 114.834

0.75 30.098 61.110 40 [±45(g)

3 ± 45(gl)

3 ± 45(g)

2 90(g)

2 90(gl)

2 ]s 0.035 109.604

0.80 33.939 59.765 40 [±45(g)

5 ± 45(gl) ± 45(g) ± 45(gl)

2 90(g)

2 ]s 0.028 126.297

0.85 37.780 58.420 40 [±45(g)

2 90(g)

2 ± 45(g)

4 ± 45(gl)

2 ± 45(g)]s 0.018 126.917

0.90 41.620 57.074 40 [±45(g)

4 90(g)

2 ± 45(g) 90(g)

2 ± 45(g) 90(gl)

2 ± 45(g)]s 0.009 129.617

0.95 45.461 55.729 40 [±45(g)

5 90(g)

2 0(g)

2 ± 45(g)

2 0(g)

2 ]s 0.002 133.771

1.00 45.461 55.729 40 [±45(g)

10 ]s 0.000 133.771

that there is a very good agreement between the two fronts,
with the proposed hybrid algorithm presenting a slightly
better solution for the cost minimization problem.

Rao and Lakshmi (2009)
Present
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Fig. 23 Pareto front obtained in the Multi-objective optimization
example

7 Conclusion

A hybrid algorithm for optimization of laminated compos-
ites using discrete variables was proposed in this paper.
This algorithm uses a specially designed variable encod-
ing and combines the PSO heuristics with GA operators.
Several different variants of the proposed algorithm were
generated combining different swarm topologies with dif-
ferent sets of genetic operators. The comparison of the
variants was preceded by the calibration of the algorithm
parameters via meta-optimization, ensuring that best param-
eters were considered for each method, avoiding biased
results. The proposed algorithm presented consistently bet-
ter performance than the standard PSO, the MOL and the
quantum variants. Although these are good algorithms in
general, their performance in the optimization of compos-
ite structures is impaired by the absence of the laminate
operators.

According to the obtained results, the use of permutation
operator led to significant improvements in the algorithm
performance, for both traditional and dispersed laminates.
The use of the Global Topology with mutation operator led
to a good performance. However, the Square Topology also
led to a good performance, even without using the mutation
operator.
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Since an optimization method with fewer input param-
eters is more convenient and easier to use, we suggest
that the variant with Square Topology and without muta-
tion should be considered as the standard for the proposed
PSO method. In addition, this standard variant includes
the permutation operator, but does not include the addition
and deletion operators. Besides being simpler, the standard
variant presents good performance in most of the cases.
However, other variants can present better performance for
specific problems.
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