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Abstract As a typical form of material imperfection, cracks
generally cannot be avoided and are critical for load bearing
capability and integrity of engineering structures. This paper
presents a topology optimization method for generating struc-
tural layouts that are insensitive/sensitive as required to initial
cracks at specified locations. Based on the linear elastic frac-
ture mechanics model (LEFM), the stress intensity of initial
cracks in the structure is analyzed by using singularity finite
elements positioned at the crack tip to describe the near-tip
stress field. In the topology optimization formulation, the J
integral, as a criterion for predicting crack opening under cer-
tain loading and boundary conditions, is introduced into the
objective function to be minimized or maximized. In this con-
text, the adjoint variable sensitivity analysis scheme is de-
rived, which enables the optimization problem to be solved
with a gradient-based algorithm. Numerical examples are giv-
en to demonstrate effectiveness of the proposed method on
generating structures with desired overall stiffness and frac-
ture strength property. This method provides an applicable
framework incorporating linear fracture mechanics criteria in-
to topology optimization for conceptual design of crack insen-
sitive or easily detachable structures for particular
applications.

Keywords Topology optimization . Fracturemechanics . J
integral . Crack . Detachable structures . Adjoint sensitivity
analysis

1 Introduction

Presence of initial cracks due to material imperfections in
engineering structures is inevitable and they may become ex-
tremely dangerous and result in catastrophic structural fail-
ures. In parallel to many studies on various causes of crack
nucleation, increasing structural strength in the presence of
cracks has also gained considerable interest in recent years.
Up to now, there are broadly two types of strategies to address
this issue: the first one is the patch repair (Davis and Bond
1999) or hole drilling techniques (Thomas et al. 2000), which
can be adopted during the structural service; another type of
strategy is structural optimization at the design stage. In the
latter category, effective size and shape optimization tech-
niques to improve the fracture strength of brittle materials
(Eschenauer and Kobelev 1992; Lund 1998; Papila and
Haftka 2003; Peng and Jones 2008) or fatigue life (Serra
2000; Banichuk et al. 2006; Edke and Chang 2011) have been
developed. In most of these studies, fracture strength is mea-
sured by the stress intensity factor, and the fatigue life can be
also related to the stress intensity factor under certain assump-
tions. Prior to the size or shape optimization, a crack needs to
be prescribed and then the fracture mechanics behavior of the
cracked body can be optimized with various methods, e.g.,
gradient-based mathematical programing methods (Lund
1998) and Genetic Algorithm (GA) (Peng and Jones 2008).
Compared with the patch repair or hole drilling techniques,
these approaches offer a rational design tool that allows the
structure itself to suppress cracking or to sustain a required
fatigue life in presence of cracks. However, it is still highly
desired to develop a systematic method to seek the least crack
insensitive structural layout in the conceptual design stage. On
the other hand, in some particular applications, such as the
transfer printing process in MEMS fabrication (Carlson et al.
2012) as shown in Fig. 1 and the demold process of resin
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transfer molding in composite manufacture (Potter 2012), it is
desirable to make detachment of the structure along a given
material interface easier. This just raises the problem of de-
signing a force transmission path allowing easy crack open-
ing, or in other words, being sensitive to cracks at specified
location of the interface. To the authors’ knowledge, there has
been little work addressing this topic.

Continuum topology optimization provides a more effi-
cient tool than the size or shape optimization in that it can
simultaneously change the boundary shape as well as the lay-
out of a structure. This technique has seen a rapid develop-
ment over the last two decades since the seminal study on the
homogenization method (Bendsøe and Kikuchi 1988).
Nowadays, three topology optimization methods have be-
come popular, which are the SIMP approach (Bendsøe
1989; Rozvany et al. 1992; Bendsøe and Sigmund 1999),
the evolutionary structural optimization (ESO) method (Xie
and Steven 1993) and the level set method (Wang et al. 2003;
Allaire et al. 2004). The first two methods are based on the
material distribution concept and the third one on implicit
boundary description. Due to ease of numerical implementa-
tion, the SIMP method has been widely applied in various
fields. Recently, a new review paper on developments and
applications of topology optimization over the last decade
has also been published (Deaton and Grandhi 2014).

Strength-related continuum topology optimization has
been extensively studied. Duysinx and Bendsøe (1998) pro-
posed a stress criterion for the SIMPmodel at the intermediate
densities. A pq-relaxation approach is proposed by Bruggi
(2008) for avoiding singularity of local stress constraint
(Cheng 1995). To handle the large number of stress

constraints, aggregate functions have been used by Le et al.
(2010) as global/regional stress measures. Luo et al. (2013)
proposed an enhanced aggregation method which can allevi-
ate the numerical difficulties encountered in the conventional
K-S function and more efficiently tackle large-scale stress-
constrained problems. Luo and Kang (2012) and Bruggi and
Duysinx (2012) first discussed incorporating Drucker-Prager
failure criteria in topology optimization. The level set method
has also been employed by Allaire and Jouve (2008) and Guo
et al. (2011) in stress-constrained topology optimization.
There have also been some studies on topology optimization
considering damage behaviors. For instance, Bendsøe and
Díaz (1998) studied optimal reinforcement of an damaged
structure by including a constraint on the amount of damage.
Desmorat and Desmorat (2008) maximized the lifetime of a
structure with topology optimization by considering damage-
governed low cycle fatigue. Optimal placement of reinforce-
ment bars considering damage in concrete structures was
treated by Amir and Sigmund (2013) and Amir (2013).
Recently, James and Waisman (2013) proposed a constraint
on the maximum local damage intensity in topology optimi-
zation problems to achieve failure mitigation. A fail-safe de-
sign model aiming at generating structural topologies that can
still be operated in a damaged state considering local failure is
studied by Jansen et al. (2014).

Despite of many studies on abovementioned stress-related
formulations, topology optimization considering fracture be-
haviors has been seldom addressed. One study on this topic
was done by Challis et al. (2008), who applied the virtual
crack extension technique to maximize the fracture resistance
characterized by the elastic energy released during crack
propagating.

Similarly as in the stress-constrained and damage-related
problems, one needs to define a proper constraint in the local
area of interest in topology optimization for fracture

Fig. 1 Illustration of transfer
printing process in MEMS
fabrication

Fig. 2 Design domain with an initial crack at specified location Fig. 3 Schematic illustration of the contour integral around the crack tip
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mechanics behaviors. With this consideration, we propose a
topology optimization framework to incorporate fracture me-
chanics criteria at certain locations to generate designs that are
crack insensitive in specified region of interest. As known,
once a macro-crack forms, the near-tip stress field is assumed
to be singular in the linear elastic fracture mechanic theory.
Therefore the J integral (Rice 1968) as an energy measure-
ment is used to characterize the fracture strength in this study.
More specifically, we first set one or more cracks to introduce
stress singularity in the region of interest specified by the
designer, in which the most critical crack locations can be
identified with engineering experience, or determined by a
finite element analysis of the current product design, and then
optimize the load path connecting to this region.

In analysis of the cracked body, we consider linear elastic-
ity and brittle fracture behavior in the framework of linear
elastic fracture mechanics (LEFM). LEFM is applicable when
the size of the fracture process zone is much smaller than the
crack length. To model singularity of the stress field around
the crack tip more accurately, we use the singularity element
technique in the finite element analysis. These singularity

elements are transformed from the eight-node plane element
by changing the mid-side node’s positions (Henshell and
Shaw 1975) and thus the shape functions of these singularity
elements are able to reflect the r− 1/2 singularity of the stress
field near the crack tip. The topology optimization problem is
parameterized with the SIMP model, in which the design var-
iables are element-wise constant densities. The J integral is
widely used in fracture mechanics as an indicator to assess
whether fracture may occur or not. In the considered optimi-
zation problem, it is included into the objective function to be
minimized (or maximized as shown in the last numerical ex-
ample) to make cracking difficult (or easy) to happen under
certain load conditions. To guarantee stiffness of the structure,
mean compliance is also employed here as another objective
and the two objectives are weighted as a scalar one by two
constant coefficients. The sensitivity of the J integral is de-
rived in a discrete form based on adjoint method. The design
optimization problem is solved by a gradient based algorithm,
namely the MMA (the Method of Moving Asymptotes) meth-
od (Svanberg 1987).

The rest of this paper is organized as follows. Basic con-
cepts of LEFM and J integral, as well as singularity elements,
are introduced in Section 2. Section 3 is devoted to the topol-
ogy optimization formulation and the sensitivity analysis. In
Section 4, several numerical examples are presented to show
the validity of the present method. Finally, conclusions are
drawn in Section 5. In Appendix A, the derivation of discrete
form of the J integral is given, which is the base of finite
element implementation and sensitivity analysis.

2 Fracture mechanics analysis

As a prerequisite, fundamental concepts of LEFM are briefly
introduced in this section.

LEFM is a well-established branch of fracture mechanics.
It is applicable to brittle fracture of materials exhibiting linear

Fig. 4 Singularity elements at the crack tip

Fig. 5 The portal frame design
problem
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elastic global behaviors. Even when the material exhibits
small-scale plasticity at the crack tip, LEFM is still effective
with some corrections (Anderson and Anderson 2005). It is
also the basis of other branches in fracture mechanics. In the
present work, we restrict our models in the context of LEFM
under small deformation assumption. The considered design
domainwith prescribed initial cracks is schematically illustrat-
ed in Fig. 2.

2.1 J integral

In fracture mechanics, the J integral (Rice 1968) is used as a
crack growth criterion: if the value of J integral at a given
loading condition is larger than the critical value JC, which
is a material dependent parameter, the crack will grow. It is
equivalent to the energy release rate G and proportional to the
stress intensity factor K in LEFM.

The J integral is a contour integral around the crack tip (see
Fig. 3) and has the expression

J ¼
Z

Γ
wdy−Ti

∂ui
∂x

ds
� �

; ð1Þ

where w ¼ ∫εi j0 σi jdεi j is the strain energy density, Ti=σijnj is
the traction on the contour with nj being the outward unit
normal vector of Γ, and ui is the displacement.

The J integral is a path independent integral. As a more
general measurement of energy release rate, it can be used as
an important criterion to predict fracture in LEFM, as well as
in nonlinear fracture mechanics.

2.2 Finite element modeling and singularity element

In this study, eight-node planar isoparametric elements are
used to discretize the structure. Singularity elements are

Fig. 6 Optimal solutions (a) crack insensitive design (α = 0.5) (b)
minimum compliance design

Fig. 7 First principal stress distribution of (a) crack insensitive design
(α= 0.5) (b) minimum compliance design

Fig. 8 Scaled deformed and undeformed configurations of (a) crack
insensitive design (α= 0.5) (b) minimum compliance design

Table 1 Objective function values of crack insensitive designs
(α= 0.5), minimum compliance design and initial design

Initial des. Crack insens. des. Min. compl. des.

J 4.4589 0.0868 0.5349

C 177.0212 12.9505 12.6097
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adopted at the crack tip for modeling the r− 1/2 stress sin-
gularity in the context of LEFM. As schematically illus-
trated in Fig. 4, the singularity element is transformed
from a standard eight-node isoparametric element by
changing a mid-side node from its usual position at the
center of each side to the 1/4 position (nodes A−E ), and
thus the singularity of order r− 1/2 of the stress field is
automatically recovered at the crack tip (node O )
(Henshell and Shaw 1975).

In a discrete form, the J integral is expressed in matrix form
as

J ¼ dT KI−KIIð Þd ð2Þ

where d is the nodal displacement vector, KI is a symmetric
matrix and KII is an asymmetric matrix, and the details of the
derivation are given in Appendix A.

3 Topology optimization considering presence
of initial cracks

Generally, nucleation and development of cracks are
closely related to high values of the maximum principal
stress during structural service. Therefore, if cracks al-
ways appear at the same locations for a given batch of
engineering products, it usually indicates an improperly
designed force transmission path. With this consideration,
we first assume that an initial crack exists at the most
critical stress concentration region, and then employ the
topology optimization technique to seek a well-defined
force transmission path that is able to suppress further
crack development at this particular location.

3.1 Objective function

In the present topology optimization model, the J integral is
introduced into the objective function to control growing of
the predefined cracks. From a physical point of view, mini-
mizing the J integral typically leads to reductions of the stress
level near the crack tip.

Besides the J integral, the mean compliance C=dTKd/2 is
also considered as another design criterion in the optimization
model to ensure overall stiffness of the structure. Therefore the
design objective can be generally written as

min: J ; Cf g ð3Þ

In this bi-criteria optimization problem, the two design
criteria usually conflict with each other. Therefore, a
trade-off must be made between them. In order to obtain
a Pareto optimum, it is common to transform the bi-
criteria optimization problem into one with a scalarized

Fig. 9 Optimized topologies
obtained for different initial crack
lengths. (a) 0.21; (b) 0.42; (c)
0.63; (d) 0.84

Fig. 10 Pareto optima obtained with different weighting factors
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objective function. In this study, a scalar objective func-
tion is defined as the weighted sum of the above two
objectives as

Φ ¼ αJ þ 1−αð ÞC: ð4Þ

Here, 0≤α≤ 1 is the weighting factor. One can change
the weighting factor to explore the competitive relation-
ship between J and C, and to obtain a set of Pareto opti-
mal solutions.

It should be pointed out here the J integral is evaluated
in a non-design area around the assumed crack tip. This
means that it can better capture the energy release rate
associated with crack opening during the optimization
process when the topology changes. Though the predicted
J integral value is still affected by displacement inaccura-
cy caused by gray elements in other parts of the design
domain, it provides an acceptable energy criterion of lin-
ear fracture mechanics.

Equation 4 can be further expressed in a discrete matrix
form as

Φ ρ; dð Þ ¼ αdT KI−KIIð Þdþ 1

2
1−αð ÞdTKd; ð5Þ

Derivation of design sensitivity of the objective function in
a discrete form will be shown later.

3.2 Formulation of the optimization problem

The task of topology optimization is to find the optimal struc-
tural layout in a given design domain. In the material distri-
bution concept-based framework, this can be cast into a dis-
crete 0–1 optimization problem, in which the structural topol-
ogy is described by a function

χ xð Þ ¼ 1 ∀x∈Ωs;

0 ∀x∈ΩnΩs;

�
ð6Þ

where Ω denotes the design domain and Ωs is the region
occupied by solid material.

Thus the considered topology optimization problem is stat-
ed as

Find χ xð Þ∈L∞ Ωð Þ; u xð Þ∈H1 Ωð Þ
min: Φ χ; uð Þ ¼ αJ þ 1−αð ÞC
s:t: a u; vð Þ ¼ l vð Þ; ∀ v∈U a;Z

Ω
χ xð ÞdΩ≤ f vV0 ;

χ xð Þ ¼ 0; 1f g

ð7Þ

where a(u,v) and l(v) are the energy bilinear form and the load
linear form, respectively; u and v are the continuous displace-
ment field and the virtual displacement field, respectively, Ua

is the space of kinematically admissible displacement fields,

Fig. 11 Iteration history of the
objective functions for the crack
insensitive design problem

Fig. 12 Iteration history of the
volume fraction for the crack
insensitive design problem
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V0 is the volume of the design domain and fv is the specified
material volume fraction.

The SIMP model is used to convert the originally discrete
optimization problem (7) to a continuous one. Here, the de-
sign variables are the relative densities, which are element-
wise constant in discrete form. The Young’s modulus of each
element is penalized to the pth power (p equals 3 here) of its
density to suppress intermediate density values. Without loss
of generality, we assume the first Nd elements are designable
elements. Thus the formulation of the considered optimization
problem is now expressed as

Find ρ ¼ ρ1; ρ2; …; ρNd

� �T
min: Φ ρ; dð Þ ¼ αJ þ 1−αð ÞC
s:t: Kd¼p;XN

i¼1

ρiV i≤ f vV0;

0 < ρmin≤ρi≤1; i ¼ 1; …; Nd:

ð8Þ

where ρi and Vi denote the density and volume of element i,
respectively; ρmin <<1 is the lower bound limit for the density
design variables.

3.3 Sensitivity analysis

In this subsection we derive the sensitivity of the objective
function with respect to the design variables in the framework
of the adjoint variable method. By introducing the Lagrangian
multiplier λ (the adjoint vector), we express the Lagrangian
function of the objective function Φ(ρ,d) as

L ¼ Φ ρ; dð Þ þ λT Kd−pð Þ: ð9Þ

The derivative of L with respect to ρi is

dL
dρi

¼ ∂Φ ρ; dð Þ
∂ρi

þ ∂Φ ρ; dð Þ
∂d

∂d
∂ρi

þ λT ∂K
∂ρi

dþK
∂d
∂ρi

� �
: ð10Þ

By substituting Equations 5 into 10, Equation 10 can be
further written as

dL
dρi

¼ αdT
∂ KI−KIIð Þ

∂ρi
dþ 1

2
1−αð ÞdT ∂K

∂ρi
dþ λT ∂K

∂ρi
d

þ αdT 2KI−KII−KII
T

� �þ 1−αð ÞdTK þ λTK
� � ∂d

∂ρi
:

ð11Þ

We let the adjoint vector λ satisfy the following adjoint
equation

Kλ ¼ −α 2KI−KII−KII
T

� �
d− 1−αð ÞKd: ð12Þ

After solving Equation 12, the sensitivity of the objective
function can be obtained by substituting λ into the third term
of Equation 11 as

∂Φ
∂ρi

¼ dL
dρi

¼ αdT
∂ KI−KIIð Þ

∂ρi
dþ 1

2
1−αð ÞdT ∂K

∂ρi
d

þ λT ∂K
∂ρi

d; ð13Þ

Fig. 14 Optimal solutions (a)
crack insensitive design (α= 0.4)
(b) minimum compliance design

Fig. 13 The L-bracket design problem
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in which the derivative of the matrices K, KI and KII with
respect to ρi can be easily calculated at elemental levels. For
instance, the derivative of the stiffness matrix in the third term
can be explicitly expressed as

∂K
∂ρi

¼ pρi
p−1Gi

T
Z

Ωi

Bi
TDiBidΩ

� �
Gi; ð14Þ

where Bi is the displacement–strain matrix; Di is the material
elasticity matrix; Gi is the mapping matrix between the local
DOFs of element i and global DOFs. Since the J integral is
evaluated within the non-design domain, the first term on the
right-hand side of Equation 13 vanishes.

In our study, the design sensitivities calculated with
Equation 13 have been verified by the finite difference
method.

4 Numerical examples

In all the numerical examples, initial cracks are positioned at
the location where the maximum principal stress occurs ac-
cording to the finite element analysis results of the crack-free
structure. The main part of the design domain is discretized
with standard eight-node planar elements, and singularity el-
ements are positioned around the crack tip to capture the stress
singularity. Unless otherwise stated, the Young’s modulus and
Poisson’s ratio of the material are 1.0 and 0.3, respectively.

The initial values of the design variables are set to be the
volume fraction fV in all the examples. The sensitivity filter
(Sigmund 2001) is adopted to suppress checkerboard patterns.
The optimization problem is solved with the MMA algorithm.
The obtained crack insensitive or easily detachable designs are
compared with conventional minimum compliance designs.

4.1 Topology optimization of a portal frame

We first consider the design of a portal frame structure, as
depicted in Fig. 5. Here, we aim to optimize the structural
layout so as to reduce the intensity of stress singularity in
the presence of a crack with a length 0.42 at the specified
location, while still providing the maximum stiffness as pos-
sible. The radius of sensitivity filter is set to be 1.05, which is
about 1.5 times the average element size.

The gray region in Fig. 5 is defined as the design domain.
The J integral is calculated within the green domain, where the
material distribution is not to be changed during optimization.
We treat the blue region also as a non-design domain; other-
wise this local part would be disconnected from the main
structure after optimization, yielding a meaningless trivial
solution.

For the weighting factor α=0.5 and the volume fraction
ratio fv=0.3, the optimization process converged after 90 iter-
ations. The obtained optimal solution (referred to as the crack
insensitive design) is shown in Fig. 6. For comparison, the
conventional minimum compliance design (obtained without
predefined cracks) is also given in the figure. Clearly, the
overall topology of the crack insensitive design is basically
similar to that of the minimum compliance design, implying
that its searching direction is largely guided by the second
objective function, i.e., the structural compliance. On the other
hand, as can be seen from the figures, the crack insensitive
design still exhibits some notable differences in the force
transmission path owing to introduction of the J integral into

Fig. 15 First principal stress distribution of (a) crack insensitive design (α= 0.4) (b) minimum compliance design

Table 2 Objective function values of crack insensitive designs
(α= 0.4), minimum compliance design and initial design

Initial des. Crack insens. des. Min. compl. des.

J 15.4730 0.8248 4.0687

C 948.9255 117.2707 115.1088
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the objective function. Compared with the minimum compli-
ance solution, the two beams connecting the crack area from
above have a curved shape and the two thin beams on both
sides of the crack area are vertically oriented. As a conse-
quence, the local crack area sustains a much smaller stretching
force than in the case of minimum compliance design. This
greatly reduces the tensile stress level near the crack tip and is
thus beneficial for avoiding further crack propagation.

This can be also confirmed by the stress distribution con-
tour shown in Fig. 7, where the first principal stresses around
the crack tip have been greatly reduced (each element is di-
vided into 3×3 sub-elements for the stress contour plotting).
In the figures, the loading area is shown in gray color to hide
the stress concentration area at the loading point. When plot-
ting the stresses, we use the same interpolation scheme of
Young’s moduli used in computing the elemental stiffness
matrices.

In Fig. 7a, the stress in the area above the crack tip is
slightly increased, though it is still much less than the maxi-
mum stress of the minimum compliance design (0.68 v.s.
1.17). The increase of stress in other parts of the structure is
natural since we only take into account the fracture behavior at
the specified crack. However, our numerical experiences show
that the increase of stress level in other parts of the structure

Fig. 16 Deformed and
undeformed configuration of (a)
crack insensitive design (α= 0.4)
(b) minimum compliance design

Fig. 17 Pareto optima obtained with different weighting factors

Fig. 18 Comparison of optimal
solutions of (a) crack insensitive
design (α= 0.4) (b) stress-
constrained design
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can be controlled to some extent by reducing the weight of the
J integral objective.

The scaled deformed shapes (computed with the penalized
stiffness) of both optimized structures are also depicted in
Fig. 8 to show the local stretch state near the crack.

From our experience, if an unreasonably large radius of
sensitivity filter is applied, it may lead to increase of gray

elements and loss of topology/shape details in the optimized
design.

The objective function values for both optimal solutions
are listed in Table 1. Compared with the minimum compliance
design, the crack insensitive design achieves a remarkably
lower J integral value (0.0868 v.s. 0.5349) without significant-
ly increasing the mean compliance (12.9505 v.s. 12.6097).

Fig. 19 Comparison of first principal stress distribution of (a) crack insensitive design (α= 0.4) (b) stress-constrained design

Fig. 20 Comparison of von Mises stress distribution of (a) crack insensitive design (α= 0.4) (b) stress-constrained design

Fig. 21 MBB problem (five
assumed crack locations evenly
spaced along the bottom edge)
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Here, the objective function values for the minimum compli-
ance design are reanalysis results considering the predefined
crack.

To explore the effects of the initial crack size, four different
crack sizes are considered, and the optimized topologies are
shown in Fig. 9. It is observed that the optimal designs have
no distinct differences when the crack size varies within a
reasonable range (from half to twice of the size we initially
adopted (0.42)). This demonstrates the robustness of the pres-
ent method. However, when the initial crack size is assumed to
be so large as being comparable to the member size scale, the
optimal topology may differ from these results. This is be-
cause that the large initial crack itself changes the load trans-
mission path. Such a scenario is not a major focus of this
study.

To further study the effect of the weighting factor of the
objective function, we obtained a set of Pareto optima with 9
different weighting factors ranging from α=0.3 to α=0.7, as
depicted in Fig. 10. In these solutions, the J integral value
drops from 0.1674 (α=0.3) to 0.0262 (α=0.7) asα increases,
while the mean compliance changes slightly from 12.7583
(α=0.3) to 13.3596 (α=0.7). This indicates that the J integral
and the structural global stiffness are two conflicting objec-
tives in this particular design problem, and therefore one has

Fig. 22 Optimal solutions (a–c) crack insensitive designs for predefined
crack location cases 1–3 (d) minimum compliance design

Table 3 Objective function
values of crack insensitive
designs (α= 0.5) considering
initial cracks at three different
locations and minimum
compliance design

Case 1 Case 2 Case 3

Crack insen.
des.

Min. compl.
des.

Crack insen.
des.

Min. compl.
des.

Crack insen.
des.

Min. compl.
des.

J 0.1285 0.2424 0.1145 0.2967 0.0787 0.2053

C 25.5809 25.5840 25.4799 25.6315 25.4964 25.6269

Fig. 23 First principal stress
distribution of the (a) crack
insensitive design and (b)
minimum compliance design for a
predefined crack at location 1
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Fig. 24 First principal stress
distribution of the (a) crack
insensitive design and (b)
minimum compliance design for a
predefined cracks at location 2

Fig. 25 First principal stress
distribution of the (a) crack
insensitive design and (b)
minimum compliance design for a
predefined cracks at location 3

Fig. 26 The cantilever beam
design problem with a rectangular
reserved functionality region
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to make a compromise between them. As can be observed
from the insets, as the weighting factor α increases, the opti-
mized structure has a tendency to alleviate the local stretching
at the crack area.

The iteration histories of the two objective functions for
weighting factor α=0.5 are given in Fig. 11, which shows a
dramatic decrease of both objective functions during the first
optimization steps and then a steady convergence. The vol-
ume fraction constraint is active for the optimal designs in all
the cases. For instance, the iteration history of the volume
fraction for the weighting factor α=0.5 is shown in Fig. 12.

4.2 Topology optimization of an L-bracket

The optimal design of a planar L-bracket is studied now. The
design domain and loading condition are shown in Fig. 13. An
initial crack of 0.71 in length is positioned at the reentrant
corner along the direction of 45 degrees. The upper bound
limit of the volume fraction is set as fv=40%. Uniformly sized
square elements are used in the finite element discretization,
with the element size being 1. The radius of sensitivity filter is
set to be 1.5.

The obtained crack insensitive design is compared with the
minimum compliance design in Fig. 14, where distinct differ-
ences can be seen in the joint region at the corner. In the
former design, the stiffness of this joint region is notably
weakened so that the tension and shear forces around the crack
are reduced, making potential cracks at the corner more diffi-
cult to further develop.

To verify the optimal designs, the first principal stress con-
tours of both designs are plotted in Fig. 15 (stress concentra-
tion at the loading point is hidden with gray color). As can be
seen, in the crack insensitive design, the first principal stress at

the crack tip is much lower compared with that in the mini-
mum compliance design. In Table 2, the objective function
values for both designs are summarized, which reflect that
the J integral value is significantly reduced at the cost of an
only slightly increased compliance in the crack insensitive
design. For a deeper insight of the local stretch state of the
optimal designs, the deformed configurations are shown in
Fig. 16, which shows clearly the effect of different joint
stiffness.

To further explore the competitive relationship between
the two weighted objectives, a series of Pareto optimal
solutions are obtained with different weighting factors,
as depicted in Fig. 17. This figure shows that the
weighing factor has an obvious influence on local mate-
rial layout near the crack. However, a too large weighting
factor for the J integral may slightly worsen the overall
structural stiffness. Again, the volume constraint is active
in all the optimal solutions.

We also compare the optimal design obtained with the
present method with that of the stress-constrained compli-
ance-minimization problem in Fig. 18. In the latter problem,
the maximum allowable von Mises stress is 0.5, and the p-q
relaxation (Bruggi 2008) (p=3 and q=8/3) and P-norm (Le
et al. 2010) (P=6) are used to handle the stress constraint.
This stress-constrained optimization problem exhibited con-
vergence difficulties, and it was stopped after the specified
maximum number of iteration steps 300 was reached. In
Fig. 18, the two designs have obviously different layouts.
For a fair comparison, we reanalyze the optimal design ob-
tained with the present method with a mesh without the pre-
sumed crack. The contours of the first principal stress and von
Mises stress are plotted in Figs. 19 and 20. Though the p-norm
constraint was satisfied, the maximum von Mises stress still

Fig. 27 Optimal designs (a) crack insensitive design (b) minimum
compliance design

Fig. 28 First principal stress distribution of (a) crack insensitive design
(b) minimum compliance design
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exceeded the prescribed upper limit, as shown Fig. 20. It is
interesting that the crack insensitive design results in a lower
stress level at the reentrant corner than the stress-constrained
design, even without considering explicit stress constraints.

4.3 Topology optimization of MBB beam problem

In this example, we apply the present method to the well-
known MBB beam and show the influence of predefined
crack locations. The problem setting and three different cases
of crack locations to be considered are shown in Fig. 21. The
length of the predefined crack is 0.50 and the volume con-
straint is given as fv =50%. The design domain is discretized
with uniform square elements of side length of 0.5, and the
radius for sensitivity filter is 0.75.

The optimized topologies are shown in Fig. 22 and com-
pared with the corresponding minimum compliance solution,
while the objective function values are given in Table 3.
Again, the volume constraint is active in all the cases. It can

be seen from these results that the crack insensitive design
considering each case of crack locations differs from each
other. This is not surprise since the optimal force transmission
path should reduce the tensile stresses at each individual spec-
ified crack location.

Such a tendency can also be observed from the first prin-
cipal stress contours plotted in Figs. 23, 24, and 25. From
these figures and the J integral values in Table 3, we find that
including the J integral into the objective function achieves
substantial reduction of tensile stress at different specified
crack locations as compared with the conventional minimum
compliance design in the presence of initial cracks. As can be
seen in Table 3, the predefined crack location has little impact
on the mean compliance values of the optimized topologies,
since they mainly reflect the overall stiffness of the structure
rather than local features.

4.4 Topology optimization of cantilever beam
with a rectangular reserved functionality region

In this example, we consider topology optimization of a can-
tilever beam, in which a rectangular-shaped region (non-de-
sign domain in Fig. 26) is reserved for supporting certain
functional devices. In order to achieve a design that is insen-
sitive to possible cracks along the boundary of the reserved
region, we here consider 20 possible crack locations, as shown
in Fig. 26. Here, we assume the crack length is 2. In each
iteration of the optimization process, the J integral of each
individual potential crack location is separately computed
based on the finite element analysis of the current design,
and then the most dangerous crack location (the one with the
largest J integral value) is determined and the corresponding
sensitivities of the current design are evaluated. That means
the most critical crack position changes with the evolving
structural topology.

In this example, the filter radius is 1.5 times the aver-
age mesh size. The volume fraction of given material is
45%. The weighting factor α of the J integral in the ob-
jective is set to be 0.1.

Fig. 29 Design problem of easily
detachable structure in transfer
printing

Fig. 30 Optimal solutions (a) easily detachable structure; (b) minimum
compliance structure
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The obtained crack insensitive optimal design is shown
is Fig. 27a. For comparison, the minimum compliance
design is also given in Fig 27b. The two optimal topolo-
gies are obviously different, which indicates that the J
integral has a significant effect on the material distribu-
tion. The mean compliance of the designs in Fig. 27a and
b are 42.5406 and 40.3499, respectively, while the J inte-
gral values are 0.0023 and 0.1203 (the J integral of the
minimum compliance design is re-computed for the most
dangerous crack location identified for this design), re-
spectively. Clearly, the J integral value of the most dan-
gerous crack in the crack insensitive design is much lower
than that of the minimum compliance design.

To further verify the optimal designs, we plot the first
principal stress distribution and the most dangerous crack
locations of both designs in Fig. 28 (the stress of the
minimum compliance design is re-computed with its most
dangerous crack). It is seen that in the crack insensitive
design the region of interest (non-design domain) mainly
undergoes compression, while in the minimum compli-
ance design it is subjected to relatively high tensile stress.
From these results one can see that the present method

can generate an intuitively reasonable load path making
the region of interest crack insensitive.

4.5 Force transmission path design in transfer printing

The versatility of the proposed formulation is shown in this
numerical example, which aims to provide an easily detach-
able design by maximizing the J integral in the design of
stamps used in transfer printing. Transfer printing (Carlson
et al. 2012) is a technique widely used in the fabrication and
assembly of micro- and nano-devices. While operating, the
‘ink’ is picked up by a ‘stamp’ from the substrate and then
printed to the ‘receiver’.

In the simulation of the detaching process of transfer
printing, we place an initial crack at the edge of the inter-
face between the stamp and the receiver in order to ana-
lyze the detaching behavior. We assume that the two parts
start to separate if the J integral is larger than the stamp/
receiver bonding strength when a given pulling force is
applied. The problem setting is depicted in Fig. 29. The

Fig. 31 First principal stress
distribution (a) easily detachable
structure (b) minimum
compliance structure

Table 4 Objective function values for easily detachable design
(α= 0.5), minimum compliance design and initial design

Initial des. Easily detachable
structure

Min. compl.
structure

0.1058 0.8349 0.1335

26.0329 10.8221 8.0106

Table 5 Major differences between the present method and stress-
constrained topology optimization methods

Present method Stress-constrained
methods

Criterion Fracture mechanics-based
energy criterion

Material strength
criterion

Location of
constraint
evaluation

Non-design domain around
crack tip

All elements
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length of the predefined crack is 2. The stamp has a
Young’s modulus of 1.8 and Poisson’s ratio of 0.48; while
the receiver has a Young’s modulus of 13 and Poisson’s
ratio of 0.27. The material volume fraction in the design
domain is set as 30%. The objective function is stated as
Φ(ρ,d) =α(−J) + (1−α)C, where the weighting factor α is
set to be 0.5 in this optimization problem. The radius for
sensitivity filter is set to be 5.4, which is about 2.2 times
of the maximum mesh size.

The optimal solution of easily detachable design ob-
tained with the present optimization model is shown in
Figure 30. For comparison purpose, optimal structural to-
pology with minimum compliance is also given. The vol-
ume constraint is active in both solutions. Distinct differ-
ences between the two designs can be observed in Fig. 30.
Obviously, the local features of the former design are able
to increase tension and shear forces transmitted to the
stamp edges. This is also reflected by the first principal
stress contour shown in Fig. 31. Therein, it is seen that the
maximum first principal stress at the stamp/receiver inter-
face of the easily detachable design is 132% higher than
that of the minimum compliance design.

The final objective function values for both designs are
summarized in Table 4. In fact, the J integral value of the
easily detachable design is 6.25 times of that of the minimum
compliance design.

5 Concluding remarks

For engineering structures, without properly designed
force transmission paths, fractures may occur and develop
at particular locations, e.g., high tensile stress areas. In
some other problems, it is desired to make a material
interface to be easily detached. To address these prob-
lems, we propose a topology optimization method consid-
ering fracture mechanics behaviors at specified locations
by including the J integral around a predefined crack as
an objective function to be minimized/maximized. The

resulting multi-criteria optimization problem is treated
with the weighted sum approach. The adjoint-variable
sensitivity analysis of the J integral with respect to the
design variables is derived, which enables the optimiza-
tion problem to be efficiently solved with gradient-based
mathematical programing algorithms.

The validity and applicability of the proposed topology
optimization formulation are illustrated with four numerical
examples. The first three examples show that the proposed
method is effective to generate optimized structures that are
insensitive to cracks at specified locations. Compared with the
corresponding minimum compliance designs, the obtained
crack insensitive designs exhibit certain differences, particu-
larly at the local regions near the assumed crack locations.
This indicates that introducing the J integral into the design
objective results in changes of the local force transmission
path. As shown in the last numerical example, the proposed
method can also be used to generate a design with easily
detachable material interface.

The major differences between the present method and the
stress-constrained topology optimization are summarized in
Table 5.

In the proposed formulation, it would be very expen-
sive or impossible to take into account all the possible
lengths, directions and locations of the initial cracks. It
is therefore more realistic to set up cracks at the most
fracture-critical positions in the region of interest, which
can be predefined by the designer according to engineer-
ing experience or stress analysis of current designs. These
critical positions may also be updated after reanalysis of
the intermediate designs when necessary. Even so, this
method still has limitations since it relies on predefined
crack locations and thus cannot consider all the possible
crack locations. Also, the regions immediately around the
assumed crack tips are set as non-design domains and
only the load path in other parts of the design domain is
optimized.

For the considered bi-criteria optimization problem, if
the Pareto set is not convex in the objective function
space, the weighted sum approach cannot ensure the
Pareto front be tracked by simply changing the weighting
factor. However, this would not cause any difficulties in
practical applications, since our goal is to seek an accept-
able trade-off between the fracture sensitivity and the
global structural stiffness.
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Fig. 32 A schematic illustration of a finite element model of a crack
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Appendix A

Details of derivation of discrete form of the J integral expres-
sion are as follows.

In a discrete form, the equilibrium equation reads

Kd¼p; ðA:1Þ

where d is the nodal displacement vector, p is the external
force vector and K is the global stiffness matrix, which is
expressed by

K ¼
XN
i¼1

Gi
Τ
Z

Ωi

Bi
ΤDiBidΩ

� �
Gi: ðA:2Þ

After solving Equation A.1, the J integral can be calculated
along a path composed entirely of element edges, as expressed
in the matrix form

J ¼
XM
p¼1

Z
Γ p

1

2
εTDεdy−TT ∂u

∂x
ds

� �
; ðA:3Þ

whereM is the total number of element edges which constitute
the path of integral and Γp is the p th element edge, T is the
vector of traction on the contour and u is the displacement
vector. For the element edges at which the strain and stress
are discontinuous, the strain and traction are taken as their
average values of two neighboring elements (for the pth ele-
ment edge shown in Fig. 32, the two neighboring elements are
EL p

i (inside the contour) and EL p
o (outside the contour)).

The first term of the J integral in Equation A.3 can be
further written as

JTI ¼
1

8

XM
p¼1

Z
Γ p

Bi
pd

i
pþBo

pd
o
p

	 
T
Dp Bi

pd
i
pþBo

pd
o
p

	 

dy

¼ dT Kii
IþKoo

I þKio
I

� �
d

¼dTKId

;

ðA:4Þ

where the superscripts “i” and “o” indicate the inner and outer
side of the contour, respectively as shown in Fig. 32; Bp

i and
Bp
o are the displacement–strain matrix of the two neighboring

elements on the inner and outer side of the p th element edge,
respectively. The expressions of KI

ii, KI
oo, KI

io are given as

Kii
I ¼

1

8
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p¼1
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p
T
Z

Γ p

Bi
p
T
DBi

pdy

 !
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p

Koo
I ¼ 1
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pdy

 !
Go
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Kio
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4
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p¼1
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Γ p
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pdy

 !
Go

p

8>>>>>>>>>>><
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ðA:5Þ

Similarly, the second term of the J integral is expressed as

JTII ¼ −
1

4

XM
p¼1

Z
Γ p

Bi
pd

i
pþBo

pd
o
p

	 
T
Dpn

∂Ni
p

∂x
dip þ

∂No
p

∂x
dop

 !
ds

¼ −dT Kii
I IþKoo

II þKio
IIþKoi

II

� �
d

¼ −dTKIId

;

ðA:6Þ

where N is the shape function matrix; n is a matrix that con-
sists of components of the direction vector of the integration
contour; the expressions of n, KII

ii, KII
oo, KII

io and KII
oi are given

as

n ¼
n1 0
0 n2
n2 n1

2
4

3
5; ðA:7Þ
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ðA:8Þ

Finally, the J integral is expressed in matrix form as

J ¼ JTI þ JTII ¼ dT KI−KIIð Þd: ðA:9Þ

It is easy to prove that KI is symmetric and KII is
asymmetric.
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