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Abstract This paper presents a novel approach for multi-
objective optimization under both aleatory and epistemic
sources of uncertainty. Given paired samples of the inputs and
outputs from the system analysis model, a Bayesian network
(BN) is built to represent the joint probability distribution of
the inputs and outputs. In each design iteration, the optimizer
provides the values of the design variables to the BN, and
copula-based sampling is used to rapidly generate samples of
the output variables conditioned on the input values. Samples
from the conditional distributions are used to evaluate the objec-
tives and constraints, which are fed back to the optimizer for
further iteration. The proposed approach is formulated in the
context of reliability-based design optimization (RBDO). The
joint probability of multiple objectives and constraints is includ-
ed in the formulation. The Bayesian network along with condi-
tional sampling is exploited to select training points that enable
effective construction of the Pareto front. A vehicle side impact
problem is employed to demonstrate the proposed methodology.

Keywords Multi-objective optimization - Uncertainty
quantification - Bayesian network - Gaussian copula

Nomenclature

x design variables

D non-design variables

Ib.,ub, lower and upper bounds of x
fi i™ deterministic objective
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gi i™ deterministic constraint

Ky, mean of the i”" objective

P joint probability constraint
CDF cumulative distribution function

PDF probability density function

Dv design variable

uv uncertain variable

obj objective

constr  constraint

Fi(x) marginal CDF of the i™ random variable x;
C copula function

o! inverse CDF of a standard normal random variable
R covariance matrix of Gaussian copula

1 identity matrix

L likelihood function

L. Abdomen load

Rib, Upper rib deflection

Rib,, Middle rib deflection

Rib; Lower rib deflection

VC, Upper viscous criteria

vC,, Middle viscous criteria

VG, Lower viscous criteria

Fpy Pubic force

Con; i constraint of the vehicle side impact example
Crit criterion of the i constraint

1 Introduction

In multi-objective optimization (MOO) with competing objec-
tives, the multiple solutions are often characterized through a
Pareto surface, which is a series of designs describing the
tradeoff among different objectives. The decision maker will
select the appropriate design alternative based on his/her pref-
erences on the objectives (Marler and Arora 2004). Four types
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of approaches have been studied in the literature to construct
the Pareto surface: weighted sum, goal programming,
constraint-based methods, and genetic algorithm

The weighted sum approach assigns weights for each ob-
jective based on the stake-holder’s preferences, and combines
the multiple objectives into a single objective. The Pareto
front is achieved by trying different weights for the individual
objectives and performing the optimization multiple times.
The goal programming approach treats each objective through
an equivalent constraint (one goal), and introduces detrimental
deviations for each of the goals. Then the objective is to min-
imize the weighted sum of the detrimental deviations. In
constraint-based methods (Mavrotas 2009), one of the objec-
tive functions is selected as the only objective, and the remain-
ing objective functions are treated as constraints. The Pareto
front can be obtained by systematically varying the constraint
bounds. Similarly, multiple optimizations need to be imple-
mented. The genetic algorithm-based approach globally
searches for feasible solutions, compares and ranks them
based on objectives and constraints, and selects the non-
dominated solutions (Deb et al. 2002). The first three ap-
proaches convert the multi-objective optimization problem
into a single objective problem and solve with optimization
algorithms, therefore are more efficient. Compared to the first
three approaches, the genetic algorithm requires more func-
tion evaluations; however, the former three approaches are
more likely to result in suboptimal solutions.

The presence of input uncertainty and model errors intro-
duces uncertainty in the estimation of the system model out-
puts. As a result, optimization under uncertainty (OUU) re-
quires an extra loop of uncertainty quantification (UQ) or
reliability assessment in each optimization iteration; that is,
at each design iteration, the output distributions (or probabil-
ities of satisfying constraint thresholds) need to be evaluated
given the design variable values. Such stochastic optimization
formulation often suffers from intensive computational effort.
For example, aero-elastic wing analysis which contains finite
element and CFD analyses may take several hours to complete
even one full analysis, thus making such double loop imple-
mentation unaffordable.

Therefore, surrogate modeling techniques, which replace
the expensive physics code with an inexpensive model for
UQ and reliability analysis, have been studied for optimiza-
tion under uncertainty. However, most surrogate modeling
approaches suffer from the curse of dimensionality and may
be inaccurate for modeling a system with a large number of
input and output variables. Furthermore, multiple outputs
need to be considered in multi-objective optimization. If the
surrogate models are built separately for individual outputs,
the correlations between the outputs are likely to be missed.
To overcome this challenge, surrogate modeling that considers
output dependence has been proposed using techniques such
as co-kriging (Knotters et al. 1995). However, the size of the
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co-kriging covariance matrix grows rapidly as the number of
outputs considered increases; thus one can incorporate depen-
dence between only a small number of output variables at
present. Therefore, it is important to develop effective OUU
methods that can handle a large number of design variables
and multiple objectives, while still preserving the correlations
between the objectives.

Three types of uncertainty sources need to be considered in
design optimization: physical variability, data uncertainty and
model uncertainty. Physical variability (aleatory uncertainty)
in loads, system properties, etc., is irreducible and is common-
ly represented through probability distributions. Data uncer-
tainty (epistemic) may be caused by sparse and/or imprecise
data, and can be reduced by collecting more information.
Model uncertainty (epistemic) arises from the model used to
approximate the physics, and can be attributed to three types
of sources: uncertain model parameters (due to limited data),
numerical errors (i.e., solution approximations due to limited
computational resources), and model form error (due to the
assumptions made in the model) (Rebba et al. 2006). The
propagation of aleatory uncertainty is well-studied in the lit-
erature, and can be accomplished by Monte Carlo sampling or
First/Second-Order Reliability Methods (FORM/SORM)
(Haldar and Mahadevan 2000). Epistemic uncertainty (lack
of knowledge) is an active research topic, and needs careful
treatment due to its variety of sources and representation
formats.

Data uncertainty due to sparse or interval data has been
typically represented by p-boxes (Ferson et al. 2007),
Bayesian approaches (Sankararaman 2012) including family
of distributions instead of a single distribution (Zaman et al.
2011), non-parametric likelihood-based distribution
(Sankararaman and Mahadevan 2011), and non-probabilistic
techniques such as evidence theory (Guo and Du 2009), fuzzy
sets (Du et al. 2006), imprecise probabilities (Zhang and
Huang 2009) and possibility theory (Du et al. 2006). Model
errors (Riley and Grandhi 2011; Mahadevan and Liang 2011,
Ling et al. 2014) are represented either as random variables or
random processes, sometimes as functions of the input, and
combined with the model prediction to give a ‘corrected’
model output.

Integration of uncertainty in design optimization has been
investigated in two directions: (1) reliability-based design op-
timization (RBDO) and (2) robust design optimization
(RDO). The RBDO formulation aims at finding the optimal
solution that satisfies the constraints at desired probability
levels, whereas the RDO formulation aims at a design that is
insensitive to uncertainties. This paper addresses multi-
objective optimization in the context of RBDO; however,
the proposed approach can also be extended to RDO prob-
lems. Reliability assessment, which needs to calculate the
probability of the output being less (or greater) than a thresh-
old, is often applied to individual outputs. However, given a
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set of design values, due to common uncertainty sources prop-
agating through the model, the outputs are inherently correlat-
ed with each other. To enhance the system-level reliability, the
joint probability of success (or failure) in meeting the reliabil-
ity constraints should be introduced in the optimization for-
mulation. This requires the consideration of output dependen-
cies. Inclusion of dependence between the objectives has been
proposed in (Rangavajhala and Mahadevan 2011), and using
the joint probability as constraint has been considered in
(Zhang et al. 2002). Both studies use first-order approximation
and consider the input variability as the only uncertainty
source. Joint probabilities of only 2 objectives in
(Rangavajhala and Mahadevan 2011) and 3 objectives in
(Zhang et al. 2002) are considered. As the number of output
variables increases, the accuracy of the first-order approxima-
tion gets worse, whereas the number of function evaluations
increases many times more than the number of variables
(Liang and Mahadevan 2013). Thus a more efficient and ac-
curate method is essential to evaluate the joint probability for a
large number of variables. Towards this end, a novel concept
of surrogate modeling based on the Bayesian network and
copula-based sampling is proposed in this paper.

The Bayesian network is a powerful tool to incorporate
different sources of uncertainty and support several applica-
tions such as model calibration (Liang and Mahadevan 2015),
model validation (Mahadevan and Rebba 2005), diagnosis
and prognosis (Jiang and Mahadevan 2008), reliability assess-
ment (Zhang and Mahadevan 2000) and uncertainty quantifi-
cation (Jiang and Mahadevan 2009). In general, these appli-
cations can be classified as two types of problems: inverse
problem (Bayesian inference) and forward problem (uncer-
tainty propagation). The Bayesian network supports both
types of problems. Given paired samples of the inputs and
outputs from a model, the BN is built to represent the joint
probability distribution of the inputs and outputs through a
directed acyclic graph with marginal distributions of the indi-
vidual variables and the conditional probabilities between
them. The BN thus functions as a probabilistic surrogate mod-
el: given specific values of the input variables, we can obtain
the probability distribution of the output variables (forward
problem), or given observed or desired values of the outputs,
we can obtain the posterior distributions of unknown inputs
(inverse problem). Both abilities of the BN are exploited in
this paper.

In each design iteration, the optimizer generates a new set
of design values and sends them to the Bayesian network.
Given the value of the design variables, the uncertainty in
the outputs can be estimated by forward propagating the un-
certain variables through the BN. The resulting output is es-
sentially the conditional joint probability distribution of the
outputs given the design variable values of the inputs. Since
different uncertain variables may have different types of mar-
ginal distributions, analytical calculation of this conditional

distribution is not easy. The conditional distribution estima-
tion is often accomplished by Markov Chain Monte Carlo
(MCMC) sampling techniques such as Metropolis-Hastings
sampling (Chib and Greenberg 1995), slice sampling (Neal
2003), Gibbs sampling (Casella and George 1992), etc.
However, MCMC sampling is quite expensive, especially
when the dimension of the joint distribution increases.
Considering that the conditional joint distribution will need
to be estimated many times during the optimization, using
tools that are efficient in sampling is significant. To meet this
need, a vine copula-based sampling technique is explored in
this research.

Graphical vine models are introduced in (Cooke
1997) and (Bedford and Cooke 2001). Regular vines
are graphical structures for identifying bivariate and
conditional bivariate joint distributions which uniquely
determined a joint distribution (Kurowicka and Cooke
2010). In other words, a multivariate joint distribution
can be decomposed as a series of bivariate and condi-
tional bivariate distributions, from which samples of the
variables can be easily generated by assuming a copula
function. A copula is a function that relates the joint
CDF of multiple variables to their marginal CDFs
(Nelsen 1999). Copulas have been used in reliability
analysis and RBDO for correlated (Noh et al. 2008)
and non-Gaussian (Choi et al. 2010) input random
variables.

Generating samples from a Bayesian network using a
vine copula-based approach is quite general, but it can
be computationally expensive for high-dimensional
problems. However, if a joint Gaussian copula is as-
sumed, then the conditional joint updating of the BN
can be accomplished analytically (Kurowicka and
Cooke 2010) which is very fast.

In optimization under uncertainty, given the values of
the design inputs, the copula can be conditionally sam-
pled (Cooke and Kurowicka 2007) to estimate the con-
ditional joint distribution of all the output variables. The
concepts of Bayesian network and copula-based sam-
pling are combined for MOO in this research, and re-
ferred to as BNC-MOO. The proposed approach is used
with an optimization algorithm to accomplish design
under uncertainty. Since the proposed approach is effi-
cient in sampling, genetic algorithms can be afforded. A
Non-dominated Sorting Genetic Algorithm-II (NSGA-II)
(Deb et al. 2002) that specifically solves multi-objective
optimization is applied for identifying the Pareto front
in this research.

Since the Bayesian network is used as a surrogate
model in this research, its predictive capability largely
relies on the selection of useful and informative training
points. Selection of training points for enhancing the
performance of surrogate models in optimization,
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referred to as Efficient Global Optimization (EGO), has
been studied using Gaussian process surrogate models
(Jones et al. 1998), where an expected improvement
function is built to select the location at which new
training points should be added. Previous research has
only focused on the improvement of a single function.
However, this is not sufficient when multiple objectives
that share the same inputs need to be improved simul-
taneously. This is because different training points need
to be added to improve different objectives. If the EGO-
based approach is used, then co-Kriging will have to be
adopted to properly account for dependence among the
objectives; this is computationally burdensome in the
presence of multiple objectives. In this paper, a novel
optimal training point selection technique is proposed
based on the inverse propagation capability of the
Bayesian network. A sample-based ‘sculpting’ technique
(Cooke et al. 2015) is exploited to selectively choose
the input samples that correspond to multiple outputs
in the desired region simultaneously. This strategy is
found to be effective and efficient in constructing the
Pareto surface of solutions.
The contributions of this paper are as follows:

(1) A new concept of probabilistic surrogate modeling tech-
nique based on the Bayesian network is adopted in order
to consider large numbers of input variables, and to pre-
serve the dependence among the objectives and among
the constraints.

(2) The BNC approach is developed for multi-objective op-
timization under uncertainty in the context of an RBDO
formulation.

(3) A novel training point selection approach is proposed
using sample-based conditioning of the BN, in order to
efficiently construct the Pareto surface.

The rest of the paper is organized as follows.
Section 2 briefly formulates single-objective and
multi-objective optimization problems under uncertain-
ty, in the context of RBDO. Section 3 develops two
innovations: (1) the use of the BNC approach for effi-
cient uncertainty quantification and design optimiza-
tion, and (2) the use of sample-based conditioning to
improve the Pareto surface. The first innovation ex-
ploits forward propagation through BN, whereas the
second innovation exploits inverse propagation through
the BN. Section 4 addresses data uncertainty and ex-
plains the construction of empirical distributions from
sparse and interval data, to be used in the Bayesian
network and optimization. An automotive side impact
problem is used in Section 5 for numerical illustration
of the proposed MOUU methodology. Section 6 pro-
vides concluding remarks.
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2 Multi-objective optimization under uncertainty
2.1 Single objective optimization

A typical deterministic design optimization formulation can
be given as follows.

min / (x, p) (1)

s.t.

gi(xvp) SO* i = {17'“7”(1}
Iby, <xp Suby, k = {1,...,n:}

where fis the performance function or objective to be mini-
mized; x is the vector of design variables; p is the vector of
non-design variables (i.e., not controlled by the designer); n,
and n, are the number of constraints and design variables,
respectively; /by, and ub,, are the lower and upper bounds
of x;. When the uncertainties in variables x and p are of the
aleatory type, the formulation and solution approaches are
rather well-established; a survey is provided in (Valdebenito
and Schuéller 2010). An RBDO formulation of the above
problem combining uncertainty can be given as
mi”ﬂj(X7d7P7Pd) (2)
pxod
s.t
Prob(gi(X,d,P,p,,)SO)zpi i= {17 ...,nq}
Prob(X=>Ibx)>pj,
Prob(X < uby) > p,
lbd <d< Mbd

where X is the vector of random design variables with bounds
by and uby, respectively; 1i,and ux are the mean of f'and X,
respectively; d is the vector of deterministic design variables
with bounds /b, and ub ; P is the vector of random non-design
variables; p, is the vector of deterministic parameters. The
upper case notations represent stochastic quantities, whereas
the lower case notations denote deterministic quantities. p), is
the target reliability required for the i constraint; pl, and pl,,
are the target reliabilities for the design variable bounds. An
alternate formulation for the inequality/bound constraints
using the concept of feasibility robustness involves narrowing
the constraint boundaries by a multiple of their respective
standard deviations (Liu et al. 2011).

Evaluation of the objective and constraints in (2) can be
done through Monte Carlo sampling, but it is computationally
intensive to implement when the original physics codes are
time-consuming. Efficient reliability approaches such as
FORM and SORM can significantly reduce the effort, yet still
need dozens of function evaluations for a given design value.
The total number of function evaluations will accumulate as
the number of design variables and iterations increases.
Therefore, surrogate modeling techniques have been studied
to replace the original system model with computationally
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inexpensive models for the objective and constraints
estimation.

Based on the above single objective optimization formula-
tions, the multi-objective problems are formulated in
Section 2.2.

2.2 Multi-objective optimization (MOO)

A generic formulation of deterministic multi-objective optimi-
zation with n,,; objectives may be written as:

min{f,(6,p), ..., /., (x.p)}
5.t g(e,p) <0, i = 1...n0, (3)

where x and p are the design and non-design variables, and
g (i=1...n.,,) are the deterministic constraints. /b, and ub,
represent the upper and lower bounds for the design variables
x. The Pareto front for such a problem indicates the tradeoff
between the function values of objectives f;, i=1... n,y,.

In the presence of input variability, data uncertainty, and
model uncertainty, the outputs become random variables,
resulting in stochastic objectives and constraints. (Variances
of the objectives can also be included for minimization). In
this scenario, the mean values i/ , ..., Ky,,, are often con-

sidered as the objectives. In the context of RBDO, determin-
istic constraints gy, ... , g, —are rewritten with desired prob-
abilities of satisfaction. Therefore, MOO with probabilistic
constraints can be formulated as:

/fo, (XaP7 dapd)
min :
px d 'Lllf"ob/ (X,P, dapd)
s.t. P}"Ob(gi(X,P, dm,,)fgf-) EPmrgen i=1...ncn
Ibx < Lxy<u bx
Iby<d<ub,

(4)

The joint probability of satisfying all the constraints may
also be added as a constraint as:

i=1

PI”Ob(ﬂ (gl(XaP7d7pd)Sg§>> ijl (5)

Estimating the joint probability of multiple events using
first-order approximation at was proposed in (Hohenbichler
and Rackwitz 1983) and improved in (Gollwitzer and
Rackwitz 1988; Smith and Mahadevan 2005). The first-
order approximation was used in (Rangavajhala and
Mahadevan 2011) to estimate the joint probability distribution
of the objectives in MOO. The first-order approximation
could become inadequate in the presence of nonlinear objec-
tives and constraints, and when the number of objectives and

constraints is large. On the other hand, Monte Carlo sampling
can be accurate, but very expensive. Therefore, a surrogate
modeling strategy combining Bayesian network and copula
sampling is developed in the next section, to achieve both
the desired accuracy and efficiency.

3 Proposed methodology
3.1 Bayesian network

A Bayesian network is a directed acyclic graph that represents
a multivariate joint probability distribution of random vari-
ables using their marginal distributions (nodes) and the con-
ditional probabilities (arrows). The Bayesian network is capa-
ble of incorporating heterogeneous marginal distributions
(e.g., continuous, discrete, binomial and empirical), and is also
able to include functional relationships between the nodes if
available.

For the purpose of illustration, the proposed use of the
Bayesian network is shown for simple optimization problems
in Fig. 1. Consider a model with two input variables and two
output variables. In the context of optimization under uncer-
tainty, one input variable is treated as design variable (DV),
and the other is regarded as uncertain variable (UV). It is worth
noting that, UV may either be a random non-design variable
per se; or it may represent the variability associated with the
design variable, introduced in realizing the values of the de-
sign variables in the actual system (due to manufacturing fac-
tors, for example). The 2 output variables, in the optimization
setting, are used as objective variable (Obj) and constraint
variable (Con). The relations among the input and output var-
iables in such scenario are characterized by a BN as shown in
Fig. la.

Figure 1b shows a more complicated scenario with 3 de-
sign variables (DV1, DV2, and DV3), which are shown in the
top row of the BN. Each design variable is associated with
variability (represented by UV1, UV2 and UV3) shown in the
bottom row. The variability variables have zero mean. The
model input (e.g., X;, i=1,2,3) thus consists of two compo-
nents: design variable value, and uncertain variable value (i.e.,
X1=DV1+ UV1). The second row also includes two addition-
al uncertain input variables UV4 and UV5 that are random
non-design variables. The outputs are shown in the 3rd
(Conl and Con2) and 4th rows (Obj1 and Obj2).

The Bayesian network can be used for problems in 2 direc-
tions: (1) parameter updating (inverse) and (2) uncertainty
propagation (forward), both of which need the estimation of
a conditional joint distribution. As mentioned earlier, uncer-
tainty analysis in optimization is a forward problem. In the
proposed method, the Bayesian network is used as a probabi-
listic surrogate model that connects the input and output var-
iables through a joint distribution. (Commonly used surrogate
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Fig. 1 Bayesian network
representation of optimization
under uncertainty

(a) BN for a simple 1/0 model

models seek to predict output values for given input values,
whereas the BN surrogate model can be used to provide the
probability distribution of the output for given input values).

For the purpose of illustration, consider the BN in
Fig. 1b, which represents the joint distribution of the
design variables and output variables, and can be writ-
ten as f{ Objl,0bj2, Constrl, Constr2,DV;), i=1,2,3.
In each optimization iteration, the design variables can
be conditioned at the design values (¢), and the condi-
tional joint distribution of the output variables
fObj1,0bj2, Constrl, Constr2| DV;=¢;), i=1,2,3 is es-
timated. Note that in the BN, the nodes corresponding
to stochastic variables are represented by ovals. In the
context of design optimization, the design variable
nodes (DVs) are conditioned at specific design values
in each iteration, and are therefore deterministic
quantities.

Once the BN is constructed, it can be used for generating
conditional samples for both the forward and inverse prob-
lems. A vine copula-based strategy is proposed, as explained
next.

3.2 Copula

A copula is simply a joint CDF of marginal CDFs (Kurowicka
and Roger 2006). Consider » random variables X| ... X, with
continuous CDFs F(x}) ... F,(x,). The copula function relat-
ed to Xj ... X, is defined as (6).

C(ul...u,,):P[Fl(Xl)Sul,...,F,,(Xn)fu,,] (6)

The copula C contains the dependence information be-
tween the variables, and can be used to model the joint distri-
bution of random variables. Multiple choices for copula type
are available, such as Gaussian, Clayton, Frank and Gumbel
copula (Nelsen 1999). In practice, Gaussian copula is widely
used because of the availability of analytical solutions, which
makes it much easier to model high-dimensional dependence.

@ Springer
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(b) BN for a model with more variables

Note that the Gaussian copula assumption is only for
connecting the CDFs of the random variables, which is less
restrictive than assuming a joint Gaussian distribution for the
variables themselves. The individual variables within a
Gaussian copula can have any distribution. In constructing a
general BN, (1) connections between nodes (i.e. network to-
pology) could be based on the analyst’s underlying knowledge
of the dependence relations within the model, whereas (2)
marginal and conditional probability distributions (and other
unknown connections) could be learned from data (samples).
Therefore, the number of samples needs to be sufficient for an
accurate BN model. Note that in the context of the optimiza-
tion problems in this paper, the inputs and outputs are already
defined, thus the first step is greatly simplified.

A verification approach proposed in (Hanea 2010) is
adopted here to test the Gaussian copula assumption.
Samples from the Gaussian copula are generated 100 times.
The determinant of the normal rank correlation coefficient
matrix is calculated for each set of samples, and are denoted
as detmat;, i=1...100. If the determinant based on the origi-
nal training samples detmat,,,; lands within 90% of the proba-
bility bounds of detmat;, i=1... 100, the copula is assumed
valid. Otherwise, the Gaussian copula does not hold, and other
copulas need to be investigated. However, if other copulas are
chosen, the sampling efficiency of the stochastic analysis will
be downgraded due to the need for multiple inverse copula
evaluations as explained in the Appendix, and thus the condi-
tion of BN and the sampling becomes more time-consuming.
However, the computational effort in BN construction and
sampling is very small in comparison to the system analysis
(Liang and Mahadevan 2013), thus the BNC approach is ad-
vantageous even with non-Gaussian copula.

When the Gaussian copula assumption is not valid, other
types of copula need to be pursued. However, most other
copulas only have analytical forms for bi-variate dependence.
Therefore, a vine-based strategy has been introduced to de-
compose high-dimensional dependences into bi-variate de-
pendences, which could be modeled by any types of copula
(Cooke 1997; Bedford and Cooke 2001; Kurowicka and
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Cooke 2010). Details of vine-based copula are provided in
Appendix.

The accuracy of the BN is also affected by the number of
training samples. When the number of training samples is too
small, the marginal distribution of the variables and the corre-
lations among them may not be accurately estimated. The
sufficient number of training samples can be determined by
gradually adding samples and observing the change in corre-
lation coefficients. When the change is negligible, then the
number of training samples is regarded as sufficient. The num-
ber of samples chosen also depends on the computation time
of the original model, and the computational resource
allowed.

In summary, the three essential elements for the proposed
BNC method are (1) Bayesian network, which establishes the
conditional relationship among variables; (2) vine, which
identifies the bivariate and conditional bivariate correlations
(through) within the Bayesian network; and (3) vine copula-
based conditional sampling.

3.3 Uncertainty propagation using vine copula-based
sampling

Forward conditioning will be implemented in each iteration of
the optimization, as illustrated in the parallel plot in Fig. 2.
During each optimization iteration, the optimizer will generate
values for the design variables DVs (circles in both figures).
The network is updated conditioned on these values using
Gaussian copula-based sampling. Samples from the condi-
tional distribution (dashed square on the right figure) are used
to estimate the objectives (mean values) and the reliability
constraints (probability values).

3.4 Training point selection for Pareto surface
construction

Based on the performance of the surrogate model, training
points can be selectively added to improve the Pareto surface.
In MOUU problems, the mean values of several objectives

DV,

DV1 Con1 Conz

Obj, Obj,

= S Sy 2
0.44 2

Fig. 2 Parallel coordinate representation of the model dependencies

need to be optimized simultaneously. As mentioned in
Section 1, training point selection methods in surrogate-
based optimization (e.g., EGO) mostly focus on considering
a single objective, and little work has been done on multiple
objectives simultaneously. In the current section, the Bayesian
network is exploited through a sample-based conditioning
strategy for the purpose of improving the Pareto surface.
The appendix discusses the forward uncertainty propagation
using the Bayesian network.

The proposed strategy for Pareto surface improvement
using the Bayesian network, illustrated in Fig. 3 is as follows.

(1) A Bayesian network is first constructed using an initial
set of training points (i.e., values of input variables — both
design variables and uncertain variables).

(2) Using samples from this BN, the desired ranges of values
of the obj, and obj, (as shown in Fig. 3a) are identified,
and the corresponding input variable samples are identi-
fied as shown in Fig. 3b.

(3) Then, a few of the input samples identified from Fig. 3b
are selected as the new training points and the corre-
sponding values of 0bj, obj,, con; and con, are calcu-
lated with the original model.

(4) Next, a new Bayesian network is built with both the
original and additional samples, and the improved
Pareto surface is constructed using the aforementioned
NSGA-II algorithm.

This ‘sculpting’ strategy is both efficient and preserves the
dependence among different objectives, since the new training
points correspond to output samples in the desired region for
all objectives simultaneously. A BN-based sculpting strategy
was proposed in (Cooke et al. 2015). However, in (Cooke
etal. 2015), sculpting was used to identify regions of optimum
solution among the available samples generated from the BN,
based on forward propagation. Whereas in this paper,
sculpting is used to identify additional training samples to
improve the BN, so that new regions of optimum solutions
may be identified, this uses inverse propagation.

DV,

DVZ Objl Objz C0n1 C0n2

[ == o e o ——— - —

A

F——-—---
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(a) Select samples of the objectives from the
desired region

Fig. 3 Sculpting for training points selection

In addition, the choice of the “desired range” referred in
Step (2) relies on the density of the samples of the objectives
near the optimal. Since the objectives of optimization prob-
lems are usually maximization or minimization, the ranges
should be set close to the poles of the objective axes. When
the number of samples around the poles is high, the ranges
should be set smaller (such as Obyj); yet if the number is low,
then the ranges should be increased accordingly (such as
Obj>).

The choice of the range will affect the outcome. In the
numerical examples in Section 5, the mean values of the sam-
ples enclosed by the ranges are used as objective; therefore,
the result is more sensitive to location of the centers of the
ranges, rather than to their widths. The sensitivity analysis is
out of the scope of this paper, but will be investigated in future
study. The training point selection and multi-objective optimi-
zation processes are summarized in the flowchart as shown in
Fig. 4.

design variables

4 Constructing empirical distributions from sparse
and interval data

In the implementation of the aforementioned strategies for
MOUU and Pareto surface improvement, samples of the input
variables (design variables DV and uncertain variables UV in
Fig. 1) need to be generated first to construct the training
points for the Bayesian network. Training point values for
deterministic DV can simply be generated from uniform dis-
tributions over the allowable ranges. Samples of the uncertain
variables UV need to be generated from their probability dis-
tributions. When there is abundant data, the distribution types
and distribution parameters of the uncertain variables may be
precisely identified. However, in the presence of sparse and/or
interval data, the distribution types and parameters are uncer-
tain. Both parametric (Zaman et al. 2011), and non-parametric
(Sankararaman and Mahadevan 2011) approaches have been
studied to characterize the probability distributions of

Fig. 4 Flowchart for the training Uniformly generate samples of the
point selection and multi- design variables (DV), and randomly Propagate through the computational
objective optimization scheme generate samples of the uncertain [ —=>| model to estimate the objective and
variables (UV) as initial training constraint functions
points
|
N
Build BN as shown in Fig. 1(b), and Select additional training points as
generate a large amount of samples explained in Section 3.4, and estimate
using copula-based sampling the corresponding objective and
approach constraint values
|
N

Rebuild BN with the initial and
additional training points, and
perform multi-objective optimization
as illustrated in Section 3.3
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variables in the presence of sparse and interval data. Since the
non-parametric approach is more flexible and loyal to the
available data, it is used in this paper for the purpose of
implementing the proposed BNC-MOO methodology.
(However, parametric distributions can also be used with the
proposed methodology, if those are available or preferred. The
Bayesian network can accommodate both parametric and non-
parametric distributions).

Suppose the available information for a random variable Xis a
combination of m intervals: {[ay,b1],... @y, b,]}, and n point
values {xi, ...x,}. The domain 2 covered by the data is uniform-
ly discretized into a finite number of points, 6, i= {1, ... O}. Let
P={p\,p,....po}, Where p;=fi(x = 0),i = {1,... O} denotes
the PDF value of X at 6,. The PDF over the entire domain of X,
1.e., fy(X), can be constructed by interpolating these PDF values.
The corresponding likelihood of P can be calculated as:

)[Rl re(ol)

where m is the number of point data values, and 7 is the number
of intervals [a;, b;]. Note that the likelihood function is only pro-
portional to the probability of observing the given data (in the
form of sparse point data and interval data). This likelihood is
then maximized as in (8) shows to evaluate P, i.c., the PDF values
at the discretization points.

L(P) « ilfllfx(xi ilrfll {FX( i

(7)

max L (P)
s.t.p;>0forV p,eP
f(x)=0f0orV x (8)

[ 5=

This approach does not assume a particular distribution
type or parameters for the random variable, and represents
both aleatory and epistemic uncertainty with a single nonpara-
metric PDF. For uncertain variables with sparse and/or inter-
val data, this strategy can be used to first construct their em-
pirical distributions, before generating the training point sam-
ples for the Bayesian network.

Fig. 5 Vehicle side impact model (Youn et al. 2004)

5 Numerical example

A vehicle side impact model is used to demonstrate the pro-
posed methodology (Youn et al. 2004). The model is shown in
Fig. 5. A list of input and output variables is provided in
Table 1. The uncertainty sources (input variability) are listed
in Table 2

The variables listed in Table 1 are used as design variables.
Due to variability in the manufacturing process, variability is
also assumed for each design variable as shown in Table 2.
(This situation corresponds to the case shown in Fig. 1b). Note
that input variables 10 and 11 were treated as design variables
in (Choi et al. 2010). In this paper, they are assumed as non-
design parameters, for which sparse observations (data points)
plus expert-specified ranges (data intervals) are assumed to be
available for the sake of illustrating the use of non-parametric
empirical distributions in the proposed methodology. The
likelihood-based approach is used to construct non-
parametric PDFs for both variables as shown in Fig. 6.

An adequate number of training points first needs to be
generated in order to construct the Bayesian network. For
the side impact problem, a stepwise regression (SR) model
is provided in (Youn et al. 2004), but the original data used
to train the SR model are not available. Therefore, in this

Table 1 Input and output

variables of the side impact model ~ NoO- Input Design space No. Output
1 B-pillar inner: x; [0.5,1.5] 1 Weight
2 B-pillar reinforce: x, [0.5,1.5] 2 Abdomen load: L,
3 Floor side inner: x; [0.5,1.5] 3 Upper rib deflection: Rib,,
4 Cross member: x4 [0.5,1.5] 4 Middle rib deflection: Rib,,
5 Door beam: x5 [0.5,1.5] 5 Lower rib deflection: Rib,
6 Door belt line: xg [0.5,1.5] 6 Upper viscous criteria: VC,,
7 Roof rail: x; [0.5,1.5] 7 Middle viscous criteria: VC,,
8 Mat. of B-pillar inner: xg [0.192, 0.345] 8 Lower viscous criteria: VC;
9 Mat. of floor side inner: xqy [0.192, 0.345] 9 Pubic force: Fp,
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Table 2 Uncertainty sources of

the model No. Input Uncertainty type

1 B-pillar inner N0, 0.03)

2 B-pillar reinforce N0, 0.03)

3 Floor side inner N0, 0.03)

4 Cross member N(0, 0.03)

5 Door beam N(0, 0.03)

6 Door belt line N0, 0.03)

7 Roof rail N0, 0.03)

8 Mat. of B-pillar inner N(0, 0.03)

9 Mat. of floor side inner N(0, 0.03)

10 Barrier height Data: 4, -8, 3.5, 0.7, 0.1, 12,[-25,20] [-30,22][-15,31] [28,28]
11 Barrier hitting Data: 3, -2, 1, 0, -0.5, 0.3,[4,5][-8,10][-10,7] [-0.1,1]

research, the SR model is treated as the “original” model for
the sake of illustration, from which input samples are gener-
ated to calculate the output. And then the input, uncertain and
output variable values are used to train the BN.

The connections (topology) between the nodes can be in-
ferred from the SR model. At first, 100 samples are generated
using Latin Hypercube sampling to train the BN. The corre-
lation coefficient matrix is calculated based on the training
samples. Then 15 more samples are added and the correlation
coefficient matrix is recalculated. The differences between the
corresponding entries of the two matrices are quite large.
Therefore, more samples are added till the differences are
acceptable. A total of 15 additional samples are generated
and added to the original training samples to build a new
BN. The determinant calculated from the 115 training samples
is dety,’ =3.14* 10~ ">, Another 100 sets of samples are gen-
erated from this Gaussian copula, and the determinants of their
correlation coefficient matrices are calculated. The mean and
standard deviation of the determinants are 1.80* 10~ '> and
2.17%10" 15, and dez.!? lands in the 90% bounds. Therefore,
for this example, an accurate BN can be constructed using 115
samples.

Next, the 115 samples of the design variables, combined
with other uncertain variables, are propagated through the SR
model. Samples of the inputs and outputs are then used to
build the Bayesian network as shown in Fig. 7. This BN is a

Fig. 6 Non-parametric PDFs for 0.07
uncertain parameters 0.06-

0.05|

o 0.04f
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& 003
0.024
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probabilistic surrogate model of the side impact problem, i.e.,
for given values of some variables, it provides the joint prob-
ability distribution of the other variables.

Three optimization cases are analyzed. Case I is a single
objective optimization problem. Its purpose is to verify the
accuracy of the proposed BNC approach with the original
SR model. The other two cases consider multi-objective opti-
mization. Table 3 shows the correlation coefficients between
the output variables. It can be seen that the correlation coeffi-
cient between the first two objectives (i.e., weight and door
velocity) is —0.34, which indicates a competing relationship
between the two objectives. To simultaneously optimize these
two competing quantities, a multi-objective optimization for-
mulation from (Rangavajhala and Mahadevan 2011) is
adopted, in which mean values of car weight and door velocity
are minimized simultaneously. The Pareto front needs to be
created to address the trade-off between the two objectives.
Specifications of different cases are provided as follows:
CaseI: Single objective RBDO. In this case, the mean of the
car weight is used as the sole objective. The proba-
bilities of all other 10 outputs being greater than 0.99
individually are used as reliability constraints. This is
the e-constraint approach. The optimization is solved
with both the original SR model and the proposed
BNC approach. The purpose of conducting this case
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Fig. 7 Optimization with BN

is to compare the BNC method with the SR model

and study the extent of agreement between the two

approaches.
Multi-objective optimization (RBDO formulation)
with 2 objectives and 9 individual probability con-
straints. The objectives are to minimize the mean
values of both the car weight, and the velocity of the
front door subject to hitting.
Multi-objective optimization (RBDO formulation)
with 2 objectives, 9 individual probability con-
straints and an additional joint probability con-
straint of the 9 outputs. The same objectives as
Case II are used, which are minimizing the mean
of both the car weight, and the door velocity sub-
ject to hitting.

Case II:

Case III:

5.1 Case I: single objective RBDO

The problem is formulated as:

nl})i{nMWeight
st.  Pi(Con; < Crit})>0.99, i = 1...10 9)
05<x<15, j=1..9

The DIviding RECTangles (DIRECT) algorithm, which
is a gradient-free global optimizer, is adopted to solve the
optimization problem. The optimum obtained from the
BNC approach is compared against the solution of the
SR model. The optimization histories is shown in Fig. 8,
and the optimal solution is listed in Table 4. The objec-
tives and constraints using the two models are listed in
Table 5.

It can be seen from Tables 4 and 5 that the overall perfor-
mances of the SR and BN approaches are quite similar. The
differences between the BN and SR results for objective, con-
straints and most of the design variables are 5% or less. The
probabilistic constraints for pubic symphysis force and door
velocity (bold in red) are slightly violated, which may be due
to the lack of sufficient samples in training the BN; this issue
which will be studied later when discussing Pareto surface
improvement. Having verified the accuracy of the BNC ap-
proach, the next two cases are implemented for multi-
objective RBDO.

5.2 Cases II/III: multi-objective RBDO
with individual/joint probability constraints

The optimization with two competing objectives and 9
individual probability constraints (and one additional joint
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Table 3  Correlations between output variables

Weight Var Lap Fpp Rib, Rib,, Rib, VC, VC,, VG, VBp
Weight 1.00 —-0.34 —0.74 —-0.71 —0.38 —-0.54 —0.67 —0.58 —-0.37 —-0.67 —0.62
Var —0.34 1.00 0.07 0.13 —-0.14 0.02 0.01 —-0.17 -0.24 0.13 0.01
Ly —0.74 0.07 1.00 0.86 0.35 0.49 0.64 0.35 0.26 0.67 0.60
Fpy -0.71 0.13 0.86 1.00 0.04 0.16 0.31 0.16 0.01 0.40 0.27
Rib, —0.38 —0.14 0.35 0.04 1.00 0.95 0.80 0.85 0.94 0.56 0.87
Rib,, —0.54 0.02 0.49 0.16 0.95 1.00 0.93 0.84 0.85 0.74 0.96
Rib, —0.67 0.01 0.64 0.31 0.80 0.93 1.00 0.77 0.72 0.87 0.96
VC, —0.58 —-0.17 0.35 0.16 0.85 0.84 0.77 1.00 0.92 0.53 0.79
VC, -0.37 —-0.24 0.26 0.01 0.94 0.85 0.72 0.92 1.00 0.43 0.78
VG, —0.67 0.13 0.67 0.40 0.56 0.74 0.87 0.53 0.43 1.00 0.77
VBp —0.62 0.01 0.60 0.27 0.87 0.96 0.96 0.79 0.78 0.77 1.00

probability constraint for case III) is formulated as shown
in (10).

min MWeight &

Hver
. €ldoor

s .t . P:(Con; < Crit;) > 0.99
P(ﬂ?:I(Con,- < Crit,)) >0.99(case Il only) (10)
05<x<15, j =1..7
0.192 < x< 0345, k = 8, 9

The NSGA-II algorithm is applied to construct the Pareto
front. The population size in this genetic algorithm implemen-
tation is chosen as 150, probability of crossover is 1 and prob-
ability of mutation is 0.15. The total number of iterations is 20.
MOO with the SR model is first implemented to identify the
effect of the additional joint probability constraint.

It can be concluded from Fig. 9 that, with the consideration
of'the joint probability constraint, the designs along the Pareto
front with joint probability are generally above those without
the joint probability constraint, especially in the region of low
weight and high velocity. This is intuitively correct since the
objectives are minimized; with an additional constraint, both
objectives have higher values.

H weight

No. of iterations
Fig. 8 Single objective RBDO histories for SR and BNC

@ Springer

The proposed BNC approach is next used to construct the
Pareto fronts for Cases II and III. At each point of the BNC
Pareto front, the objectives are re-evaluated using the SR mod-
el. Figure 10 compares the BNC solutions (circles); the BNC
solutions re-evaluated using SR (squares) and the SR solu-
tions (triangles) with and without the joint probability con-
straint. 40 samples are used to depict the Pareto front.

It can be observed from both figures that the BNC Pareto
surfaces are more optimistic compared to the SR solution,
whereas the re-evaluated results using SR (square marks) are
more conservative. The figures also show that the initial BNC
approach cannot identify solutions at the high weight (greater
than 30), low velocity (less than 14) region.

To investigate this issue, scatter plots that characterize the
dependence of weight and door velocity samples from the
initial 115 training samples (left) and the samples generated
from the Gaussian copula (right) are shown in Fig. 11. The
dashed squares cover the region which BNC could not detect
in Fig. 10 (i.e., high ft,eigns IOW fiyerociny)- It can be observed
from Fig. 11a that only 3 of the initial samples land within the
dashed area. The Bayesian network will only generate sam-
ples based on the training points available; in other words, the
training points indicate the joint probability distribution of the
variables, and therefore further samples generated by the
Bayesian network also reflect this joint distribution. Thus the
Bayesian network generates very few samples in the dashed
area in Fig. 11b and is unable to find Pareto solutions in this
area.

To overcome this issue, the training point selection tech-
nique proposed in Section 3.4 is applied: 20 additional values
of the design variables are generated selectively based on the
sculpting strategy. To evaluate this method, Latin Hypercube
sampling (LHS) is also used to generate 20 random values of
the design variables from uniform distributions based on
Tables | and 2, and propagated to estimate the outputs. The
values of the objectives generated by the two approaches are
compared by the scatter plot in Fig. 12.
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Table 4 Comparison of optimal
solutions using SR and BNC Design variables RBDO RBDO Difference (%)
with SR with BNC
Design variables B-pillar inner 0.96 1 4

B-pillar reinforce 1.18 1.33 13

Floor side inner 0.63 0.65 3

Cross member 1.30 1.33 2

Door beam 0.89 0.85 4

Door belt line 1.44 0.96 33

Roof rail 0.89 0.84 6

Mat. of B-pillar inner 0.34 0.32

Mat. of floor side inner 0.27 0.32 19

It can be seen from Fig. 12 that, the selectively gener-
ated training points (squares) focus more on the desired/
rectangular region compared with the LHS approach. The
additional 20 training points generated in different
methods combined with the 115 initial training points
are used to build new BN models for Case III (with the
joint probability constraint). The objectives are re-
evaluated using the SR model. All results are compared
in Fig. 13.

In Fig. 13a, the LHS-based solution does not have
much improvement compared to Fig. 13b. The low door
velocity, high weight region is still not covered by the
additional samples that are uniformly generated.
However, in Fig. 13b, due to the selective resampling
based on ‘sculpting’, the improved BNC is able to con-
struct the Pareto surface in the high weight and low
door velocity region which could not be reached by
the original BNC. And the resulting Pareto surface is
very close to the SR solution. This shows that the
sculpting strategy can be effectively used to improve
the Bayesian network model and the Pareto surface.

Once again, it is worth repeating that here the SR model is
treated as the original model, and the BN is the surrogate
model. In practical problems, the original model will be ex-
pensive, and the BN surrogate model will be trained with
selected evaluations of the original model. The methodology
proposed here addresses both efficiency (training points) and
accuracy (Pareto surface) of the resulting optimal solutions.

6 Conclusion

This paper proposed a novel Bayesian network-based ap-
proach for multi-objective optimization under uncertainty.
The Bayesian network is constructed as a probabilistic surro-
gate model based on input—output samples from the original
model. A vine copula-based sampling technique is used for
efficient uncertainty propagation. A vehicle side impact prob-
lem is used to demonstrate the proposed methodology. The
joint probability of multiple constraints and objectives are
efficiently estimated using the proposed BNC approach, by

Table 5 Performance comparison of the optimal solutions using SR and BNC

Output variables (a) RBDO RBDO Evaluation of BNC Difference between
with SR (b) with BNC (c) with SR (d) (b) and (d) %

Objective Weight 28.20 29.11 29.49 5
Probabilistic Constraints Abdomen load 1 1 1 0

Upper rib deflection 1 0.99 1 0

Middle rib deflection 1 1 1 0

Lower rib deflection 0.99 1 1 1

Upper viscous criteria 1 0.99 1 0

Middle viscous criteria 1 1 1 0

Lower viscous criteria 1 1 1 0

Pubic force 0.99 1 0.97 2

B-pillar velocity 1 1 1 0

Door velocity 1 0.99 0.97 3
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Stepwise Regression
o Without joint probability constraint
o With joint probability constraint
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Fig. 9 Comparison of Pareto fronts with/without joint probability
constraints

13.5¢

exploiting the forward propagation capability of the Bayesian
network.

A novel training point selection technique is proposed to re-
fine the BN model and improve the Pareto surface. Additional
samples of training points are generated in the desired region
based on sculpting, which exploits the dependence relations
among the inputs and outputs, and the inverse propagation capa-
bility of the Bayesian network through conditional sampling.

Future work may study the use of analytical multi-normal
integration of the Gaussian copulas instead of the sample-
based strategy used here to compute the constraint probabili-
ties; this could further improve the efficiency of reliability
assessment and optimization. Efficiency improvements in
the presence of non-Gaussian copula also need to be studied,
since sampling with non-Gaussian copula is much more time-
consuming. However, note that the computational effort of the
physics model is much larger than that for sampling, even if
non-Gaussian copulas are used. The numerical example had 9
design variables, 11 uncertain variables, 9 constraints and 2
objectives; further studies may investigate the performance of
the proposed methodology for much larger multi-objective
optimization problems. Also, the uncertainty sources

16;
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(a) Without joint probability constraint
Fig. 10 Pareto fronts with BNC, and SR solutions
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considered in the framework currently only include input var-
iability and data uncertainty. Future studied should be engaged
to include model errors in such framework could be studied in
the future.
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Appendix
Vine representation of BN

The vine approach is a way to identify a set of conditional
bivariate joint distributions that represent the joint distribution
of all the variables in the problem. Detailed theory on vines can
be found in (Cooke and Kurowicka 2007; Jones et al. 1998;
Cooke et al. 2015; Youn et al. 2004; Yule and Kendall 1965).
Consider the model shown in Fig. 14, and assume that paired
samples of X7, X5, ¥; and Y, are available. A vine structure can
be constructed as shown in Fig. 15,where r;; represent the rank
correlations and conditional rank correlations between two var-
iables. The rank correlations represented by the 6 edges in the
BN in Fig. 14b are mapped to three non-partial bivariate corre-
lations (solid lines) and three conditional bivariate correlations
(dashed lines) in the vine structure. It has been proved that these
6 correlations along with the marginal distributions are able to
uniquely define the joint distribution of all the variables in the
BN in Fig. 14b (Hanea 2010).

Since the vine approach uniquely represents the multivari-
ate joint distribution using the marginal distributions of the
variables and the six correlation terms shown in Fig. 15, only
a bivariate copula function C needs to be assumed for each of
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Fig. 11 Scatter plots of weight and door velocity

the bivariate distributions. Note that the choice of copula can
be different for different edges in a vine structure. Now, sup-
pose we generate samples of 4 independent uniform random
variables uy, u,, us and uy from the interval [0,1]. The CDF
values of the four variables in the BN, which are correlated,
can be obtained using (A.1) (Kurowicka and Cooke 2010).

Uy, = U (A.1.1)

u —C! (u2) (A.1.2)

X2 | Uy UXZ U)(] Uy

u =C! c! (u3) (A.1.3)

V1| Usy Uy Uy1 U)(2 Uy, Uy] UXI Uy Uyy

u

o | Uy Uy Uy

=C! c! c! (ug)
Uy, Uy, |uy, Uy, Uy, ”Vluxz) Uy, Ux, |uy, iy,

(A.1.4)

where C are bivariate copula functions between the CDF of
two variables. Cj;} indicates the inverse CDF of the

16.51
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Fig. 12 Comparison of the outputs from different resampling approaches

conditional probability nyl That is, given the CDF(s) of ;"
variable(s), the inverse CDF with respect to u; is taken to
compute the conditional CDF of i variable. For the sake of
illustration, consider the copula function between X; and X5:

Cuy,uy, = P(uy, <uy,ux,<up) (A.2)
Given a realization of u,, and the value of uy, already

generated in (A.1.1), the CDF of X, can be calculated as

() =F' | (u)

Uy, |ux,

uy, = C! (A.3)

Uy, Uy, |ux,

Similarly, the CDF values of ¥, and Y>, namely uy, and
uy,, can be generated using the bi-variate copulas in (A.1.3)
and (A.1.4). Once the correlated CDF values are generated,
the inverse CDF estimation is subsequently used to obtain the
samples of the corresponding variables, as shown in (A.4).

x1 = Fy (uy,) (A.4.1)

xo=F¢|u (A.4.2)
X2 uxl

yi=Fy(u (A.4.3)
V1 | Uy Uy

vy =Fy | u (A.4.4)
Vo | Uy Uy Uy

When the number of variables within the BN (hence the
vine structure) is large, this series of inverse copula estima-
tions can be computationally intensive. The assumption of a
Gaussian copula provides an analytical solution and avoids
the sequential bivariate estimation, thus making the sampling
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(a) Approach I: uniformly generated samples (b) Approach II: selectively generated samples

inexpensive. A Gaussian copula represents the joint CDF of
all marginal CDFs using a multivariate Gaussian distribution.

To apply the Gaussian copula, the Spearman’s rank corre-
lations between all the pairs of variables are first computed,
denoted as r;. Then, Pearson’s transform (Kurowicka and
Cooke 2010) is applied to get the conditional linear product
moment correlations:

As mentioned earlier, the vine structure is a saturated
graph, which is not necessarily true for BN. A missing link
in the BN can be expressed in a vine structure by setting the
corresponding rank correlation (conditional or unconditional)
as zero. Subsequently, the conditional product moment p also
equal to zero. Then, the bivariate unconditional product mo-
ment can be recalculated with the recursive formula (Yule and
Kendall 1965) (for a Gaussian copula) as:

(A.5)

— *
Pras.n = P12:3...0-1 P1n3,...n-1 P2n3,...n-1 (A.5)

\/l_p%n;fa,...‘n*l \/l_p%n;fa,...,n*l

A Gaussian copula that represents the relationships in
Fig. 15 can be written as:

& () @ (1)
o o) | | ®7 )
= Tmm | 2| o [ E| e
7 (ug) &7 ()

(A6)

Fig. 14 Bayesian network
representation of a model with X
input and output variables 1

(a) Two-input-two-output model M

@ Springer

where @ ! represents the inverse CDF of a standard normal
random variable. u are independent uniform random variables
from the interval [0,1]. / is an identity matrix. R is the covari-
ance matrix of the four variables, and since the marginals of
the Gaussian copula are standard normals, R is essentially the
correlation coefficient matrix composed of the unconditional
product moment correlations p;;.

The multivariate Gaussian distribution in (A.6) can be used
to rapidly generate a large number of samples of correlated
normal random variables. In this case, samples of 4 variables
from this joint normal distribution are generated and denoted
as X, I,X'Q, Y] s Y'2. For each sample of the variables, compute the
CDF with respect to the marginal distributions of standard
normal distribution, and denote the CDF values as uy,, ux,,
uy, and uy,. Samples of X}, X3, Y7 and Y, are then obtained by
taking the inverse CDFs of uy, , ux,, uy, and uy, with respect
to their marginal distributions as shown in (A.4).

Conditional sampling

The combination of Bayesian network and vine copula-based
sampling technique (BNC) helps to formulate a methodology
for efficient modeling and sampling of a multivariate joint
distribution. To use this framework as a surrogate model, the
conditional distributions of outputs y for given values of input
x needs to be estimated. Conditionally sampling with the
Gaussian copula assumption is very easy to implement since
(A.4) can be converted to conditional Gaussian copula analyt-
ically. The procedure is as follows:

(b) BN representation
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X1

Fig. 15 Vine representation of the BN shown in Fig. 14

For example, the conditional samples of ¥; and Y, need to
be generated given X =x;, X;=x,. The equivalent normals
corresponding to X;=x;, Xo=x, are first calculated as
X =@ (Fx, (1)), %, = ® ' (Fx, (x2)).

Let 1 be the mean vector of X7, X5, Y7 and Y5 in the equiv-
alent normal space [X f ,X'2, Yl, Y'Z]; 1 is a vector of zeros with 4
entries, and R is the covariance matrix:

Then the conditional joint distribution of Y; and Y5 given
X, =x), Xo=x, is denoted as: f(Y/l,Y/2|X/1 =, X, = X)
~N(j1,Y. ), where the conditioned mean vector fi and co-

variance matrix )  are

=35 *[zl ] (A7.1)
2
2 =5-5%'s (A.7.2)

Samples Y and Y, are jointly generated from a multivariate
normal distribution, of which the mean and covariance matrix
are calculated as in (A.7). The CDF values of each Y; and Y,
sample with respect to the standard normal distribution
(uy,, uy,) are computed, and the inverse CDF is taken to
obtained the conditional samples of Y; and Y, as shown in
(A.4). Thus sampling from the Gaussian copula avoids the
evaluation of the series of inverse copula functions in (A.1),
and is very efficient.
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