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Abstract In engineering, it is often desirable to find a sub-
set of the set of feasible designs, a solution space, rather than
a single solution. A feasible design is defined as a design
which does not violate any constraints and has a perfor-
mance value below a desired threshold. Performance mea-
sure, threshold value and constraints depend on the specific
problem. For evaluation of a design with respect to feasibil-
ity, a model is required which maps the design parameters
from the input space onto the performance measures in
the output space. In state-of-the-art methodology, iterative
sampling is used to generate an estimate of the frontier
between feasible and infeasible regions in the input space.
By evaluating each sample point with respect to feasibility,
areas which contain a large fraction of feasible designs are
identified and subsequently resampled. The largest hyper-
cube containing only feasible designs is sought, because
this results in independent intervals for each design parame-
ter. Estimating this hypercube with sufficient precision may
require a large number of model evaluations, depending
on the dimensionality of the input space. In this paper, a
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novel approach is proposed for modeling the inequality con-
straints and an objective function in a way for which a linear
formulation can be used, independently of the dimensional-
ity of the problem. Thereby the exact solution for the largest
feasible hypercube can be calculated at much lower cost
than with stochastic sampling as described above, as the
problem is reduced to solving a linear system of equations.
The method is applied to structural design with respect to
the US-NCAP frontal impact. The obtained solution is com-
pared to numerical solutions of an identical system, which
are computed using reduced order models and stochastic
methods. By this example, the high potential of the new
direct method for solution space computation is shown.

Keywords Solution Space · Crashworthiness ·
Optimization · Surrogate Model · Systems Engineering

1 Introduction

The concept of solution spaces as it is used here, was intro-
duced in Lehar and Zimmermann (2012) in 2012. In the
proposed method, a statistical statement is made about a
product of intervals, i.e., a box, as shown in Fig. 1. It states,
that, if a sample of size N , taken uniformly from this box,
contains only feasible sample points, the box holds at least
a certain fraction of feasible design space, independent of
the dimensionality of the input space. A feasible design is a
point which does not violate any constraints gj (x) and for
which the model x �→ y yields y ≤ yc, with y as a mea-
sure for the performance of the system and yc as a threshold
value for this performance criterion. In Zimmermann and
Hoessle (2013), an algorithm is proposed for identifying
these intervals using iterative Monte-Carlo sampling. The
size measure Φ of this box is to be maximized while all
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Fig. 1 Solution space Ω represented by a box in the input space,
which contains only feasible points (o), i.e. for which no included point
violates any of the constraint gj (x)

points xj within the box fulfill all constraints gi(x). This
has been extended to the identification of key parameters for
design improvement in Fender et al. (2014).

Iterative Monte-Carlo sampling requires a large number
of function evaluations. In, e.g., vehicle crash design, each
function evaluation requires a full vehicle finite element
simulation. Such detail model evaluations are computation-
ally expensive. Thus, the stochastic computation of solution
spaces relies heavily on highly efficient models, i.e. the use
of substructures, see Duddeck (2008), or simplified models,
see Fender et al. (2014), Kim et al. (2001), and Carvalho
et al. (2011).

Finding the largest box, which contains at least a cer-
tain fraction of feasible designs, rather than optimizing x
with respect to the performance measure y, has a number
of advantages. It decouples the variables in the input space.
Given Fig. 1, any x1 ∈ Δx1 will likely result in a feasible
design if also x2 ∈ Δx2. Thus, the parameters are inde-
pendent with respect to fulfilling the constraints gi(x). This
is used to break a large problem down into several smaller
classical constrained optimization problems which can be
solved independently. In systems engineering, breaking
down systems into subsystems is state-of-the-art method-
ology, see Doyle and Csete (2011). In systems subject to
uncertainty, the approach is used to define intervals for each
parameter which account for their variability. Finally, defin-
ing orthogonal intervals rather than point-solutions means
variations in single variables do not have to be accounted for
in the other variables as long as all variables are still in their
respective intervals.

In lack-of-knowledge problems, where only some of
the parameters can be determined, admissible ranges for
the unknown parameters are given. These intervals can be
refined as more information becomes available.

The approach for identifying the solution space proposed
in this paper is different because it does not rely on sampling

or stochastics. We state that, given a set of linear constraints
gi(x), finding the largest box by a certain performance mea-
sure Φ, can be formulated as a linear, convex optimization
problem. Then, the problem can be solved directly using the
method of Lagrange multipliers. Hence, the computational
effort to generate maximized solution spaces can be greatly
reduced.

This approach has certain similarities to the so-called
lack-of-knowledge theory, see Ladeveze (2002), where an
interval analysis is combined with the theory of probabili-
ties. The modeling can then be refined as more information
becomes available (model update) (Ladeveze et al. 2006).
The difference to the approach discussed here lies in the fact
that the lack-of-knowledge is not characterized with prob-
abilities but a high flexibility is aimed for by maximizing
the size of the solution space. This is especially attractive
for product development in early design phases and can be
regarded as a special approach for robustness in early phase
design (Duddeck and Wehrle 2015).

2 Problem statement

After establishing why it is desirable to calculate solution
spaces, this section provides a formal problem statement for
calculating solution spaces in general and for the special
case addressed in this paper. With the parameter vector x =
(x1, x2, . . . , xN) and the system response y, the mapping

x �→ y , (1)

maps a point in parameter space to a scalar output value.
This will be referred to as the model. Given a model,
classical optimization solves the problem

x = argmin
x

(y) . (2)

This means finding the point in parameter space for which
the output value of the model is minimal: the optimum.
With xi,l and xi,u, as the lower and upper bounds for each
variable, a solution space is defined as

Ω = [
xi,l, xi,u

]N ⊂ RN , (3)

with the size measure Φ(Ω). With the constraints gj (x),
the optimization problem can be formulated for the solution
space:

Ω = argmax
Ω

(Φ(Ω)) . (4)

subject to

gj (x) ≤ 0, ∀ x ∈ Ω, ∀j. (5)

The solution is the box with the largest size measure Φ(Ω)

for which all points within the box satisfy all constraints
gj (x). The stochastic approach provides an estimator for
this box. Figure 1 also shows how a box only containing
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feasible sample points may contain fractions of infeasible
design space. In Lehar and Zimmermann (2012), the statis-
tics regarding the fraction of feasible design space and the
associated confidence based on sample size are discussed.
The stochastic approach requires a model in the sense of (1)
which reflects feasibility of the solution in its output value.
In the formulation proposed in this work, the constraints
are directly evaluated at their respective corners of the box.
Compared to the stochastic approach, which relies on a large
number of function evaluations, this results in a decrease of
calculation time by several orders of magnitudes, even for
highly efficient surrogate models. In the approach presented
here, there is no need for iterating and the solution exactly
satisfies equation (5). The restriction is that it can only be
applied to problems of the form

Φ(Ω) = min
i

(Δxi) , (6)

with Δxi = xi,u − xi,l and

gj (x) =
∑

i

aixi − bj , (7)

i.e., max-min-problems with linear constraints. The objec-
tive function (6) is particularly well suited for the solution
space problem because the difficulty of realizing a design
for which xi ∈ [xi,l, xi,u] ∀i is determined by the smallest
interval Δxi . Thus, it is advantageous to make the smallest
interval as large as possible.

3 Methodology

3.1 The crash load case

This work explores the possibilities of finding an analyt-
ical solution for the solution space problem with a focus
on crashworthiness design. Appropriate simplifications are
derived and formulated. The resulting feasible parameter
space is built and then used to solve for the largest hypercube.

In the USNCAP crash load case, the test vehicle is
driven against a rigid barrier at full overlap with an ini-
tial velocity of 56 km

h
. The structural performance measures

for the USNCAP crash load case are the crash-pulse, i.e.,
the B-pillar acceleration in the x-direction, see Huang
(2002), the firewall intrusion and the order of deforma-
tion within the structure, see Fender (2013). The accelera-
tions and deformations in the x-direction are linked to the
force-deformation characteristics, see Fender (2013). These
force-deformation characteristics are functional properties
of the system and constitute the parameters of the system
for which constraints are formulated.

Note that the force-deformation characteristics for each
component are an output quantity of the detailed FEM crash
model but an input quantity of the solution space problem.

A detail model directly maps the detail parameters, material
and geometry, to full vehicle properties such as accelera-
tions and total deformations. That means that if the force-
deformation curves are known from the detail model, the
performance of that model is also known. This also means
force-deformation curves cannot be directly controlled in
the detail model but obtaining a specific force-deformation
response is a design problem as well. However design-
ing any single component to deliver a force-deformation
response that satisfies certain boundaries is a much smaller
problem than simultaneously designing all components of
the systems to deliver a specific system response. Thus,
deriving intervals for each component which are sufficient
for obtaining the desired system response breaks the larger
problem down into one smaller problem per component,
each of which may be solved independently.

3.2 Formulating linear constraints through
discretization

Although the assumption of linear constraints may at first
seem very strong and lacking general applicability, it actu-
ally holds for a wide variety of problems. E.g. in crash, the
two major determining factors are acceleration and energy
absorption. The amount of energy absorbed by the struc-
ture, Edef o, over the admissible deformation must be large
enough to bring the vehicle to a halt. The absorbed energy
can be expressed as the sum of integrals of the crush-
ing force, Fj , of each component over its deformation uj .
Assuming that the entire vehicle mass is concentrated in the
center of gravity of the vehicle, with j indicating the j -th
of M components with a deformable length of Lj in the
vehicle, the constraint is:

Edef o =
M∑

j=1

∫

Lj

Fj (uj )duj ≥ 1

2
mvv

2
0 . (8)

This states that the energy which can be absorbed by all
involved components must be greater than the initial kinetic
energy related to the initial mass mv and initial velocity v0.
Considering the decrease in mass which has to be deceler-
ated because some of the structure will already be in contact
with the barrier and at a velocity of zero before the crash
ends, the acting force must be taken in relation to this active
mass m∗

v,j (uj ):

M∑

j=1

∫

Lj

Fj (uj )

m∗
v,j (uj )

duj ≥ v20

2
. (9)

In this expression, less energy needs to be absorbed because
the kinetic energy of parts hitting the barrier at a certain
remaining velocity does not have to be accounted for in
vehicle deformation. Note that this is a constraint on a spe-

cific energy, having the unit of velocity squared, i.e. m2

s2
.
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Fj (uj ) for any particular component is an arbitrary func-
tion and, in the case of crash, is usually obtained via explicit
finite element simulation. However, the integral may be
discretized using a zero-order hold approach, yielding

M∑

j=1

N∑

i=1

Fi,j

m∗
i,j

di,j ≥ v20

2
(10)

as a linear approximation. With Lv as the total deformable
length of the vehicle, m∗

i,j = ∫ Lv

ui,j

dm(x)
dx

dx is the cumula-
tive mass which is yet to be decelerated at any increment
i, opposed to single mass points mi . Although the func-
tion of force over deformation is highly non-linear, the
dependency of the absorbed energy on this function, or any
particular point of this function is linear. This is trivial but
it is yet important when trying to formulate constraints for
the functions Fj (uj ) and not for the underlying geomet-
rical and material properties of the component. Because
mathematically it does not matter which component con-
tributes to which energy increment Fi,j dui,j , the index j

can be left out and we simply sum all increments over all
force-deformation curves of all components:

N∑

i=1

Fi

m∗
i

di ≥ v20

2
. (11)

This is a linear expression for the total specific energy
absorbed by all involved components during a crash as the
integral over the force-deformation curves Fj (uj ) of each
component. Thus, any constraint on the integrals of the
exact curves Fj (uj ) can instead be formulated for this lin-
ear approximation. Particularly, an upper and lower bound
Fj,u(uj ) and Fj,l(uj ) may be defined,

Fj,l(uj ) ≤ Fj (uj ) ≤ Fj,u(uj ) , (12)

where Fj,l(uj ), Fj,u(uj ) are piecewise constant functions
of force over deformation. Any function Fj (uj ) which is
larger than Fj,l(uj ) at every point, i.e.
Fj,l(uj ) ≤ Fj (uj ), will absorb at least as much energy as
this piecewise constant lower bound. Also, the same argu-
ment can be made for the upper bound of the function. This
is illustrated in Fig. 2.

Although energy is the most intuitive example, this holds
for any constraint for a sum of integrals, e.g. for a number of
arbitrary functions fj (xj )where the sum over their integrals
must be larger than b, i.e.,

M∑

j=1

∫

Xj

fj (xj )dxj − b ≥ 0 (13)

can be formulated as
N∑

i=1

yidxi − b ≥ 0 (14)

,

force-deforma�on 
curve ( )

Δ

,

+1,

+1,

piecewise constant
constraint ,

piecewise constant
constraint , ( )

Δ +1

Fig. 2 A force-deformation curve Fj (uj ) with piecewise constant
lower and upper bounds

with yi = fj (xi,j ). The number of variables in this linear
function depends on the discretization. Also note that this is
a constraint on the values of the function yi itself rather than
the argument of the function, xi .

As mentioned above, the other major constraint in crash
is the maximum acceleration. As opposed to the energy,
the acceleration depends on the way the components are
arranged in relation to one another, i.e., if the order in which
two components deform is changed, the total absorbed
energy is assumed to not be affected by this, provided the
deformation behavior of the components does not change
significantly. The acceleration over deformation of the vehi-
cle, a(uv), however will change. More specifically, the
acceleration at any point i during the deformation is, with
the index j for M simultaneously deforming components,

ac,lo ≤ 1

m∗
i

M∑

j=1

Fi,j ≤ ac,u (15)

This results in as many separate linear constraints as the
number of piecewise constant segments the x discretization
of the structure requires. Finally the order of deformation
requires the collapse force of a subsequent component to be
larger than the force at any point in deformation of a pre-
viously deforming component, which results in another set
of linear constraints. This is particularly important for low-
speed crashes where the front parts are more easily replaced.
From these formulations it becomes clear, that the simplic-
ity of the constraints comes at the price of resulting in a large
number of constraints. However, as shown in Fig. 2, the
formulation is still correct for very coarse discretizations,
although a finer discretization allows for a larger number of
feasible solutions. The next section shows why the exam-
ple front crash problem discussed in this work may be
adequately handled with a relatively coarse discretization.

Note that any particular energy, force or deformation over
time curves and their derivatives depend highly non-linearly
on the behavior of all components and their interaction. The
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integration schemes used for obtaining the vehicle behav-
ior over time, especially their dependency on geometry or
material, cannot be linearized in this manner and constraints
directly on the vehicle behavior in time or its geometry or
material properties cannot be found using this approach.
Also, optimization within the framework of this set of linear
constraints is meaningless as the constraints only reliably
discriminate between feasible and infeasible designs but
hold no information for the exact performance of a design
point, regardless whether this point is feasible or not.

However, for constraints on integrated quantities or
threshold values as shown above, the method provides a
linear model. Furthermore, such a set of linear constraints
always results in a convex optimization problem. Although
the ansatz is motivated using a given force-deformation
curve, this problem is solved without prior knowledge of the
component behavior.

Once intervals such as those shown in Fig. 2 have been
defined for each component involved in the crash process,
the development problem is decoupled. This means that
material and geometry of each component can be designed
such that its force-deformation characteristic satisfies (12).
Any combination of components where all components
satisfy their respective constraints will always result in fea-
sible overall system behavior. Therefore components can be
designed independently and optimized with respect to other
performance measures such as cost, weight, stiffness, etc.
as long as the constraints provided by this approach are
satisfied, i.e. the design point lies within the solution space.

3.3 The deformation space

The fundamental concept in this approach with respect to
crash is that of the deformation space because it enables
the construction of the necessary linear constraints gj . As
discussed in Section 3.2, it is important for the crash per-
formance in which order and at which relative position the
components deform. This map and the resulting necessary
discretization is derived from the deformation space.

It is important to note, that for the crash problem, a
finer discretization does not necessarily result in a better
solution. We assume a distance where the active mass, i.e.
the mass which is decelerated by the currently deform-
ing structure, is constant. Also, the number of components
which deform in parallel over this distance does not change.
Then, for the acceleration, the constraint on the sum over
the forces of these components is constant and remains
also unchanged over this deformation. Because the energy
absorption constrains the integral of the force over defor-
mation, any curve with an equivalent integral is equally
viable. Thus, a constant lower bound, to satisfy the energy
constraint, maximizes the minimum distance between the
two bounds, such as shown for the two piecewise constant

sections in Fig. 2. Assuming that for the upper and the lower
bound a piecewise constant solution is optimal over a given
distance, there is no benefit in finer discretization in this
area. Based on this assumption, the structure is divided into
sections, where a section is the longest deformable distance
over which the involved components and the active mass
remain unchanged. Whenever either mass or the contribut-
ing components change, a new section with independent
degrees of freedom starts.

The deformation space can be obtained from the geom-
etry of the system, see Fig. 3, by mapping geometric
coordinates to coordinates of simultaneous deformation, see
Fig. 4. We assume, that every component can be compressed
to a certain level before it behaves as though it were rigid.
Rigid bodies and empty spaces are removed from the geom-
etry. Then, the structure is mapped by order of deformation,
i.e., the part of the structure that deforms first, is at the coor-
dinate value zero, the part that deforms next comes after
that until all deforming parts of the structure are arranged in
ascending order for all parallel load paths.

In the resulting equivalent system, any x-position denotes
a point of simultaneous deformation of the parallel compo-
nents. The dashed lines mark a change of effective mass or
involved components. When empty spaces and rigid parts are
removed from the geometry, the dashed lines are straight.

For the masses, as discussed in Section 3.2 with respect
to active mass, we substitute, m∗

1 = m1 + m2 + m3, m∗
2 =

m2 + m3 and m∗
3 = m3. Let Fkl be the lower bound for the

force in every element and ΔFkl the corresponding interval
width, where k denotes the component and l the section that
part of the component lies in. Given the design goals defined
in Section 3.1, for the system shown in Fig. 4, the constraints
are now formulated as follows:

Pulse

⎧
⎨

⎩

F11 + ΔF11 + F31 + ΔF31 − m∗
1ac ≤ 0

F21 + ΔF21 + F32 + ΔF32 − m∗
2ac ≤ 0

F22 + ΔF22 + F41 + ΔF41 − m∗
3ac ≤ 0

(16)

Defo

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − m∗

1−m∗
2

m∗
1

)
(F11 + ΔF11)

−
(

m∗
1−m∗

2
m∗
1

)
(F31 + ΔF31) − F21 ≤ 0

(
1 − m∗

2−m∗
3

m∗
1

)
(F31 + ΔF31)

−
(

m∗
2−m∗

3
m∗
1

)
(F11 + ΔF11) − F41 ≤ 0

(
1 − m∗

2−m∗
3

m∗
2

)
(F32 + ΔF32)

−
(

m∗
2−m∗

3
m∗
2

)
(F21 + ΔF21) − F41 ≤ 0

(17)

Energy
v20
2 − d1

m∗
1
(F11 + F12) − d2

m∗
2
(F21 + F22)

− d3
m∗
3
(F31 + F32) ≤ 0

(18)

The set of equations labeled Pulse puts an upper limit of ac

on the acceleration in every section. The set labeled Defo
ensures that components closer to the barrier deform first
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Fig. 3 System geometry with
four components and three
masses, deformable parts (grey)
and undeformable parts (black)

11 21 22

31 32 412

1

3

and is readily derived from a free body diagram. The con-
straint labeled Energy puts a lower limit on the integral
of the force over the admissible deformation such that the
velocity is reduced to zero before the deformation is used
up.

3.4 The objective function

In Fender et al. (2014), the volume is given as size mea-
sure for the hypercube as it corresponds to the number of
feasible solutions contained within the cube. For the design
process, however, the smallest interval is most critical for
the feasibility. In addition, using the smallest interval width
as an objective function makes it possible to use a linear
formulation of the problem.

With the the ith interval’s upper bound Fu,i , lower bound
Fl,i and weight ωi , the objective function for the problem is:

Φ = ΔFω,min = min
i

(
Fu,i − Fl,i

ωi

)
. (19)

The weights ωi represent the relative importance of the indi-
vidual intervals in the optimization problem. Due to the
convex nature of the problem, the size of one interval can
only be increased at the cost of the size of the other inter-
vals. The weights ωi are used to control this distribution
of interval widths. The optimization goal is to maximize
Φ. According to Fender (2013), the supremum for Φ can
always be reached while also fulfilling ΔFi

ωi
= ΔFj

ωj
=

ΔFω∀i, j . This is intuitive for any vector
ΔF = (ΔF1, ΔF2, . . . , ΔFN)T , and scalar ΔFi ∈ ΔF

taken from this vector. With Φ = min (ΔF), Φ ≤ ΔFi is
always true for any i. Therefore, the objective function value
is never improved if the vector contains some ΔFj > ΔFi .
At the same time, Φ decreases if there is a ΔFj < ΔFi in
the vector. Therefore, the optimal value for Φ can be found
by instead maximizing the scalar ΔF under the equality
constraint that ΔFi = ΔFj = ΔF ∀i, j ∈ 1, 2, . . . , N .
This is admissible due to the convex nature of the problem
which implies that the smallest output value is maximized
when all output values are equal.

Therefore, with

ωiΔFω = Fu,i − Fl,i , (20)

as a set of additional equality constraints,

Φ = ΔFω. (21)

is an equivalent objective function to (19).

3.5 The constrained optimization problem

With the objective function Φ = ΔFω as defined above and
for linear constraints

gj (x) = nT
j x − bj , (22)

where nj is the normal vector of the j -th constraint and bj

the respective right hand side, the Lagrangian,

L = Φ[f (x)] −
∑

λigi(x) , (23)

can be simplified to a linear function using (21):

L = ΔFω −
∑

λi

(
nT

i x − bi

)
. (24)

The solution is obtained by setting ∇L = 0, similarly to,
e.g., Nocedal and Wright (1999).

4 A simple example problem

Given the constraints defined in Section 3.3, for the system
shown in Fig. 4, and using the objective function, Φ = ΔFω

as defined above, the Lagrangian is

L = ΔFω −λ1
(
F11+ ω11ΔFω +F31 + ω31ΔFω − m∗

1ac

)

−λ2
(
F21+ ω21ΔFω +F32 + ω32ΔFω − m∗

2ac

)

−λ3
(
F22+ ω22ΔFω +F41 + ω41ΔFω − m∗

3ac

)

−λ4

(
(1 − m∗

1−m∗
2

m∗
1

)(F11 + ω11ΔFω)

− m∗
1−m∗

2
m∗
1

(F31 + ω31ΔFω) − F21

)

−λ5

(
(1 − m∗

2−m∗
3

m∗
1

)(F31 + ω31ΔFω)

− m∗
2−m∗

3
m∗
1

(F11 + ω11ΔFω) − F41

)

−λ6

(
(1 − m∗

2−m∗
3

m∗
2

)(F32 + ω32ΔFω)

− m∗
2−m∗

3
m∗
2

(F21 + ω21ΔFω) − F41

)

−λ7

(
v20
2 − d1

m∗
1
(F11 + F31) − d2

m∗
2
(F21 + F32)

− d3
m∗
3
(F22 + F41)

)

(25)
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11 21 22

31 32 412
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Fig. 4 The deformation space of the system. Component parts which
deform simultaneously lie in parallel, undeformable parts have been
removed

From ∇L = 0, follows that λ4,5,6 = 0 and

λ1 = d1
m∗
1
λ7 , λ2 = d2

m∗
2
λ7 , λ3 = d3

m∗
3
λ7 ,

λ7 = 1

2

(
d1
m∗
1
+ d2

m∗
2
+ d3

m∗
3

) . (26)

Thus, the order of deformation constraint is not an active
constraint for any element. The substitutions F ∗

i =
∑Mi

j=1 Fi,j and ΔFω,i,j = ΔFi,j

ωi,j
and the condition that

ΔFω,i,j = ΔFω,k,l∀i, j, k, l, yields the following linear
system of equations:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 d1
m∗
1

d2
m∗
2

d3
m∗
3
0 0 0

ω∗
1 −1 0 0 1 0 0

ω∗
2 0 −1 0 0 1 0

ω∗
3 0 0 −1 0 0 1

0 0 0 0 1
m∗
1
0 0

0 0 0 0 0 1
m∗
2
0

0 0 0 0 0 0 1
m∗
3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ΔFω

F ∗
l,1

F ∗
l,2

F ∗
l,3

F ∗
u,1

F ∗
u,2

F ∗
u,3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

v20
2
0
0
0
ac

ac

ac

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(27)

The solution of this system yields the optimal set of intervals
for each section, for any given relative weight ω, as defined
in Section 3.4. The remaining equality constraints are used
to break these intervals down to the component level:

⎡

⎢⎢⎢⎢
⎣

0 1 1 0 0
0 0 0 1 1
ω11 −1 0 1 0
ω12 0 −1 0 1
0 1 −1 0 0

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

ΔFω

Fl,11

Fl,31

Fu,11

Fu,31

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

F ∗
l,1

F ∗
u,1

0
0
0

⎤

⎥⎥⎥⎥
⎦

(28)

The constraint regarding F32 and F41 does not need to be
considered explicitly in the equations. It is implicitly con-
sidered in the Lagrange formalism and in the global solution
such that, if all other conditions are satisfied, this condition
is not violated under the assumption of optimality of the
solution. Therefore, the unique solution obtained by solving

(28) is in agreement with this constraint as well. For struc-
tual sections two and three, see Fig. 4, the following systems
of equations have to be solved:

⎡

⎢⎢⎢⎢
⎣

0 1 1 0 0
0 0 0 1 1
ω21 −1 0 1 0
ω22 0 −1 0 1
0 1 0 0 0

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

ΔFω

Fl,21

Fl,32

Fu,21

Fu,32

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎣

F ∗
l,2

F ∗
u,2

0
0(
1 − m∗

1−m∗
2

m∗
1

)
Fu,11 −

(
m∗
1−m∗

2
m∗
1

)
Fu,31

⎤

⎥⎥⎥⎥⎥
⎦

(29)

⎡

⎢⎢⎢⎢
⎣

0 1 1 0 0
0 0 0 1 1
ω31 −1 0 1 0
ω32 0 −1 0 1
0 0 1 0 0

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

ΔFω

Fl,22

Fl,41

Fu,22

Fu,41

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎣

F ∗
l,3

F ∗
u,3

0
0

−
(

m∗
1−m∗

2
m∗
1

)
Fu,11 +

(
1 − m∗

1−m∗
2

m∗
1

)
Fu,31

⎤

⎥⎥⎥⎥⎥
⎦

(30)

Note that in (30), the third section is constrained with
respect to the order of deformation by the first section. This
is valid because the second section is constrained by the first
section in the other load path which results in a lower force
for this load path in the second section. The resulting force-
deformation-intervals for the respective elements are shown
in Figs. 5 and 6.

The active mass decreases over deformation which
results in a decreasing total force, shown in Fig. 5, in order
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Fig. 5 Global solution for the intervals for forces-deformation
characteristics
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Fig. 6 Component-wise
solution for the intervals for the
forces over deformation
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to maintain sub-critical accelerations. Also, the order of
deformation is as desired despite a monotonously decreas-
ing total force. Each force peak between components is
compensated by the parallel load path, see Fig. 6.

The solution space problem is closely related to a con-
strained optimization problem for the system. In fact, solv-
ing the solution space problem can be shown to be of equal
complexity as solving the linear optimization problem of
minimizing one of the constrained output quantities, e.g.
minimizing the maximum acceleration.

By the same reasoning used in the deduction of (21), the
problem of minimizing the peak acceleration of the system
can, with x̂ = (F11, F31, F21, F32, F22, F41)

T , be expressed
via the Lagrangian

L = − (F22 + F41) −
∑

λk

(
nT

k x̂ − bk

)
. (31)

which is very similar to (24). Additionally, the constraints
F22 + F41 − m3

m2+m3
(F22 + F32) = 0 and F22 + F41 −

m3
m1+m2+m3

(F22 + F32) = 0, i.e. the acceleration is constant
over the length of the structure, are introduced. These con-
straints substitute the constraints forΔF which enforced the
proportions of the hypercube, i.e. (20).

The problem is still a linear optimization problem with
the difference that the dimension of the problem is N rather
than 2N + 1 as in the solution space problem because the
variable ΔF is not needed and only one point, defining the
optimal solution, rather than two points to span a hypercube,
are sought. (The solution space problem can be reduced to

dimensionN+1 rather than 2N+1 by substituting of F ∗
u,i =

F ∗
l,i + ωiΔFω in the constraints).
In this simple example problem, the optimal solution

with respect to acceleration is part of the solution space,
more precisely the lower corner of the hypercube. In Figs. 5
and 6, the optimal force over deformation is denoted by the
lower bound of each interval. This is not necessarily the case
for more complex problems. However, finding an optimal
solution with respect to a single output quantity is of the
same complexity as finding a solution space to that same

0

1

2
3 4

5

6

Fig. 7 Vehicle structure broken down into one one-dimensional sub-
system for the global solution and a number of local subsystems for
the component- and section-wise constraints
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Fig. 8 Solution space for the
force-deformation characteristic
of two components derived using
the method of this paper (solid
lines) and the stochastic method
(Lehar and Zimmermann 2012)
(dashed lines)

Component 2Component 1
300

200

100

0

300

200

100

0
3002001000 3002001000

deforma�on in mm deforma�on in mm

Fo
rc

e 
in

 k
NNk ni ecroF

250

150

50

250

150

50

50 150 25050 150 250

problem. Also, for heavily constrained problems, finding a
solution space is a problem of the same difficulty as that of
finding a feasible solution. If the problem has no feasible
solution, a solution space as defined here does not exist.

5 Full vehicle solution

Applying the algorithm to the main load paths of a full vehi-
cle structure is illustrated in Fig. 7. As shown in 3.3, the sys-
tem is transferred to the deformation space. Then, a section
is generated at every point where the active mass or the
currently deforming set of components changes. Figure 7
shows the major sections between components. Distributed
masses over the structure result in additional sections. Then,
based on the generalized form of the global solution, with
dT = (d1, d2, . . . , dN), M = diag

(
m∗

1, m
∗
2, . . . , m

∗
N

)
, ω =

(ω1, ω2, . . . , ωM)T and I as the unity matrix,
⎡

⎣
0 dT M−1 0
ω −I I
0 0 M−1

⎤

⎦

⎡

⎣
ΔFω

Fl

Fu

⎤

⎦ =
⎡

⎢
⎣

v20
2
0
ac

⎤

⎥
⎦ , (32)

the global solution can be calculated.
The component solutions are calculated as shown in (28)

to (30). This yields an interval for the forces of each section
of each component. These intervals can be plotted over
the component deformation which results in corridors as
described above. Figure 8 shows that the solutions are in
good agreement. The analytical solution is much narrower
than the solution generated by the stochastic algorithm. The
reason for this is shown in Fig. 1. The analytical solution is
defined such that all corners of the box fulfill their respec-
tive constraints exactly. In high dimensions this results in a
much smaller solution space compared to the probabilistic
estimate. In particular, the stochastic method generally uses
a sample size of N = 100 which results, depending on the
dimensionality of the problem, in an average difference in
the size of the solution space of factor two to three per inter-
val width. An estimator for this loss in solution space size

for the direct solution is provided in Fender (2013). Also,
the stochastic method, as it is by nature not deterministic,
can not exactly detect the boundaries of the feasible domain
and may, depending on the quality of the particular sam-
ple, over- or underestimate the correct interval width and
position.

6 Conclusion

An alternative approach for solving the solution space
problem from Zimmermann and Hoessle (2013) has been
proposed and described in detail. It was shown, that the
method is able to deliver an analytical estimation of the
feasible force-deformation intervals for vehicles in a front
crash. In reference to previous publications, the method is in
good agreement with state-of-the-art methodology for cal-
culating solution spaces. An objective function was formu-
lated which allows for linear representation of the problem,
independent of dimensionality. A two-level approach was
used to separate the global behavior of the structure as a
whole from the singular component contributions. Exploit-
ing the structure of the feasible domain, active constraints
are detected prior to solving the problem, removing the need
for numerical optimization as preprocessing always results
in a linear system of equations of full rank. Hence it was
shown here that directly using a linear formulation of the
constraints together with a particular choice of objective
function yields a very precise and efficient method for the
calculation of solution spaces.
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