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Abstract In recent years the Cellular Automata (CA) con-
cept has been successfully applied to structural topology
optimization problems. In the engineering implementation
of CA, the design domain is decomposed into a lattice of
cells, and a particular cell together with the cells to which
it is connected forms a neighborhood. It is assumed that the
interaction between cells takes place only within the neigh-
borhood and the states of cells are updated synchronously
in subsequent time steps according to some local rules.The
majority of results that have been obtained so far were
based on regular lattices of cells. However, a practical engi-
neering analysis and design in many cases require using
highly irregular meshes for complicated geometries and/or
stress concentration regions. The aim of the present paper
is to extend the concept of CA towards the implementa-
tion of unstructured grid of cells related to non-regular mesh
of finite elements. Introducing an irregular lattice of cells
allows to reduce the number of design variables without
loosing the accuracy of results and without an excessive
increase of the number of elements caused by using a
fine mesh for a whole structure. The implementation of
non-uniform cells of Cellular Automaton requires a refor-
mulation of standard local rules, for which the influence of
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1 Introductory remarks

For a few decades topology optimization has been one
of the most important aspects of structural design. Since
the early paper by Bendsoe and Kikuchi (1988), one can
find in the literature numerous approaches to generating
optimal topologies based both on optimality criteria and
evolutionary methods. A general overview as well as a
broad discussion on topology optimization concepts are
provided by many survey papers, e.g. Rozvany (2008),
Sigmund and Maute (2013), Deaton and Grandhi (2014).
At the same time hundreds of papers present numerous
solutions including classic Michell examples as well as
complicated spatial engineering structures, implementing
specific methods ranging from gradient-based approaches
(e.g. Bendsoe, 1989) to evolutionary structural optimization
(e.g. Xie and Steven, 1997), biologically inspired algorithms
(e.g. Kaveh et al., 2008), material cloud method (e.g. Chang
and Youn, 2006), spline-based topology optimization (e.g.
Eschenauer et al., 1993) and level set method (e.g. Wang
et al., 2003). Nevertheless the most robust, flexible and
widely used approach for structural topology optimization
is still the density method, which includes the popular solid
isotropic material with the penalization (SIMP) technique.
Topology optimization is a constantly developing area,
and one of the most important issues stimulating this
progress nowadays is the implementation of efficient and
versatile methods to the generation of optimal topologies
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to engineering structural elements. In recent years the Cel-
lular Automata paradigm has been successfully applied to
topology optimization problems. In the engineering imple-
mentation of Cellular Automaton the design domain is
decomposed into a lattice of cells, and a particular cell
together with the cells to which it is connected forms a
neighborhood. It is assumed that the interaction between
cells takes place only within the neighborhood, and the
states of cells are updated synchronously according to some
local rules.

The first application of CA to optimal structural design,
and to topology optimization in particular, was proposed by
Inou et al. (1994) and Inou et al. (1997). In these papers,
the design domain was divided into cells, the states of
which were represented by the Young moduli of the material
as design variables. By applying the local CA rules iter-
atively, the values of the elastic moduli for all cells were
updated based on the difference between the current and
the target stress values. The cells with low values of elas-
tic moduli were removed. The idea of implementing CA
to optimal design was described also by Kita and Toyoda
(2000), Hajela and Kim (2001), and Tatting and Gurdal
(2000), where the authors proposed a new scheme for CA, in
which analysis and design were performed simultaneously
- a simultaneous analysis and design. This technique has
been modified and extended, for example by Cortes et al.
(2005), Setoodeh et al. (2006), Canyurt and Hajela (2007).
For the last two decades the implementation of CA in the
structural design has been intensively examined, and numer-
ous papers related to the application of CA to the topol-
ogy optimization, see e.g. Missoum et al. (2005), Abdalla
et al. (2006), Hassani and Tavakkoli (2007), Penninger
et al. (2009), Sanaei and Babaei (2011), Bochenek and Tajs-
Zielifiska (2012), Bochenek and Tajs-Zielinska (2013) or
Du et al. (2013), Bochenek and Tajs-Zielifiska (2015) have
been published. In addition, the series of papers by Tovar
and co-workers should be mentioned: Tovar et al. (2004a),
Tovar et al. (2004b), Tovar et al. (2006), Penninger et al.
(2011), in which a new CA technique, inspired by a process
of a functional adaptation taking place in bones, has been
implemented.

The majority of structural topology optimization results
that have been obtained so far were based on regular lat-
tices of cells, among which the most common choice is
a rectangular grid. One can find only isolated examples
of implementation of triangular or hexagonal lattices, e.g.
Saxena (2009), Talischi et al. (2009), Jain and Saxena
(2010), Talischi et al. (2010), Sanaei and Babaei (2011), Tal-
ischi et al. (2012), Christiansen et al. (2014), Wang et al.
(2014), Jain et al. (2015). However, in many cases a prac-
tical engineering analysis and design require using highly
irregular meshes for complicated geometries and/or stress
concentration regions.
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The aim of the present paper is to extend the concept of
Cellular Automata lattice towards an irregular grid of cells
related to a non-regular mesh of finite elements. The strat-
egy which consists of resizing a traditional uniform grid
of cells allows us to obtain more flexible solutions. The
advantage of using a non-uniform lattice of cells is the most
evident when the design domain is extremely irregular and
it is even impossible to cover the design domain with uni-
form, e.g. rectangular cells. On the other hand, it is well
known that holes and sharp edges indicate stress concen-
tration and the regions of such intensity should be covered
with a more fine mesh, which is not necessary for the struc-
ture as a whole. In other words, a non-uniform density of
cells is used in order to achieve a more accurate solution
without an excessive increase of the number of elements
caused by using a fine mesh for the whole structure. It is
worth noting that the non-uniform density of finite elements
can be, but not necessarily is, directly related to the den-
sity of cells of Cellular Automaton. The implementation of
non-uniform cells of Cellular Automaton requires a refor-
mulation of standard local rules, for which the influence
of the neighborhood on the current cell is independent of
sizes of the neighboring cells and neglects, for example, the
length of mutual boundaries. This paper proposes therefore
new local update rules dedicated to implemented irregular
lattices of cells. The novel concept is discussed in detail and
the performance of the numerical algorithm based on the
introduced idea is presented.

2 Irregular cellular automata

Most up-to-date applications of Cellular Automata in struc-
tural optimization are conventionally based on regularly
spaced structured meshes. On the other hand, using irregular
(unstructured) computational meshes provides more flexi-
bility for fitting complicated geometries and allows for local
mesh refinement. Some attempts to implement irregular
Cellular Automata have been already reported in the litera-
ture, e.g. O’Sullivan (2001), Lin et al. (2011), but without
application to topology optimization.

In this paper the concept of topology generator based on
Cellular Automata rules is extended to unstructured meshes.
Similar to regular (structured) Cellular Automata, several
neighborhood schemes can be identified. The two most
common ones are the von Neumann type and the Moore
type. As can be seen in Fig. 1, in the case of the von
Neumann configuration only three immediate neighbors are
taken into account. These neighboring cells share common
edges with the central cell. In the Moore type neighborhood
in Fig. 2, any triangle that has common edges or common
vertices with the central cell can be considered a neighbor
of the central triangle. It is worth noting that this type of
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Fig.1 Irregular triangular mesh. The von Neumann type neighborhood

neighborhood involves more neighbors around the central
cell and the number of neighbors can vary since it depends
on a particular irregular mesh arrangement.

3 The algorithm

The performance of Cellular Automata algorithms, reported
in literature, is often based on heuristic local rules. Simi-
larly, in the present paper, the efficient heuristic algorithm,
being an extension of the one introduced by Bochenek and
Tajs-Zielinska (2012, 2013), has been implemented.

In this paper the structure compliance:

M
U@ => d'ulku, (1)
i=1

is minimized. In (1) u; and k; are the element displacement
vector and the stiffness matrix, respectively, and M stands
for the number of cells/elements.

The power law approach defining solid isotropic mate-
rial with the penalization (SIMP) with design variables
being the relative densities of a material has been utilized.
The elastic modulus E; of each cell element is modelled

Fig. 3 The rectangular Michell-type structure

as a function of relative density d; using the power law,
according to (2).

Ei=dlEy, dpin<d; <1 (2

In this formula, E is the elastic modulus of a solid material,
and the power p, usually equalling 3, penalizes intermediate
densities and drives the design to a material/void structure.

The local update rule proposed by Bochenek and Tajs-
Zielifiska (2012, 2013) is recalled first. For each cell infor-
mation is gathered from the adjacent cells forming the
Moore or the von Neumann type neighborhood. Based on
that, the update of the design variable d; associated with a
particular cell is set up as a linear combination of design
variables corrections with coefficients, values of which are
influenced by the states of the neighboring cells, according
to (3) and (4):

d" = a® 4 5q; 3)
N

8d; = (e + Y ou)m = am 4)
k=1

The compliance values calculated for the central cell U;
and N neighboring cells Uj; are compared to a selected
threshold value U*. Based on relations (5) and (6) specially
selected positive or negative coefficients Cq,, for central cell

Fig. 2 Irregular triangular mesh. The Moore type neighborhood

Fig. 4 The rectangular Michell-type structure. Irregular meshing
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Fig. 5 The rectangular Michell-type structure. Irregular meshing

and C,, for the surrounding cells are transferred to the design
variable update scheme (4).

—Cyy if U <U*

ag = )
Co if Ui > U*
—Cy, if Uy <U*

o = (6)

Cy if Uj >U*
The move limit m implemented in the above algorithm con-
trols the allowable changes of the design variables values.
Values of Cy, and C, are selected so as to keep —1 < & <
1.

The numerical algorithm has been built in order to
implement the design rule proposed above. As for the
optimization procedure, the sequential approach has been
adapted meaning that for each iteration the structural anal-
ysis performed for the optimized element is followed by
the local updating process. Simultaneously, a global volume
constraint can be applied for a specified volume fraction
V(d) = k Vp, where V) stands for the design domain volume
and « is the prescribed volume fraction. The volume con-
straint is implemented in each iteration when local update
rules have been applied to all cells. In practice, the design
variables multiplier is introduced and then its value is sought

Fig. 6 The rectangular Michell-type structure. Final topology, irreg-
ular lattice of 10439 cells. Compliance: 8.5 107> Nm. Maximal
equivalent stress 14.8 kPa

@ Springer

L121E-0 L151E-0

S141E-0 .1828-0%

07
.101E-0

Fig. 7 The rectangular Michell-type structure. Final topology, irreg-
ular lattice of 10439 cells. Compliance: 8.5 107> Nm. Maximal
displacement 0.18 10~% m

for so as to fulfill the volume constraint. As a result, the gen-
erated topologies preserve a specified volume fraction of a
solid material during optimization process.

In the case of irregular meshes, the novel approach is
proposed. It incorporates the influence of cell sizes/areas on
the update process. Assuming that the quantities A; and A
stand for areas of central and neighboring cells, respectively,
the update rule takes the following form:

A; N oA
ddi = [0 (=) + 3 —=(=1)%Jm = am @)
k=1
where
N
A=A+ Z Aix (®)
k=1

The specified values of power g and oy, are transferred to
the update rule (7) according to the following relations:

1 if U <U*
ap = 9
2 if U > U*

3248 €475 970 2927

1635 4861 8088 11314 14540

Fig. 8 The rectangular Michell-type structure. Final topology, regular
lattice of 42230 cells. Compliance: 8.5 107> Nm. Maximal equivalent
stress 14.5 kPa
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Fig. 9 The rectangular Michell-type structure. Final topology, reg-
ular lattice of 42230 cells. Compliance: 8.5 107> Nm. Maximal
displacement 0.18 10~° m

1 if Ui <U*
ag = (10)
2 if Uy >U*
The form of rule (7) together with relations (9) and (10)
guarantee that —1 < @ < 1. Comparing (4) and (7), it is
visible that in the latter case the fixed values of Cy, and
C, from (4) have been replaced by quantities, the values of
which depend on the sizes of the neighboring cells. The new
proposal mentioned above can be therefore treated as a gen-
eralization of the original rule directed towards an irregular
cell lattice.
Below, the pseudo-code of the algorithm is presented:

GET input data
SELECT reference energy value U*
SET initial values of design variables
SELECT neighborhood type
ASSIGN neighboring cells to each cell
SELECT move limit m
DO UNTIL stopping criteria are met
PERFORM structural analysis
IMPORT data from structural analysis
FOR all cells
CALCULATE local compliances U(d;)

<—0.025 m—>»><0.02 m>

Fig. 10 The C-shaped structure. Loading and support

Fig. 11 The C-shaped structure. Irregular lattice of cells

END FOR
FOR all cells
UPDATE design variables d;
END FOR
IMPOSE volume constraint
END DO
DISPLAY results

4 Introductory example

The rectangular Michell-type structure shown in Fig. 3,
clamped at the left edge and loaded by a vertical force
applied at the bottom right corner, has been chosen as an
introductory example. The irregular mesh that consists of
triangular elements/cells has been applied. The denser mesh
surrounds the bottom right corner of the rectangle. The two
cases are considered, namely the larger and the smaller area
of mesh concentration shown in Figs. 4 and 5, respectively.
Since a similar number of cells has been chosen for both
cases, for the latter case smaller cell sizes have been selected
for the concentration region.

(o2}
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E
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N

0 10 20 30 40 50
iteration no.

Fig. 12 The C-shaped structure. Iterations history
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1756-06 351E-06 526E-06 701E-06
.877E-07" L263E-06" .438E-06" L614E-06" .789E-06
Fig. 15 The C-shaped structure. Final topology, irregular lattice of

5272 cells. Compliance 1.56 10~3 Nm. Maximal displacement 0.79

==

Fig. 13 The C-shaped structure. Selected intermediate (iterations 10,
15, 20, 25, 35) and final (iteration 40) topologies

— ____ ] ]

.005148 835966 4167E+07.251E+07'334E+07.418E+07'502E+07‘585E+07'669E+07.752E+07
Fig. 16 The C-shaped structure. Final topology,regular lattice of
20062 cells. Compliance 1.50 1073 Nm. Maximal equivalent stress
7.52 MPa
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Fig. 14 The C-shaped structure. Final topology, irregular lattice of
5272 cells. Compliance 1.56 10~3 Nm. Maximal equivalent stress 7.33 Fig.17 The C-shaped structure. Final topology, regular lattice of 20062
MPa cells. Compliance 1.50 10~3 Nm. Maximal displacement 0.76 10~% m
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compliance [Nmm)]
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Fig. 20 The hook structure. Iterations history

- 0.1m >
Fig. 18 The hook structure. Loading and support

The results of a structural analysis performed for force
P =500 N and material data E = 200 GPa, v = 0.3, are as fol-
lows. For the irregular lattice of 10594 cells distributed as
in Fig. 4: the maximal equivalent stress 11.8 kPa, the max-
imal displacement 0.24 107% m and the compliance 11.5
10~ Nm have been found. In the case of the irregular lattice
of 10439 cells distributed according to Fig. 5: the maximal
equivalent stress 14.8 kPa, the maximal displacement 0.24
10~° m and the compliance 11.5 10~ Nm are obtained.

o &

Fig. 21 The hook structure. Selected intermediate (iterations 5, 15,
Fig. 19 The hook structure. Irregular lattice 25, 30, 35) and final (iteration 45) topologies
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. ] ) Fig. 25 The hook structure. Final topology, regular lattice of 27942
Fig. 22 The Hook structure. Final topology, regular lattice of 6169 ¢ells. Compliance 1.80 10~# Nm. Maximal displacement 0.19 106 m
cells. Compliance 1.89 10~* Nm. Maximal equivalent stress 3.89 kPa

Fig. 26 The portal frame. Loading and support

— _ ] |
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Fig. 23 The Hook structure. Final topology, irregular lattice of 6169
cells. Compliance 1.89 10~* Nm. Maximal displacement 0.20 1076 m

Fig. 27 The portal frame. Irregular lattice
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Fig. 24 The hook structure. Final topology, regular lattice of 27942
cells. Compliance 1.80 10~* Nm. Maximal equivalent stress 3.87 kPa Fig. 28 The portal frame. Iterations history
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Fig.29 The portal frame. Selected intermediate (iterations 5, 7,9, 11,
15) and final (iteration 30) topologies

The comparison of results for the two implemented irreg-
ular meshes shows that displacements and compliances are
practically the same, whereas significant difference regards
the maximal stress value. Since values of stresses are influ-
enced by the implemented mesh density in order to better
describe stresses in the vicinity of the bottom right corner of
the rectangle, a denser mesh should be applied in this area.

The topology optimization has been performed for the
irregular mesh distributed according to Fig. 5. The obtained
results are as follows: the maximal equivalent stress 14.8
kPa, the maximal displacement 0.18 10~° m and the compli-
ance 8.5 107> Nm. The distribution of equivalent stress and
displacement is presented together with the final topology
in Figs. 6 and 7, respectively.

The question now arises: what if a regular mesh is
applied? It occurs that the regular lattice of 42230 cells
has to be applied in order to get the same level of

— |
6.189 11217 22429 33640 44851

5612 16823 28034 39245 50457

Fig. 30 The portal frame. Final topology, irregular lattice of 14024
cells. Compliance 4.98 10~ Nm. Maximal equivalent stress 50.46 kPa

=
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.438E-08 ,7]9E—08'860E708.

579E-08 128E-07 156E-07

L114E-07" . 142E-07" .170E-07

Fig. 31 The portal frame. Final topology, irregular lattice of 14024
cells. Compliance 4.98 107® Nm. Maximal displacement 1.70 106
Nm

displacements, compliance and equivalent stress values. The
obtained results are presented in Fig. 8: the maximal equiva-
lent stress 14.5 kPa and in Fig. 9: the maximal displacement
0.18 10~ m. The compliance for the final topology is 8.5
107> Nm.

Based on the above discussion of results, one can observe
that the implementation of irregular lattice of cells can sig-
nificantly reduce the number of cells/elements necessary to
perform the analysis and topology optimization and at the
same time retain the correct information regarding the stress
and displacement distribution.

5 Generation of optimal topologies based on
irregular cell lattices

Selected examples of compliance-based topologies gener-
ated using the approach presented in this article are dis-
cussed. The first example in this section is a C-shaped
structure presented in Fig. 10, with an irregular lattice
of cells distributed as shown in Fig. 11. The iterations
history and topology evolution overview are presented in
Figs. 12 and 13, respectively. The results of the structural
analysis of optimized structure performed for force P = 1
kN and material data E = 200 GPa, v = 0.3, are as follows.

|
11226 22444 33661 44878
5618 16835 28052 39270

8.934
50487

Fig. 32 The portal frame. Final topology, regular lattice of 39146
cells. Compliance 4.86 10~ Nm. Maximal equivalent stress 50.49 kPa
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Fig. 33 The portal frame. Final topology, regular lattice of 39146
cells. Compliance 4.86 107 Nm. Maximal displacement 1.69 106
Nm

For an irregular lattice of 5272 cells: the maximal equiva-
lent stress 7.33 MPa, the maximal displacement 0.79 10-°
m and the compliance 1.56 103 Nm. The distributions of
stresses and displacements are presented in Figs. 14 and
15, respectively. In order to reflect such stress and displace-
ment values with a regular mesh, 20062 cells have been
used. The topology optimization has been performed and
the obtained results are: the maximal equivalent stress 7.52
MPa, the maximal displacement 0.76 10~° m and the com-
pliance 1.50 10~ Nm. The final topology with the map of
stresses and displacements is presented in Figs. 16 and 17.
The next example is the hook structure shown in Fig. 18.
As with the previous case, an irregular mesh that consists
of triangular elements/cells has been applied, see Fig. 19.
The denser mesh surrounds the region of loading applica-
tion. The iterations history and topology evolution overview
are presented in Figs. 20 and 21, respectively. The results
of structural analysis of optimized structure performed for
force P = 1 kN and material data E = 200 GPa, v = 0.25,
are as follows. For an irregular lattice of 6169 cells: the
maximal equivalent stress 3.89 kPa, the maximal displace-
ment 0.20 10~® m and the compliance 1.89 10~ Nm. The
distributions of stresses and displacements are presented in
Figs. 22 and 23, respectively. In order to obtain the same

Fig. 34 The half-ring structure. Loading and support
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Fig. 35 The half-ring structure. Irregular lattice

level of stress and displacement values with a regular mesh
27942 cells have been used. The topology optimization has
been performed and the obtained results are: the maximal
equivalent stress 3.87 kPa, the maximal displacement 0.19
107% m and the compliance 1.80 10~* Nm. The final topol-
ogy with a map of stresses and displacements is presented
in Figs. 24 and 25.

Another example is a portal frame presented in Fig. 26,
with an irregular lattice of cells distributed according to
Fig. 27. The iterations history and topology evolution
overview are presented in Figs. 28 and 29, respectively.
The results of the structural analysis performed for force
P =100 N and material data E = 200 GPa, v = 0.25 are as
follows. For the irregular lattice of 14024 cells: the maximal
equivalent stress 50.46 kPa, the maximal displacement 1.70
107® m and the compliance 4.98 107® Nm. The distribu-
tions of stresses and displacements are presented in Figs. 30
and 31, respectively. In order to reflect such stress and dis-
placement values with a regular mesh 39146 cells have
been used. The topology optimization has been performed
and the obtained results are: the maximal equivalent stress
50.49 kPa, the maximal displacement 1.69 10~% m and the
compliance 4.86 10~® Nm. The final topology with a map
of stresses and displacements is presented in Figs. 32 and

0.5
0.4 \\\
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Z 03 S

[0}

g ™

@

S g2 \\

g 0 \

Q

(8]
0.1

0 20 40 60 80
iteration no.

Fig. 36 The half-ring structure. Iterations history
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Fig. 37 The half-ring structure. Selected intermediate (iterations 10,
30, 40, 50, 60) and final (iteration 80) topologies

33. Incidentally, it can be pointed out that a similar example
was discussed in James and Weisman (2014), where topol-
ogy optimization of structures sustaining material damage
was investigated.

The final example is the half-ring structure shown
in the Fig. 34. As with the previous cases, the irreg-
ular/unstructured mesh that consists of triangular ele-
ments/cells has been applied. The denser mesh shown in
Fig. 35 surrounds regions of loading application. The iter-
ations history and topology evolution overview are pre-
sented in Figs. 36 and 37, respectively. The results of struc-
tural analysis performed for force P = 1 N and material
data E = 1 kPa, v = 0.25, are as follows. For irregular
lattice of 9522 cells: maximal equivalent stress 63.76 Pa,

e
28.348
21.266 35.43 49.594

.019712 14.184 42.512 56.675
7.102

63.757
Fig. 38 The half-ring structure. Final topology, irregular lattice of
9522 cells. Compliance 7.95 10~2 Nm. Maximal equivalent stress
63.76 Pa

_
. 04681

o

.023405
.011703

.070215

.09362
. 058513

.035108 .081918 . 105323

Fig. 39 The half-ring structure. Final topology, irregular lattice of
9522 cells. Compliance 7.95 10~2 Nm. Maximal displacement 0.105 m

maximal displacement 0.10 m and compliance 7.95 102
Nm. The distributions of stresses and displacements are pre-
sented in Figs. 38 and 39, respectively. In order to obtain the
same level of stress and displacement values with a regular
mesh 33106 cells have been used. The topology optimiza-
tion has been performed and the obtained results are: the
maximal equivalent stress 66.34 Pa, the maximal displace-
ment 0.10 m and the compliance 7.86 10~2 Nm. The final
topology with a map of stresses and displacements is pre-
sented in Figs. 40 and 41. It is worth noting that in order
to obtain comparable results more than 3 times more cells
were required for a regular mesh.

The half-ring structure has also been examined in Wang
et al. (2014) as an example of applying a new adaptive
method of topology optimization. For 6984 elements of a
regular mesh the final compliance of 7.8 1072 Nm has
been obtained there. These calculations have been, for com-
parison, repeated within the approach of this paper and
the final compliance obtained here for a regular lattice of
cells is 7.83 1072 Nm. As to irregular lattice only 2258
elements are enough to guarantee the same compliance,
maximal equivalent stress and maximal displacement for

I
29.487 44.23

.561E-03 36.859

14.744

7.372 22.116 °8.974

51.602 66.345

Fig. 40 The half-ring structure. Final topology, regular lattice of
33106 cells. Compliance 7.86 102 Nm. Maximal equivalent stress
66.34 Pa
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Fig. 41 The half-ring structure. Final topology, regular lattice of
33106 cells. Compliance 7.86 10~2 Nm. Maximal displacement 0.103 m

the initial structure. In what follows, the topology optimiza-
tion performed for that number of elements gives resulting
compliance equal to 7.86 10~ Nm.

In the supplement to the above discussion, it is worth
mentioning that for the performed numerical calculations
a computational cost is generated mostly by the structural
analysis. The optimization algorithm based on the proposed
Cellular Automata local rules returns here almost immediate
response. To be specific: for the examples discussed in this
paper the total time used for calculations ranges from about
3 minutes for the C-shaped structure to 9 minutes for the
half-ring structure. The desktop computer AMD Phenom II
X4 955 with 3.2 GHz processors and 4 GB RAM and with
Ansys 12.1 as the finite element code has been used.

The final observation is that the implementation of a
dense mesh in specific structure regions does not influence
generated topologies significantly. As an example, let us
reconsider the C-shaped structure with a regular mesh of
20062 elements (e.g. Fig. 16). The dense mesh is now added
in the regions indicated in Fig. 11 and for this irregular mesh
of 20642 elements topology has been generated. The results
are presented in Fig. 42. As can easily be seen, there are
no significant differences in topologies obtained for regular
and irregular meshes.

Fig. 42 The C-shaped structure. Final topologies: regular lattice of
20062 cells (left) and irregular lattice of 20642 cells (right)

@ Springer

6 Concluding remarks

The proposal of extension of the Cellular Automata con-
cept towards an irregular grid of cells related to non-regular
mesh of finite elements has been presented. It is worth not-
ing that an irregular mesh suited for structural analysis can
be but does not have to be directly used in the optimization
process. The local update rules proposed for irregular CA
have been efficiently and successfully applied to the gen-
eration of minimal compliance topologies. The analysis of
obtained results allows formulating some conclusions. It is
not necessary to use a very fine mesh for the whole struc-
ture, therefore the number of elements and design variables
can be significantly reduced. Although the number of cells
is limited, because of only the local mesh refinement, the
information about stresses and displacements can still be
reasonable. The approach presented in this paper demon-
strates a significant potential of application to problems
which cannot be adequately represented by regular grids.
The use of irregular meshes can be helpful while modelling
a domain geometry, accurately specifying design loads or
supports and computing the structure response.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.
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