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Abstract Flow machines are widely used in industry
through devices such as hydraulic turbines and pumps. Most
part of these devices work with newtonian fluids, how-
ever, there are some specific devices dedicated to work
with non-newtonian fluids, such as blood pumps. The main
function of a blood pump is to have a suitable hydraulic
performance while maintaining good haematological com-
patibility which consists of avoiding hemolysis (release of
hemoglobin from red blood cells) and thrombosis (clotting).
However, the challenge of improving the performance of
these non-newtonian fluid machines requires the solution of
an inverse-based design optimization problem, in which an
oriented search must be conducted to obtain the optimized
design. The rotor is a main component in the non-newtonian
pump and the design of rotor topology can play an important
role in the pump performance and its haematological con-
ditions. Thus, performance improvement of these devices
can be achieved by using topology optimization techniques.
The optimization of pump hydraulic performance can be
achieved by minimizing dissipative energy and power con-
sumption and for the improvement of the haematological
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conditions, it is proposed to minimize the vorticity. Thus, in
this work, topology optimization techniques are applied for
designing the rotor pump such that the energy dissipation,
vorticity, and power consumption are minimized consider-
ing non-Newtonian fluid. A two-dimensional finite element
derived for a rotating frame is applied to model the rotor
flow behavior. The modeling predicts the flow field between
relative two blades of a rotor without considering the influ-
ence of the volute. A modified Cross model is adopted for
the non-Newtonian fluid modeling. It is assumed that the
fluid is flowing an idealized porous medium subjected to
a friction force, which is proportional to the fluid veloc-
ity and the inverse local permeability. A porous flow model
is considered with a continuous (gray) permeability design
variable for each element that defines the local perme-
ability of the medium and allows the transition between
fluid and solid property. The design optimization prob-
lem is solved by using the method of moving asymptotes
(MMA). Numerical examples are presented to illustrate this
methodology aiming blood pump applications. A compari-
son among designs obtained by considering newtonian and
non-newtonian fluid is included. Finally, it is verified that
an improvement of the hemolysis index can be achieved by
minimizing the vorticity in the rotor.

Keywords Radial pump · Rotor design · Non-newtonian
flow · Topology optimization · Blood pump

1 Introduction

Flow machines are a wide field of knowledge. They are
widely used in industry through devices such as hydraulic
turbines and pumps. Most part of these devices work with
Newtonian fluids, however, there are some specific devices
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dedicated to work with non-Newtonian fluids, such as blood
pumps. Blood pumps can be found in circulatory extracor-
poreal devices and ventricular assist devices (VADs) (Osaki
et al. 2008). Thus, this work will focus on blood pump
design, more specifically radial pumps.

The main function of a blood pump is to have a
suitable hydraulic performance while maintaining good
haematological compatibility to avoid hemolysis (release of
hemoglobin from red blood cells) and thrombosis (clotting).
Numerical simulations can provide very precise information
about the behaviour of fluid flow in non-newtonian fluid
machines, such as blood pumps, thus helping engineers to
get a comprehensive performance evaluation of a partic-
ular design (Jafarzadeh et al. 2011), Cheah et al. (2007).
The work of Behbahani et al. (2009) presents a review
that focuses on the CFD-based design strategies applied to
improve the blood flow in blood pumps and other blood-
handling devices. Both simulation methods for blood flow
and blood damage models are reviewed. In addition, the rhe-
ology of blood and some constitutive models that endeavour
to represent the complex flow behaviour of blood are also
described (Behbahani et al. 2009).

However, the challenge of improving the performance
of these non-Newtonian fluid machines requires the solu-
tion of an inverse-based design optimization problem, in
which an oriented search must be conducted to obtain the
optimized design. This can be achieved by using optimiza-
tion techniques which can increase the performance. The
design optimization strategy for blood pumps was first pre-
sented by Antaki et al. (1995), however, many obstacles
made its application difficult. According to Antaki et al.
(1995), the main challenges are lack of improved mod-
els to describe the blood flow, a better description of the
relationship between the characteristics of macroscopic and
microscopic blood flow, and appropriate automatic algo-
rithms for implementing the shape changes in response to
computed flow characteristics. We can also cite the work
of da Silva et al. (2007a) and da Silva et al. (2007b) who
conducted the size optimization of viscous micropumps. In
their work the constitutive law of the non-Newtonian fluid
is approximated by a power law model.

Topology optimization method distributes fluid or solid
in a design domain to extremize a defined objective function
subjected to some constraints. The topology optimization
method (TOM) for fluids was introduced by Borrvall and
Petersson (Borrvall and Petersson 2003) who optimized the
channel flow in a 2DBrinkmanmedium to minimize the dis-
sipated power. The flow modeling is restricted to the incom-
pressible Stokes flow, neglecting the influence of inertia.
In order to relax the optimization problem from an integer
(black-white) problem where either fluid or solid property
is allowed in an element, a porous flow model is introduced

with a continuous (gray) permeability design variable for
each element. This leads to a design problem where the flow
and (almost) non-flow regions are developed by allow-
ing interpolation between the upper and lower values
of the permeability (Gersborg-Hansen 2003; 2007).
Following, many authors have applied topology optimiza-
tion to design fluid devices (Andreasen et al. 2009; Deng
et al. 2012; Kreissl et al. 2010; Okkels and Bruus 2007)
and Deng et al. (2013a), Deng et al. (2013b) studied the
topology optimization of steady and unsteady Navier-Stokes
flows considering body forces, such as, Coriolis and Cen-
trifugal forces. Other interesting work (Evgrafov A. 2015)
presents a locally cubically convergent algorithm for topol-
ogy optimization of Stokes flows based on a Chebyshev’s
iteration globalized with Armijo linesearch.

The topology optimization method applied to flow
machines has been recently studied in the work of Romero
and Silva (2014), by considering Navier-Stokes flow with
the addition of a rotating reference system, arising the
effects of Centrifugal force and Coriolis force. In their work,
different configurations are obtained for the machine rotor,
by exploring the influence of the initial domain and the
effects of changes in the boundary conditions, however, only
Newtonian fluids are considered. As a result non-intuitive
geometries, that differ from traditional configurations, are
obtained.

All optimization studies cited above consider Newtonian
fluids. However many fluids in chemical and biomedical
applications are non-Newtonian fluids, being blood the most
relevant. The effects of non-Newtonian fluid properties on
biomedical design optimization problems are of consider-
able interest. For example Abraham et al. (2005) studied
shape optimization of an arterial bypass and Pingen and
Maute (2010), studied non-Newtonian effect on the layout
and geometry of flow channels by using topology opti-
mization approach. For non-Newtonian flow phenomena
they use the Carreau-Yasuda (C-Y) model and the flow is
modeled with the single-relaxation hydrodynamic Lattice
Boltzmann method. Other works which may be mentioned
in topology optimization for non-Newtonian fluids applied
to the blood flow are Hyun et al. (2014) and Zhang and Liu
(2015). They have studied the two dimensional design of
the arterial bypass based in topology optimization method
constrained by the steady incompressible non-Newtonian
flow. Further, optimal shape design of rotary blood pump
under non-Newtonian flow consideration has been studied
by Antaki et al. (1995).

Previous works cited above related to blood pump design
show that the rotor is the pump component that mainly influ-
ences pump hydraulic performance and its haematological
conditions. The criteria for the flow characteristics when
designing artificial heart components are (1) to minimize
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damage in the blood (hemolysis) and (2) to prevent blood
clotting (thrombosis). It is well known that damage of the
blood is directly related to the high shear stress and exposure
times experienced by blood cells. Furthermore, the exis-
tence of stagnation and recirculation regions has shown to
have a strong correlation with the onset of coagulation and
deposition of blood components within a prosthetic device.
A well known problem related to flow in blood pump is
caused by recirculation and stagnation of blood within the
device, which leads to the formation of clots. It is not clear
how to express this phenomenon mathematically. Possibly
by minimizing the mean square residence time of blood
within the device over several cycles would be a suitable
strategy. Since low vorticity is equivalent to poor circula-
tion in the device it can be related to a lower probability
for the separation and recirculation flow (Tavoularis et al.
2003). In this sense, some works (Antaki et al. 1995; Ghattas
et al. 1995) have suggested to use vorticity as an objec-
tive function to optimize the haematological conditions of
a blood pump. Thus, objective functions involving vorticity
and energy dissipation mechanisms are reasonable choices
to reduce recirculation and hence thrombosis. However,
the shear stress functions are directly related to hemolysis
of the blood (Ghattas et al. 1995) and we show that the
decrease of vorticity also contributes to the decrease of shear
stress functions, thus, decreasing the hemolysis. Therefore,
to improve the haematological conditions, we propose to
minimize the vorticity and energy dissipation.

As other works related to modeling of non-Newtonian
fluids, we can mention the work of Zhang et al. (2016) who
studied a roller type viscous micropumps design problem
using a level set based topology optimization method and
the work of Chen (2016) who presents a review about a
topology optimization of microfluidics.

Thus, the combination of advanced numerical techniques
as computational fluid dynamic and topology optimiza-
tion can be an efficient tool to improve the geometry of
non-Newtonian flow machines such as blood pumps to
obtain significant enhancement of pump hydraulic perfor-
mance and its haematological conditions. The optimization
of hydraulic performance for a pump can be achieved by
minimizing flow dissipative energy and power consump-
tion. Regarding haematological conditions, we show that an
improvement can be achieved by minimizing the energy dis-
sipation and the vorticity in the rotor. Thus, in this work,
topology optimization techniques are applied for designing
the rotor pump such that the energy dissipation, vortic-
ity, and power consumption are minimized by consider-
ing the design of rotor of radial flow machines operating
with non-Newtonian fluid and laminar flow, aiming blood
pump applications. A modified Cross model is adopted for
the non-Newtonian fluid modeling. The rotor or impeller

optimization is obtained by optimizing the channel shape
between two of its blades. Moreover, the numerical analysis
in this study is applied to predict the flow field between two
blades of a rotor without considering the influence of the
volute. Thus, the final rotors may have solid shapes between
channels instead of thin blades. This gives more flexibil-
ity for the channel design allowing novel rotor designs. If
a thin blade is imposed, by controlling the thickness of the
solid region, for example, channels may need to have par-
allel faces which may limit the channel design. A general
multi-objective is defined by involving the minimization
of the energy dissipation, the minimization of vorticity,
and minimization of power consumption. The steady state
Navier-Stokes equation and the derived continuous adjoint
equations are solved through the standard finite element
method by using Taylor-Hood element and considering non-
Newtonian fluid. In the flow problem, we assume that the
design domain is filled with some idealized porous material
of spatially varying permeability. Solid wall and fluid corre-
spond to the limits of very low and very high permeability,
respectively. In the final design there should preferably be
no regions with intermediate permeability because only the
0 or 1 values in the final design have physical meaning.

To solve the optimization problem, we apply an itera-
tive algorithm based on the method of moving asymptotes
(MMA) (Svanberg 1987). Two-dimensional (2D) numerical
examples are presented to illustrate this methodology aim-
ing blood pump applications. A comparison among designs
obtained by considering Newtonian and non-Newtonian
fluid is included. Finally, it is verified that an improvement
of the hemolysis index can be achieved by minimizing the
vorticity in the rotor.

This paper is organized as follows: the continuous model
of incompressible Navier-Stokes flow considering non-
Newtonian fluid is briefly stated in Section 2; the continuous
formulation of the topology optimization fluid problem and
objective functions are derived in Section 3; the numerical
implementation of the optimization method, the formulation
of finite element method for fluid problem, and sensitiv-
ity analysis are discussed in Section 4; numerical examples
are presented in Section 5. Finally, some conclusions are
inferred in Section 6.

2 Equilibrium equations

2.1 Navier-Stokes equations for incompressible fluids

The flow considered in this work is assumed to be laminar
with low Reynolds number. Furthermore, the flow velocity
is small compared with the speed of sound, which causes
a negligible compressibility, whereby the flow is modelled
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as incompressible. Equations of motion for a fluid are the
Navier-Stokes equations (White Frank 2007)

ρ
Du
D t

= ∇ · σ + ρf, (1)

where u is the velocity field, σ is the stress tensor and ρ is
the mass density constant throughout the domain.

The incompressibility imposed on mass conservation
yields the continuity equation

∇ · u = 0. (2)

The stress tensor σ is given by

σ (u, p) = −pI + τ , (3)

where I denotes the identity tensor, p is the pressure and τ

is the viscosity stress tensor, and

τ (u, η) = 2ηD(u), D(u) = 1

2

(
∇u + ∇uT

)
, (4)

where η is the dynamic viscosity. For a Newtonian fluid
η is a constant, whereas in the case of a generalized non-
Newtonian fluid, we incorporate the shear thinning behavior
of blood, as expressed by the modified Cross model:

η(γ̇ ) = η∞ + (η0 − η∞)
[
1 + (λγ̇ )b

]−a

, (5)

where for parallel shear flows, the shear rate (γ̇ ) is given by

γ̇ = (2D(u) : D(u))1/2 . (6)

Here, η∞ and η0 are the infinite shear viscosity and the
zero shear viscosity, respectively, which combined with the
parameters λ, a, and b, are applied to adjust the model to a
particular fluid or material.

Considering 2D flow, the shear rate can be expressed as

γ̇ =
[
2

(
∂u1

∂x1

)2

+ 2

(
∂u2

∂x2

)2

+
(

∂u1

∂x2
+ ∂u2

∂x1

)2
]1/2

.

(7)

where u1 and u2 are the velocity components in the direction
of the coordinates x1 and x2, respectively.

The laminar flow condition is verified by calculating the
Reynolds number, according to the usual definition of the
Reynolds number for centrifugal pumps

Re = R2ω0

ν
, (8)

where R is a length scale (here the impeller radius), ω0 the
angular velocity and ν kinematic viscosity. The laminar flow
occurs for Re < 105.

2.1.1 Radial flow pump

For radial flow pump modeling, we have to deal with sys-
tems in rotation, and we must be able to describe the flow

in relation to the rotating reference system (Kundu Pijush
and Cohen Ira 2002). We consider that the system is in rota-
tional stable motion with constant angular velocity ω around
an axis which coincides with the axis of the coordinate z

of fixed frame (inertial frame). u is defined as the relative
velocity field of the rotating system, which is measured in
a rotating reference frame, r is the vector perpendicular to
the axis of rotation, and ω = ω0e3 (see Fig. 1). Thus, the
inertial acceleration is equal to the acceleration measured in
a rotating system, plus the Coriolis acceleration 2ω × u and
the centripetal acceleration ω × ω × r. Therefore, Coriolis
and centripetal accelerations are calculated by considering
the rotating reference frame. (Romero and Silva 2014)

Finally, for a domain
, following Borrvall and Petersson
(2003), an absorption term κ(α)u is introduced into the
Navier-Stokes steady state equation as a source term, given
rise to the Brinkman model with a convection term, where κ

is the inverse permeability and α is the variable design, and
thus, we obtain the following final equation that describes
the flow field (Romero and Silva 2014).

ρ∇u · u = −∇p + η(γ̇ )∇ · (∇u + ∇uT ) + ρf

−2ρ ω × u − ρ ω × ω × r − κ(α)u, (9)

3 Topology Optimization problem formulation

The fluid topology optimization considers equations that
govern the flow in a porous medium to model the flow

Fig. 1 Profile geometry of the radial impeller blades. r = x1e1+x2e2:
position vector, u: absolute velocity, ur relative velocity and ω × r
frame velocity
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field. In this case the absorption term defines solid and
fluid distribution in the domain. Topology optimization
method considers that the coefficient of absorption is space
dependent κ(x) and optimizes the absorption term.

3.1 Material model

A porosity field is defined to optimize the paths of fluid
through the field. The regions with very high permeabil-
ity can be regarded as pure fluid, while virtually no fluid
can penetrate porous regions with low permeability. These
regions of low permeability are interpreted as regions of
solid (Borrvall and Petersson 2003; Gersborg-Hansen 2003;
2007). Thus, the absorption term defines the distribution of
material in the design domain.

The absorption coefficient κ can be considered as mate-
rial interpolation scheme, which interpolates between a
small flow rate (porous κ � 1) and a high flow rate or
undisturbed flow (κ = 0). α is the spatially varying design
variable field. This α field is determined by the optimization
algorithm. The choice of interpolation function α → κ(α),
makes the design variable α to assume values between 0
and 1. The idea is to choose function κ such a way that
intermediate values of κ can be avoided. Therefore, the
following convex interpolation function is adopted which
is a function of the parameter q, (Borrvall and Petersson
2003)

κ(x) = κ(ᾱ(x)) = κmax + (κmin − κmax)αi

1 + q

αi + q
, (10)

where i = 1, ..., numel, and numel is the total number of
elements, and

∂κ(α)

∂αi

= (κmin − κmax)(1 + q)
q

(αi + q)2
, (11)

with κ ∈ [κmin, κmax] and x ∈ 
i , q is a parameter that
controls the convexity of κ (Borrvall and Petersson 2003).
Thus, for q → ∞, κ → κmax + (κmin − κmax)αi is a linear
function. The optimization process seeks 0−1 values for the
design variable (αi ≈ 0 or αi ≈ 1), as an intermediate value
would not have a physical meaning, that is, when αi ≈ 1 ⇒
κ = κmin = 0, represents a viscous flow with a free flow
without restriction while on the other hand αi ≈ 0 ⇒ κ =
κmax represents the flow in porous media, with a restricted
flow. Ideally, impermeable solid walls can be represented
with κmax = ∞, however to avoid numerical problems κmax

is chosen as a finite value, for this work κmax = 10000
(Olesen et al. 2006).

3.2 Topology optimization problem

The optimization problem in this work has the following
formulation

minc(z(α), α)

α

such that :
r(z(α), α) = 0
g(z(α), α) ≤ 0

αmin ≤ α ≤ αmax

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(12)

The defined multi-objective function c(z(α), α) includes
the minimization of energy dissipation, minimization of the
vorticity, and the minimization of power consumption. The
objective function is a function of two types of variables, the
design variable α and the state variable z. The mathematical
system r(z, α) = 0 define the state problem, and g(z, α) ≤
0 represent mechanical constraints on the variables.

A volume constraint is defined to limit the amount of
fluid and thus, driving the porosity distribution towards the
upper or lower bounds. It is prescribed that, at most, a
given fraction of the design domain f |
|, is allowed to be
occupied by fluid, and the remainder must be solid, thus∫




αd
 ≤ f |
|, (13)

where f is the prescribed volume fraction, a constant
between 0 and 1.

3.3 Multi-Objective function

To improve pump hydraulic performance and its haemato-
logical conditions three objective functions are considered
in the optimization problem according to the following
definitions:

– Energy dissipation: The expression proposed by
Borrvall and Petersson (2003), for the dissipation of
energy for the fluidic problem is given by

� =
∫




[
1

2
μ

(
∇u + ∇uT

)
:
(
∇u + ∇uT

)
+ κ(x)u2

]
d
,

(14)

This objective function is valid in many applica-
tions, and specially important in applications where the
energy available for pumping the fluid is restricted,
requiring a good performance of the channel in which
the fluid flows. It also contributes to decrease thrombo-
sis and hemolysis, as discussed in Section 1.

– Vorticity: Vorticity is a measure of the circulation and
rotation of a fluid, and is twice the average shear rate of
a fluid element. In this work, the vorticity is measured
in a least-square sense through the functional given
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by Tavoularis et al. (2003), Berggren Martin (1998),
Abraham et al. (2004) and Quarteroni and Rozza (2003)

J (u) =
∫




|∇ × u|2d
 =
∫




(
∂u2

∂x1
− ∂u1

∂x2

)2

d
.

(15)

As discussed in Section 1, it also contributes to decrease
thrombosis and hemolysis, thus, improving the haema-
tological conditions.

– Pump power: Reducing power consumption is impor-
tant for pumps, mainly blood pumps in VADs since
implantable devices depend on external energy sources.
The rate of power on a flow machine rotor is given by
the dot product of the rotor angular velocity(ω), and the
applied torque (Te),

Ẇ = ω · Te. (16)

Since the angular velocity is constant, for simplicity,
the torque, instead of power, is considered as objective
function. The body force contribution may be neglected
due to symmetry and considering that the mass flow in
the inlet domain is normal to the boundary, the total
torque for steady flow will be equal to the integral of the
boundary outlet flow, i.e. (Fox Robert and McDonald
Alan 1985),

Te =
∫

e

ρ(r × u)u · nd +
∫

e

ρ(r × ω × r)u · nd

= Tr + Tt = Tre3 + Tte3. (17)

where Tr is the torque due to the relative flow out and
Tt the torque due to the rotational movement of the
reference system.

These three objective functions are combined to
define a multi-objective function (Romero and Silva
2014)

� = welog(�) + wvlog(J ) + wt log(Te), (18)

where � is the multi-objective function, � is the vis-
cous dissipation term, J is the vorticity and Te is
the torque. we, wv and wt are the weighting coeffi-
cients associated with energy dissipation, vorticity, and
torque, respectively. They allow the control of the influ-
ence of energy dissipation, vorticity, and torque term,
respectively. It is considered that we + wv + wt = 1.0.
The logarithmic function is applied to smooth the dif-
ferences in magnitude of the various objective functions
involved.

These functions (energy dissipation, vorticity, and
power) contain information about the flow properties
and their connections with the change in rotor geometry.

3.4 Hemolysis Index

Hemolysis is one of the most important performance param-
eters of blood pumps. The measure of hemolysis, is a
reliable indicator of the overall blood damage. Hemoly-
sis is measured in terms of the concentration of the free
hemoglobin in blood stream, or plasma free hemoglobin
(pf Hb). The hemolysis index (H ) can be calculated from
measurements of plasma free hemoglobin and is defined as
the change in plasma free hemoglobin (�pf Hb) as a per-
centage of the total hemoglobin (Hb) (Fraser et al. 2010):

H = �pf Hb

Hb
× 100 (19)

Giersiepen et al. (1990) developed a correlation for steady-
shear hemolysis at short time scales, which is based on
experimental results relevant to flow in a VAD. Under con-
stant, uniform shear stress, as found, for example, in a
Couette device, a power-law function has been proposed to
represent the relationship of hemolysis index with the shear
stress (σ ) and exposure time (�t):

H = Cσβ�tδ (20)

whereC, δ and β are constants,C = 1.21×10−5, δ = 0.747
and β = 2.004 (Fraser et al. 2010). Bludszuweit (1995) pro-
posed a representative instantaneous scalar stress parameter
called equivalent shear stress, obtained from the six com-
ponents of the complete stress tensor that can be used to
estimate σ . Thus, the equivalent shear stress, σI , is calcu-
lated from the shear stress components, σij , by using the
following equation:

σI =
[
1

6

(
(σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ33 − σ11)

2
)

+
(
σ 2
12 + σ 2

23 + σ 2
31

)] 1
2

(21)

The principal methods for estimating hemolysis in
devices by using computational fluid dynamics have been
developed considering: Eulerian methods (Zhang and Liu
2015), which integrate shear stress and residence time over
every mesh element; and Lagrangian methods, which esti-
mate hemolysis on a small section of a streamline and
integrate this along the whole line (André and Farinas
Marie-Isabelle 2004). The mean residence time is found
by tracing stream-lines from the inlet plane through the
device to the outlet plane and finding the mean time
taken by a particle to reach the outlet through these
streamlines.

Thus, Arora et al. (2004) present a method to predict
hemolysis based on a scalar measure of the instantaneous
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shear stress τ , i.e., a scalar quantity derived from the
instantaneous deviatoric stress tensor

τ =
√
1

2
τ : τ (22)

where τ = η(∇u + ∇uT ). This method of computing
hemolysis is called “stress-based” and the quantity τ is
called “scalar shear stress” by authors (Arora et al. 2004).
The work of Antaki et al. (1995) also proposes that the
design optimization of blood-wetted components can be
achieved by minimizing shear stress, and to reach this goal,
they have defined an objective function given by.

f =
∫




τdV (23)

However, hemolysis becomes important in high shear
stress flow. Thus, for a steady flow, by assuming that a
hemolysis rate is caused by the spatial distribution of shear
stress only, the following hemolysis index is defined by
Montevecchi et al. (1995):

I =
∫



τ 2.4dV

Q
(24)

where Q is the flow rate.
Thus, only for qualitative comparison analysis we will

evaluate the hemolysis index by proposing an expression
based on (24) and (23), being defined by:

I =
∫




τ 2.4dV (25)

where τ is given by (22).

4 Numerical implementation of optimization
problem

4.1 Finite element modeling of radial flow machines

The integral expressions of the weak formulation of the flow
problem in porous media, steady state, considering a rotat-
ing reference system is given by Romero and Silva (2014)

Rc =
∫




(∇ · u)Md
 = 0, (26)

Rm =
∫




(ρu · ∇u) · wd
 +
∫




κ(x)w · ud


+
∫




T : ∇wd


+
∫




w [2ρ(ω × u) + ρ ω × (ω × r)d
]

−
∫




b · wd
 −
∫



(T · n) · wd = 0, (27)

where w and M are weighting functions, w is vector, and M

is scalar, which will be equated in the weak form Galerkin
finite element models, to the interpolation functions used
for u and p, respectively. They have the following corre-
spondence w ≈ � and M ≈ χi (see Reddy and Gartling
(2010)).

The weighting function φi associated with the momen-
tum equations is bi-quadratic, and χi related with the
continuity equation is linear (Fig. 2), and T is the stress
tensor.

To implement the finite element method, these equa-
tions are solved by using Taylor-Hood elements, where the
fluid velocity and the pressure are quadratically and lin-
early interpolated, respectively (Romero and Silva 2014).
The design variable is constant inside the element (Fig. 2).

For a given quadrilateral Q, the velocity field u =
[u1 u2]T and pressure p are approximated by linear combi-
nation of the basis function in the form

u1(x) =
n∑

j=1

φj (x)u1j = �T u1;

u2(x) =
n∑

j=1

φj (x)u2j = �T u2;

p(x) =
m∑

j=1

χj (x)pj = χT p; (28)

where u1, u2, and p are vectors with the nodal values of
the approximated solution for the velocity field and pres-
sure defined in the weak formulation of the finite element
method.

By replacing the approximation of pressure and velocity
fields obtained through finite element interpolation func-
tions, we obtain the algebraic equations of the finite element

Fig. 2 Finite element nodes that
express a the velocity, b
pressure, and c design variable
in a quadrilateral element
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method. For the two-dimensional case, the algebraic system
of equations may be represented by

⎡
⎣
Kκ 0 0
0 Kκ 0
0 0 0

⎤
⎦

⎧⎨
⎩

u1
u2
p

⎫⎬
⎭

+
⎡
⎣
C1(u1) + C2(u2) 0 0

0 C1(u1) + C2(u2) 0
0 0 0

⎤
⎦

⎧⎨
⎩

u1
u2
p

⎫⎬
⎭

+
⎡
⎣
2K11(U) + K22(u) K12(u) −Q1

K21(U) K11(u) + 2K22(u) −Q2

−QT
1 −QT

2 0

⎤
⎦

⎧⎨
⎩

u1
u2
p

⎫⎬
⎭

+
⎡
⎣
0 Kr 0
−Kr 0 0
0 0 0

⎤
⎦

⎧⎨
⎩

u1
u2
p

⎫⎬
⎭ =

⎧⎨
⎩

f1
f2
0

⎫⎬
⎭ , (29)

where U = [u1u2]T , and u1, u2 are vectors with the nodal
values of velocity in the x1 and x2 direction respectively.
The matrix coefficients are defined as

Kκ =
∫


e

κ��T d
;

Cj (uj ) =
∫


e

ρ0�(�T uj )
∂�T

∂xj

d


Kij =
∫


e

η(U)
∂�

∂xj

∂�T

∂xi

d
;

Qi =
∫


e

∂�

∂xi

χT d
, i, j = 1, 2;

Kr =
∫


e

2ω0��T d
;

fi =
∫


e

ρ�fid
 +
∫


e

ρω2
0�xid
 +

{∮

e

hi�ds

}
,

(30)

being κ = κ(αi). The matrix Kκ can also be defined as

Kκ = κKm where; Km =
∫


e

��T d
 , (31)

These equations are essentially the same for newtonian
or non-newtonian fluids. The overall system is non-
symmetrical and non-linear due to the contribution ofC (u),
the convective term, which is non-symmetrical and non-
linear. Therefore, for solving the system, an appropriate
procedure such as Newton method is applied. The matrixKκ

is symmetric and comes from the absorption term. All non-
linearities of (29) are not explicitly accounted for in defining
the Jacobian derivative matrix, i.e. the matrix dependent
viscosity. The complexity of dealing with all nonlinear-
ity properties with such rigorous way would be prohibitive
and often unjustified. These nonlinearities are usually soft
enough not to affect the convergence of the Newton algo-
rithm. Therefore, a strict formulation for the Jacobian matrix

is applied only to advective terms which are highly non-
linear (Reddy and Gartling 2010). The velocity field and
pressure are the state variables of the problem, and they are
defined in a compact form based on discrete residual (29)
as

r(z(κ), κ) = 0, (32)

where z is a vector that contains all state variables z =
[u1 u2 p]T , and it is shown that r and state variables z
implicitly depend on the material model κ . Based on the dis-
crete finite element formulation, the definitions of energy
dissipation, vorticity, and power consumption are presented
ahead.

4.2 Energy dissipation

The energy dissipation given by (14) can be expressed in
discrete form by Romero and Silva (2014)

� = 1

2
UT (K̄d(U) + K̄κ)U = 1

2
zTC(U)z, (33)

where

C(U) ≡
[
K̄d(U) + K̄κ 0

0 0

]
. (34)

The matrix C(U) is symmetric because K̄d(U) + K̄κ is
symmetric. K̄d(U) and K̄κ are given by

K̄d(U) =
[
2K11(U) + K22(U) K12(U)

K21(U) K11(U) + 2K22(U)

]
,

(35)

K̄κ =
[
Kκ 0
0 Kκ

]
, (36)

where the matrices Kij are defined in (30).

4.3 Vorticity

The numerical integration of functional of vorticity ((15))
gives

J (u) =
ne∑

e=1

∫


e

(
∂u2

∂x1
− ∂u1

∂x2

)2

d
 =
ne∑

e=1

UT MvU, (37)

where ne is the total number of elements, and the local
matrix Mv obtained from (37) is defined as Romero and
Silva (2014)

Mv =
[
M11

v M12
v

M21
v M22

v

]
, (38)
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Fig. 3 Flowchart of the topology optimization algorithm

where

M11
v =

∫


e

(
∂�

∂x2

∂�T

∂x2

)
d
;M12

v = −
∫


e

(
∂�

∂x2

∂�T

∂x1

)

×d
;
M21

v = −
∫


e

(
∂�

∂x1

∂�T

∂x2

)
d
;M22

v =
∫


e

(
∂�

∂x1

∂�T

∂x1

)

×d
. (39)

where� = [φ1, ..., φn]T and n is the number of local nodes.

4.4 Pump torque

The absolute value of torque defined by (17), is defined
in terms of the components of the velocity and position
vectors. Thus

Te =
nbc∑
e=1

(
T e

r e3 + T e
t e3

)
. (40)

where nbc is the number of elements in the outlet.
The torque T e

r per element can be expressed by Romero
and Silva (2014)

T e
r = UT MrU, (41)

The local matrix Mr is not symmetric, and is defined as
Romero and Silva (2014)

Mr =
[
M11

r M12
r

M21
r M22

r

]
, (42)

where

M11
r ij =−∫ 1

−1 ρ
(
φix2

dx2
dγ

φj

)
dγ; M12

r ij =∫ 1
−1 ρ

(
φix2

dx1
dγ

φj

)
dγ ;

M21
r ij =∫ 1

−1 ρ
(
φix1

dx2
dγ

φj

)
dγ ; M22

r ij =−∫ 1
−1 ρ

(
φix1

dx1
dγ

φj

)
dγ,

;

(43)

where i, j = 1, ..., nb and nb is the number of nodes in the
local contour elements, and γ is a local coordinate.

The torque integral T e
t per element can be expressed by

Romero and Silva (2014)

T e
t = −

∫ 1

−1
ρ ω0(r · r)

(
u1

∂x2

∂γ
− u2

∂x1

∂γ

)
dγ = VT U,

(44)

where V = [V1 V2]T , and

V 1
i = −

∫ 1

−1
ρ ω0

(
(x2

1 + x2
2)

dx2

dγ
φi

)
dγ ; V 2

i

=
∫ 1

−1
ρ ω0

(
(x2

1 + x2
2)

dx1

dγ
φi

)
dγ, (45)

Fig. 4 a Design domain with boundary conditions for pump design; b The initial mesh for the computational domain (4000 elements)
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where i = 1, ..., nb

4.5 Sensitivity analysis through adjoint method

The topology optimization problem is implemented by
using the gradient optimization method through an iterative
process. The mathematical programming, is a process that
depends on the information of the gradients of the objec-
tive function and constraints to guide the optimization and
to obtain optimal value.

The gradient of multi-objective function, is given by

d �

d αi

= we

1

�

d �

d αi

+ wv

1

J

d J

d αi

+ wt

1

Te

d Te

d αi

. (46)

Fig. 5 Comparison of optimized topologies obtained by consid-
ering the minimization of energy dissipation only for Newtonian
and non-Newtonian flows modes: 500 rpm a Newtonian; b non-
Newtonian; 600 rpm cNewtonian; d non-Newtonian; 700 rpm eNew-
tonian; f non-Newtonian; 800 rpm g Newtonian; h non-Newtonian;
900 rpm i Newtonian; j non-Newtonian; 1000 rpm k Newtonian; l
non-Newtonian

The calculation of sensitivities d �
d αi

, d J
d αi

, and d Te

d αi
is

briefly described ahead.
From the FEM equilibrium equation system the term dz

dαi

can be obtained. Thus, from (29), the residual vector is given
by

R = KGz − F, (47)

where

KG =
[
C(U) + K(U) −Q
−QT 0

]
; z =

[
U
p

]
;F =

[
f
0

]
,

(48)

where U and p are vectors with the nodal values of veloc-
ity and pressure of the finite element method approximate
solution.

By differentiating ((47)) with respect to design variable
(α) it is obtained

dR
dαi

= ∂R
∂z

dz
dαi

+ ∂R
∂αi

= 0, (49)

where ∂R
∂z = J, is the Jacobian matrix resulting from the

application of Newton’s method to the solution of nonlinear
system.

Thereby,

J
dz
dαi

= − ∂R
∂αi

= −∂KG

∂αi

z + ∂F
∂αi

= ri . (50)

From (50), we have

dz
dαi

= J−1ri . (51)

As shown, the gradient of multi-objective function, given
by (46), depends on information of the gradients of each
single objective function, which in turn depends on the solu-
tion of the adjoint equation associated with each objective
function, which are energy dissipation, vorticity, and torque.
These derivations can be found in detail in Romero and
Silva (2014). The three adjoint problems can be combined
and only one adjoint equation associated with the multi-
objective function needs to be solved. Thus, by deriving and

Fig. 6 Optimized topology of entire rotor for 500 rpm a Newtonian;
b non-Newtonian
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Table 1 Results for reference
channels with different
geometries ω = 1000 rpm for
non-Newtonian flow models

Reference channel Energy dissipation Vorticity Power I

straight blades 3.41 108.3 3594.5 46.64

inclined straight blades 9.05 375.8 4257.8 168.54

curved blades 4.49 167.4 4206.3 58.89

involute curved blades (4000 elem.) 5.38 197.6 3587.7 59.45

substituting (33), and (37), and finally (41), (44) into (46),
it is obtained (Romero and Silva 2014):

d �

d αi

= we

φ

[
1

2
zT ∂C(U)

∂αi

z + zT C(U)
dz
dαi

]

+wv

J
UT (Mv + MT

v )
dU
dαi

+wt

Te

[
UT (Mr + MT

r ) + VT
] dU

dαi

, (52)

From de FEM equilibrium system,

U = LT z ⇒ dU
dαi

= LT dz
dαi

(53)

replacing (51) and (53) into (52) and packing (Romero and
Silva 2014)

d �

d αi

= 1

2

we

φ
zT ∂C(U)

∂αi

z

+
[
we

φ
zT C(U)+ wv

J
UT (Mv+MT

v )LT

+ wt

Te

(
UT (Mr +MT

r )+VT
)
LT

]
J−1ri , (54)

finally

d �

d αi

= 1

2

we

φ
zT ∂C(U)

∂αi

z + ST
t ri , (55)

where St is obtained from the solution of the system
(Romero and Silva 2014):

JT St =
[we

�
C(U)z + wv

J
L(Mv + MT

v )U

+wt

Te

L
[
(Mr + MT

r )U + V
]]

. (56)

This system is independent of the derivative with respect
to design variable, so it is solved once per iteration of the
optimization process. Because the system is dependent on
the previous velocity field U, and the residual vector R is
assumed to be zero, this system is solved by considering
velocities resulting from the Newton converged process.

In (55), the vector ri , given by (50), is calculated for
each element i in the domain, and J, is the Jacobian matrix

Fig. 7 Relative velocity field
for following topologies: a
straight blades; b curved blades;
c involute curved blades
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Fig. 8 Vorticity field for
following topologies: a straight
blades; b curved blades; c
involute curved blades

resulting from the application of Newton’s method to the
solution of nonlinear system.

4.6 Sensitivity of energy dissipation

The sensitivity of ∂C(U)
∂αi

can be computed as a sum of

the gradients of K̄d(U) and K̄κ with respect to the design
variable, thus

∂C(U)

∂αi

=
[

∂K̄d (U)
∂αi

+ ∂K̄k

∂αi
0

0 0

]
(57)

where

∂K̄d(U)

∂αi

= ∂

∂αi

[
2K11(U)+K22(u) K12(U)

K21(U) K11(U) + 2K22(u)

]
,

(58)

and

∂K̄κ

∂αi

= ∂κ(α)

∂αi

[
Km 0
0 Km

]
, (59)

∂κ(α)
∂αi

is given by (11).

Fig. 9 Scalar shear stress field
for following topologies: a
straight blades; b curved blades;
c involute curved blades
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In this case

∂Kij

∂αl

=
∫


e

∂η(U)

∂u
∂U
∂αl

∂�

∂xj

∂�T

∂xi

d
; (60)

and ∂η(U)
∂U is given by (61).

4.6.1 Sensitivity of viscosity

Since non-Newtonian viscosity is dependent on shear rate
which is dependent on the velocity, it is necessary to cal-
culate the sensitivity of viscosity with respect to velocity.
Thus, differentiating (5) with respect to velocity vector

∂η(γ̇ )

∂U
= ∂η(γ̇ )

∂γ̇

∂γ̇

∂U
(61)

where
∂η(γ̇ )

∂γ̇
= (n−1)λ(μ0−μ∞)[1+(λγ̇ )a] n−1

a
−1 (λγ̇ )a−1 (62)

Since the implementation of non-Newtonian viscosity is
considered as a continuous model to be used in FEM, the
viscosity value at each integration point is required. Thus
η(γ̇ ) is expressed as a diagonal matrix with the viscosity
values associated with each integration point on the main
diagonal. From (7),

∂γ̇

∂u1
= γ̇ −1

[
2
∂u1

∂x1

∂�

∂x1
+

(
∂u1

∂x2
+ ∂u2

∂x1

)
∂�

∂x2

]
(63)

∂γ̇

∂u2
= γ̇ −1

[
2
∂u2

∂x2

∂�

∂x2
+

(
∂u1

∂x2
+ ∂u2

∂x1

)
∂�

∂x1

]
(64)

by substituting equations (28) and grouping terms,

∂γ̇

∂U
= γ̇ −1MgU (65)

where

Mg =
⎡
⎣ 2 ∂�

∂x1

∂�
∂x1

T + ∂�
∂x2

∂�
∂x2

T ∂�
∂x2

∂�
∂x1

T

∂�
∂x1

∂�
∂x2

T
2 ∂�

∂x2

∂�
∂x2

T + ∂�
∂x1

∂�
∂x1

T

⎤
⎦

(66)

When the modified Cross model is used, η depends on u,
thus, the evaluation of finite element jacobians and compu-
tation of sensitivity of the energy dissipative would require
to compute the derivative of η with respect to u. How-
ever, in this case we have dropped these derivatives. This
leads to an inexactness in the jacobian and sensitivity cal-
culations which, may affect the finite element convergence
and optimization process. Besides, we have found that the
performance of numerical process is satisfactory, and there-
fore, we choose to avoid the additional implementation
effort required to compute the exact jacobian and sensitivity
(Abraham et al. 2005).

Fig. 10 Optimized topology
obtained by minimizing the
energy dissipation only for
initial guess αi = 0.99 (
ω = 1000 rpm): a optimized
topology channel; b optimized
topology of entire rotor; c
Velocity field; d pressure field; e
vorticity field; f scalar shear
stress field



1724 J. S. Romero, E. C. N. Silva

4.7 Optimization algorithm

The procedure for iterative optimization includes the fol-
lowing steps (see Fig. 3a) The Navier-Stokes equations are
solved by considering the given initial value of the design
variable, (b) adjoint equations are solved based on the
numerical solution of the Navier-Stokes, (c) the sensitivities
of the objective function and constraints are calculated (see
next section), (d) a design variable is updated by the method
of moving asymptotes (MMA) (Svanberg 1987). The above
steps are implemented iteratively until the stopping crite-
ria are satisfied. In the above procedure, the Navier-Stokes
equations and the corresponding adjoint problem are solved
by using the finite element method which is implemented in
the Matlab system.

The volume constraint is given by

ne∑
i=1

αiai ≤ f V ∗, (67)

with ai being the area of the element i, 0 < f ≤ 1
is a fraction coefficient and V ∗ is the total volume to be
considered.

The stopping criteria is given by

||αk − αk−1||∞ � 1 × 10−3, (68)

where k is the iteration number.

Fig. 11 Optimized topology
obtained by minimizing the
energy dissipation only by
considering straight blades as
initial guess (ω = 1000 rpm): a
optimized topology channel; b
optimized topology of entire
rotor c Velocity field; d pressure
field; e vorticity field; f scalar
shear stress field
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Fig. 12 Optimized topology
obtained by minimizing the
energy dissipation only by
considering involute blades as
initial guess (we = 1.0)
(ω = 1000 rpm): a optimized
topology channel; b optimized
topology of entire rotor c
Velocity field; d pressure field; e
vorticity field; f scalar shear
stress field

5 Numerical examples

In the numerical examples, the goal is to predict the flow
field between two rotor blades of a radial pump, without
considering the influence of the volute (Romero and Silva
2014). Thus, only a segment of the impeller pump is mod-
eled using a two-dimensional model as shown in Fig. 1.
It is proposed to optimize the existing channel between
two blades as a result of topology optimization, by con-
sidering the multi-objective function (46) involving viscous
dissipation, power (through the torque), and vorticity func-
tions and by evaluating the values of these functions in
the final design. Newtonian and non-Newtonian fluids are
considered.

The topology optimization determines the shape of the
channel and the optimized position of the outlet channel
for pump design, since these positions are unknown a pri-
ori. The radial velocity profiles are assumed to be uniform
at inlet and the flow cross-sectional area is assumed to
be constant along the radius. Therefore, the computational
domain has the geometry shown in Fig. 4a. The position of
the inlets and outlets of optimized channel will be located
on the boundary 1 and 3, respectively. The initial mesh
for both computational domains is shown in Fig. 4b. The
boundary conditions adopted for pump design are |u| = 1
in 1, u = 0 in 2, and p = 0 in 3. The dimensions used

are R1 = 0.4 and R2 = 1.0. The computational domain

 is discretized into 4000 elements unless specified other
number.

In all examples, the density ρ and the viscosity μ for
Newtonian model are adopted equal to 1058Kg/m3 and
0.0035Pa s, respectively. For non-Newtonian model the
viscosity is defined by using the modified Cross model
defined in section (2.1). Following (Abraham et al. 2005),
a suitable choice for the model of human blood is η0 =
1.6×10−1Pa s, η∞ = 3.5×10−3Pa s, a = 1.23, b = 0.64
and λ = 8.2s. Unless specified other values, computational
results are obtained for angular velocity equal to 1000 rpm

clockwise.
In Section 5.1, a comparative study is made between the

use of non-Newtonian viscosity and Newtonian viscosity as

Table 2 Results obtained by minimizing the energy dissipation for
different initial guess of design variables with non-Newtonian model.
ω = 1000 rpm

Initial guess Energy dissipation Vorticity Power I

αi = 0.99 6.12 205.4 3542.2 67,67

straight blades 3.13 182.3 3575.9 42.17

involute blades 4.93 181.7 3573.3 53.31
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Fig. 13 Optimized topology
obtained by minimizing the
energy dissipation and vorticity
considering involute blade as
initial guess. we = 0.5,
wv = 0.5, and wt = 0.0. a
optimized topology channel; b
optimized topology of entire
rotor c Velocity field; d pressure
field; e vorticity field; f scalar
shear stress field

a model template, evaluating the influence of the choice of
the viscosity over the final optimized topology.

From Section 5.2 to Section 5.3, a comparative study
about how the variation of certain parameters affects the
final topology for a pump design is presented. Thus, in
Section 5.2, the influence of initial guess for the design
variable is analyzed. In Section 5.3, a comparative study
on how the variation of multi-objective function weight-
ing values affect the final topology of pump channel is
presented. Finally, in section 5.4, the influence of angular
velocity value on the topology results is analyzed. The value

of hemolysis index (25) for these results is calculated, and
its relation with vorticity values is analyzed.

5.1 Influence of Newtonian and non-Newtonian flow
models

In this section, it is illustrated the ability of topology
optimization to identify design with conceptually different
channel pump layout under Newtonian and non-Newtonian
flows models. In this study, only the minimization of the
energy dissipation is considered by varying the angular

Table 3 Results obtained by
minimizing the energy
dissipation, vorticity and power
with non-Newtonian model

Initial guess Weight Energy dissipation Vorticity Power I

αi = 0.99 we = 0.5, wv = 0.5, wt = 0.0 6.44 149.0 3594.5 31.37

involute blades we = 0.5, wv = 0.5, wt = 0.0 5.81 29.4 3636.4 7.21

αi = 0.99 we = 0.5, wv = 0.5, wt = 0.0 7.68 105.4 3633.3 23.4

αi = 0.99 we = 0.5, wv = 0.75, wt = 0.0 7.59 100.4 3631.6 22.1

αi = 0.99 we = 0.0, wv = 1.0, wt = 0.0 11.4 99.9 3637.7 21.5

αi = 0.99 we = 0.5, wv = 0.0, wt = 0.5 6.41 199.2 3448.8 67.95

αi = 0.99 we = 0.0, wv = 0.0, wt = 1.0 6.04 226.7 3403.09 63.75
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Fig. 14 Optimized topology
obtained by minimizing the
energy dissipation and vorticity
considering αi = 0.99 as initial
guess.we = 0.5, wv = 0.5, and
wt = 0.0. a optimized topology
channel; b optimized topology
of entire rotor; c Velocity field;
d pressure field; e vorticity
field; f scalar shear stress field

velocity. The coefficients we, wv , and wt are equal to 1, 0,
and 0, respectively, for all results in this example. The topol-
ogy optimization results are presented in Fig. 5. They show

that at low rpm (< 700 rpm) the optimized Newtonian and
non-Newtonian design topologies differ significantly, con-
sidering the shape and the outlet channel position. At large

Fig. 15 Optimized topology
obtained by minimizing the
energy dissipation and power
considering αi = 0.99 as initial
guess.we = 0.5, wv = 0.0, and
wt = 0.5. a optimized topology
channel; b optimized topology
of entire rotor; c Velocity field;
d pressure field; e vorticity
field; f scalar shear stress field
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Fig. 16 Optimized topology obtained by minimizing the energy dis-
sipation and vorticity considering αi = 0.99 as initial guess. and
we = 0.5, wv = 0.5 and wt = 0.0 a optimized topology channel; b
Velocity field

rpm, for both Newtonian and non-Newtonian optimization,
the shape and outlet channel position results are similar.
Fig. 6 shows the topology for the entire rotor at (500 rpm).

5.2 Influence of initial guess for non-Newtonian flow
models

For comparison purposes, it will be considered as ref-
erence, traditional channel geometries, such as, straight

blades, inclined straight blades, curved blades and invo-
lute curved blades (Romero and Silva 2014). In the curved
blades the radius of curvature is constant along the blade,
however in the involute blade the radius of curvature varies
along the blade as described in (Stepanoff 1957). Table 1
presents the values for energy dissipation, vorticity, power,
and hemolysis index (25) for these reference channel shapes
for non-Newtonian flow. From Table 1, it is noticed that
the hemolysis index value I follows the vorticity value
behaviour, that is, low and high values of I correspond to
low and high values of vorticity.

Figures 7, 8 and 9, show the relative velocity, vorticity
field and scalar shear stress for these reference traditional
radial pump configurations such as straight blades, inclined
curved blades and involute blades. Scalar shear stress is
calculated through (22).

In this section, only the minimization of energy dissipa-
tion is considered as a comparative example by varying the
initial guess for the design variables. It is considered as the
initial guess αi = 0.99 (this implies that the design variables
for all elements of the extended domain are initialized with
the value of 0.99), straight blades, and blade-shaped invo-
lute. In the latter two cases, design variables are initialized
to create a channel formed by straight and involute blades
shape, respectively.

Topology optimization results are presented in Figs. 10,
11, and 12 together with corresponding relative velocity
field, vorticity field, and scalar shear stress field. From these
results and Table 2, it can be seen how the choice of the ini-
tial guess for the design variable affects the final optimized
topology, i.e., the final topology is dependent on the initial
guess, as expected. In Figs. 11 and 12 which correspond to
the initial guess of straight and involute blades, respectively,
it is observed a double channel topology, similar to the con-
figuration proposed by Golcu et al. (2006). Essentially, it

Fig. 17 Optimized topology
obtained by minimizing the
energy dissipation and vorticity
considering αi = 0.99 as initial
guess. and we = 0.25,
wv = 0.75 and wt = 0.0 a
optimized topology channel; b
Velocity field; c Vorticity field;
d scalar shear stress field
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Fig. 18 Optimized topology
obtained by minimizing the
vorticity considering αi = 0.99
as initial guess. and we = 0.0,
wv = 1.0 and wt = 0.0 a
optimized topology channel; b
Velocity field; c Vorticity field;
d scalar shear stress field

proposes to consider blade splitters between two blades, to
obtain an increase of efficiency.

From Table 2, the results considering the straight blades
as initial guess, generate lower energy dissipation. This hap-
pens due to the fact that the fluid particles have a shortest
path between the rotor inlet and outlet. In addition, it is
noticed that the hemolysis index values I follows quite close
to the vorticity values behaviour. In the case of the results
obtained by considering the straight and involute blade ini-
tial guess, their vorticity values are very close, so are the
hemolysis index values.

5.3 Multi-objective optimization

In this section, the results are obtained by considering dif-
ferent values of weight coefficients we, wv , and wt . The

topology optimization results are presented from Figs. 13,
14, 15, 16, 17, 18 and 19. As seen in Table 3, when solv-
ing the problem of optimizing a multi-objective function (to
minimize) energy dissipation function and vorticity func-
tion or energy dissipation function and power function, the
values obtained for energy dissipation function are higher
when compared with energy dissipation results obtained for
the optimization problem considering energy dissipation as
a single function (see Table 2), as expected. However, vor-
ticity function and power function are minimized. From
Table 3, it is noticed that high and low values of vortic-
ity corresponds to high and low values of hemolysis index,
thus, the hemolysis index values I follows quite close to
the vorticity values behaviour showing that the minimiza-
tion of hemolysis index can be achieved by minimizing
vorticity.

Fig. 19 Optimized topology
obtained by minimizing the
power only considering
αi = 0.99 as initial guess. and
wt = 1.0. a optimized topology
channel; b Velocity field; c
Vorticity field; d scalar shear
stress field
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Fig. 20 Optimized topology
channel obtained by minimizing
the energy dissipation and
vorticity (we = 0.5; wv =
0.5; wt = 0.0) for a
non-Newtonian fluid varying the
angular velocity: a
ω = 1000 rpm; b
ω = 2000 rpm; c
ω = 3000 rpm; d
ω = 4000 rpm

5.4 Influence of the angular velocity on the optimum
topology

In this example it is shown how the angular velocity affects
the optimized topology. Topology optimization results and
corresponding topologies of entire rotors are shown in
Fig.s 20 and 21, respectively. As seen in Fig. 20, the angu-
lar position between the inlet and the outlet of the channel
increases as the angular velocity increases.

Fig. 21 Corresponding optimized topology of the entire rotor
obtained by minimizing the energy dissipation and vorticity (we =
0.5; wv = 0.5; wt = 0.0) for a non-Newtonian fluid varying the
angular velocity: a ω = 1000 rpm; b ω = 2000 rpm; c ω =
3000 rpm; d ω = 4000 rpm

6 Conclusions

A novel method based on topology optimization for design-
ing radial pump rotors aiming at non-Newtonian flow appli-
cation has been proposed. The method is investigated for
Newtonian and non-Newtonian flow with low and moderate
Reynolds numbers by considering blood pump applications.
The modified Cross constitutive model was selected for the
non-Newtonian fluid. The problem is posed as optimizing
the channel between the blades of pump rotors.

In order to improve the pumping performance necessary
for a VADs, energy dissipation, the vorticity, and the power
consumption are considered as objective functions. For a
VADs it is also important to reduce the hemolysis, which
is related with the shear stress, and stagnation points. We
have verified that the reduction of the vorticity contributes
to the reduction of the hemolysis index, improving pump
haematological conditions.

The influence of fluid type (Newtonian and Non-
Newtonian), initial guess, weighting coefficients, and angu-
lar velocity values for the flow are analyzed. The results
for Newtonian and Non-Newtonian fluid-type differ for low
Reynold number only, as expected. The optimized results
are strongly influenced by initial guess as well as the angular
velocity value. The multi-objective function could success-
fully provide a way to obtain different designs by weighting
the contribution of the three defined objective functions. All
these examples indicate that the method has a high potential
to find optimized design of blood flow machine rotors.

As future work, authors suggest to consider a more
complete flow model which includes high Reynolds num-
ber, turbulence models suitable for systems in rota-
tion. Although a two-dimensional model represents quite
closely the rotor flow behaviour of a centrifugal pump, a



Non-newtonian laminar flow machine rotor design by using topology optimization 1731

three-dimensional model would be more realistic and prac-
tical. It is also important to study how the housing affects
the rotor flow.
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