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Abstract An algorithm for risk-based optimization (RO) of
engineering systems is proposed, which couples the Cross-
entropy (CE) optimization method with the Line Sampling
(LS) reliability method. The CE-LS algorithm relies on the
CE method to optimize the total cost of a system that is
composed of the design and operation cost (e.g., produc-
tion cost) and the expected failure cost (i.e., failure risk).
Guided by the random search of the CE method, the algo-
rithm proceeds iteratively to update a set of random search
distributions such that the optimal or near-optimal solu-
tion is likely to occur. The LS-based failure probability
estimates are required to evaluate the failure risk. Through-
out the optimization process, the coupling relies on a local
weighted average approximation of the probability of fail-
ure to reduce the computational demands associated with
RO. As the CE-LS algorithm proceeds to locate a region
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of design parameters with near-optimal solutions, the local
weighted average approximation of the probability of failure
is refined. The adaptive refinement procedure is repeatedly
applied until convergence criteria with respect to both the
optimization and the approximation of the failure proba-
bility are satisfied. The performance of the proposed opti-
mization heuristic is examined empirically on several RO
problems, including the design of a monopile foundation for
offshore wind turbines.

Keywords Risk · Reliability · Optimization · Design ·
RO · RBDO · Cross-entropy · Line sampling

1 Introduction

1.1 Problem definition

The design of an engineering system aims at producing
an economical structure and minimizing risk. Risk is a
measure of potential adverse consequences for the owner,
society and environment. The objectives of structural cost
and risk minimization are often contradictory and an opti-
mal trade-off must be identified, which is the goal of the
Risk Optimization (RO) framework (e.g., Beck et al. 2015;
Rackwitz 2000; Rosenblueth and Mendoza 1971). RO min-
imizes the total costs of a system, which is composed of
the design cost of a system (e.g., production cost) and
the expected cost of failure (i.e., failure risk). The set of
design parameters that minimizes the total cost is found
within a set of feasible or admissible designs, which is
determined by a series of deterministic (e.g., geometry limi-
tations) and probabilistic constraints. In ROs of engineering
systems, the probabilistic constraints are often reliability
constraints (i.e. upper bounds on the failure probabilities).
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Alternative design optimization frameworks include Deter-
ministic Design Optimization (DDO) (e.g., Beck and de
Santana Gomes 2012) and Reliability-Based Design Opti-
mization (RBDO) (e.g., Beck and de Santana Gomes 2012;
Valdebenito and Schuëller 2010), which aim at optimizing
the design cost of a structure with respect to a series of
constraints, while not accounting for the failure risk on the
objective function. In the DDO framework the constraints
are defined by a series of deterministic constraints (e.g.,
allowable stress), while in the RBDO framework the set of
constraints is expanded to include reliability constraints.

In this study, the RO problem is defined as follows:

minimize C(t) = CD(t) +
nr∑

k=1

CFk(t)PFk(t) (1a)

subject to

hi(t) ≤ 0, i = 1, ..., nd (1b)

PFk(t) ≤ P lim
Fk , k = 1, ..., nr (1c)

tl ≤ t ≤ tu (1d)

where the total cost, C(t), is a function of design variables
t = [t1, t2, ..., tn]T ∈ �t, CD(t) specifies the design cost of
a structure or an engineering system to account for the cost
of production, operation, inspection, maintenance, and dis-
posal, CFk(t) is the cost of the kth failure event, and PFk(t)
is the corresponding failure probability. hi(t) defines the ith
deterministic constraint, while P lim

Fk specifies the kth relia-
bility constraint. The upper and lower bounds for t are tl and
tu.

For a given t, PFk(t) is defined as an m-dimensional
integral:

PFk(t) =
∫

gk(u,t)≤0

φm(u)du (2)

where u = [u1, u2, ..., um]T ∈ �u is a realization of a
vector of independent standard normal random variables,
U = [U1, U2, ..., Um]T , with zero-mean and unit standard
deviation; gk(u, t) is the performance function correspond-
ing to the kth failure criterion, which has a positive value,
gk(u, t) > 0, in the safe domain (i.e., safe state of a struc-
ture), and a nonpositive value, gk(u, t) ≤ 0, in the failure
domain of the outcome space; φm(u) is an m-dimensional
joint probability density function composed of m indepen-
dent standard normal marginal distributions. In the general
case, where gk is a function of dependent non-normal

random variables, X, it is assumed that suitable probabil-
ity preserving transformations exist, u = �x,u(x) and x =
�u,x(u) (e.g., Nataf (Liu and Der Kiureghian 1986) and
Rosenblatt 1952).

1.2 Short literature review

Due to the similarity between the RO and RBDO formu-
lations, the following section provides a short literature
review of RO and RBDO algorithms. Although the RO
and RBDO formulations are relatively similar, the imple-
mentations of the two formulations are different in case
one relies on sampling-based failure probability estimates
(e.g., Beck and de Santana Gomes 2012; de Santana Gomes
and Beck 2013). The corresponding RO implementations
are often characterized by noisy objective functions due to
the numerical noise associated with sampling-based failure
probability estimates. Consequently, the solution to the RO
problem often relies on the implementation of a global opti-
mization algorithm (e.g., Genetic Algorithm (Spall 2005),
Cross-entropy (Botev et al. 2013)), while the solution to
the RBDO problem can be found through numerically more
efficient nonlinear programming algorithms (e.g., Royset
et al. 2006).

A relatively straightforward solution to RO and RBDO
problems is obtained by nesting a reliability algorithm
within an optimization algorithm in a so-called ‘double-
loop’ formulation. The implementations of the double-loop
formulation are often associated with high computational
cost due to the nature of optimization and reliability algo-
rithms, which commonly require numerous evaluations of
complex structural models (e.g., finite element models).
To avoid the high computational cost associated with the
double-loop formulations, a relatively large number of
advanced formulations and simplifications have been pro-
posed in the literature. However, the majority of these for-
mulations examine the RBDO problem (e.g., Valdebenito
and Schuëller 2010; Cheng et al. 2006; Royset et al. 2001;
Aoues and Chateauneuf 2010; Yang and Gu 2004), while
the number of proposed formulations for the RO prob-
lem is relatively limited (e.g., Kuschel and Rackwitz 1997;
Gomes and Beck 2016; de Santana Gomes and Beck 2013;
Taflanidis and Beck 2008; Jensen et al. 2009).

Depending on the type of reliability methods employed
in the evaluation of RBDO or RO problems, the RBDO
and RO algorithms can be classified into algorithms that
apply sampling reliability methods (e.g., Monte Carlo,
Importance Sampling, Subset Simulation) and algorithms
that apply approximate reliability methods (e.g., FORM,
SORM). As suggested by (Valdebenito and Schuëller 2010),
the RBDO and RO algorithms that apply approximate reli-
ability methods can be further divided into double-loop,
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single-loop, and decoupling approaches. The two most com-
monly implemented double-loop formulations are known as
the Reliability Index Approach (RIA) (e.g., Nikolaidis and
Burdisso 1988; Enevoldsen and Sørensen 1994) and the Per-
formance Measure Approach (PMA) (e.g., Der Kiureghian
et al. 1994). The application of the RIA formulation to both
RBDO and RO problems was examined in Enevoldsen and
Sørensen (1994). The failure probabilities in the objective
function of the RO problem in Enevoldsen and Sørensen
(1994) are approximated with FORM estimates. The perfor-
mance of the PMA formulation on RBDO and RO problems
was examined, respectively, in Royset et al. (2001) and
Royset et al. (2006), where the failure probabilities in the
objective function of the RO problem are approximated
with auxiliary variables. Single-loop algorithms transform
the double loop into a single loop by replacing reliability
constraints with approximate deterministic constraints (e.g.,
Chen et al. 1997) or utilizing the Karush-Kuhn-Tacker opti-
mality conditions (e.g., Kuschel and Rackwitz 1997). The
application of the single loop algorithm to the RO formula-
tion in (Kuschel and Rackwitz 1997) relies on the FORM
approximation of the failure probability in the objective
function. In the decoupling approaches, the RBDO problem
is transformed into a sequence of deterministic optimiza-
tions, with periodic reliability analyses conducted to update
the set of admissible designs. The Sequential Optimization
and Reliability Assessment (SORA) method is a decou-
pling approach that evaluates the RBDO problem through a
sequence of deterministic and reliability analyses (Du and
Chen 2004). The reliability analyses are conducted after the
deterministic optimization to ensure constraint feasibility
(Du and Chen 2004). The Sequential Approximate Pro-
gramming (SAP) is an alternative decoupling method that
transforms the RBDO problem into a series of approximate
subproblems with approximate objective function and con-
straints (Cheng et al. 2006). The SAP method provides a
solution to the RBDO problem by sequentially improving
the optimal design and the approximation of the FORM esti-
mate of the failure probability (Cheng et al. 2006). Although
the decoupling approaches are mainly applied to the RBDO
formulations, the SAP method was evaluated on an RO
formulation in Cheng et al. (2006) with an approximation
of the FORM estimates of the failure probability in the
objective function.

Applications of RO and RBDO algorithms with approx-
imate reliability methods rely on the adequacy of the reli-
ability estimates. In the case of significant nonlinearities
in the reliability problems, the approximations can lead to
over- or under-estimates of the failure probabilities. This
can significantly affect the ability of the corresponding RO
and RBDO algorithms in locating the minimizer and sat-
isfying the reliability constraints. In such conditions one

usually resorts to RBDO and RO algorithms that imple-
ment sampling-based reliability methods. As suggested in
Valdebenito and Schuëller (2010), the RBDO and RO algo-
rithms implementing sampling-based reliability methods
can be organized into three groups; applications of meta-
models, decoupling approaches, and enhanced reliability
approaches. A metamodel is commonly a regression or a
classification model constructed as an approximation of the
performance function (e.g., Depina et al. 2016). A meta-
model is applied within RO or RBDO algorithms to reduce
the computational demands resulting from computation-
ally complex models of engineering structures. Some of
the commonly considered metamodels in structural relia-
bility literature include: polynomial response surfaces (e.g.,
Bucher and Bourgund 1990), Kriging (e.g., Dubourg et al.
2011; Chen et al. 2014; Lee et al. 2011), Artificial Neu-
ral Networks (e.g., de Santana Gomes and Beck 2013) and
Support Vector Machines (e.g., Basudhar et al. 2008). The
majority of the proposed metamodel-based algorithms con-
sider the RBDO formulation (e.g., Chen et al. 2014; Lee
et al. 2011), while several approaches examine the RO for-
mulation (e.g., Dubourg et al. 2011; de Santana Gomes
and Beck 2013). Similar to the decoupling approaches with
approximate reliability methods, the decoupling approaches
for RBDO problems with sampling-based reliability meth-
ods attempt to approximate the probability of failure
throughout the optimization process. For example, in Jensen
and Catalan (2007), Jensen (2005), and Valdebenito and
Schuëller (2011), the probability of failure is approximated
by an exponential function of design parameters, while
in Au (2005) and Ching and Hsieh (2007) the Bayesian
theorem is applied to approximate the reliability problem
based on samples from the failure domain. Applications
of decoupling approaches to the RO formulation include
the Design Space Root Finding (DSRF) method, which
aims to approximate the failure probabilities over the design
space by calculating the roots of the limit state function
(Gomes and Beck 2016).

Direct integration of simulation techniques with opti-
mization methods is implemented in several enhanced relia-
bility methods (e.g., Royset and Polak 2004; Taflanidis and
Beck 2008). For example, the RBDO algorithm in Royset
and Polak (2004) utilizes the sample average approximation
to supply gradients of the probabilities to an optimization
algorithm. An alternative simulation based approach, known
as the Stochastic Subset Optimization (SSO) (Taflanidis and
Beck 2008), seeks to locate a region of the design space
where the failure probability is minimized. The SSOmethod
operates on a set of samples in a so-called augmented reli-
ability space where the design parameters are artificially
considered as uniformly distributed random variables. The
SSO algorithm proceeds iteratively to locate a subset of the
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design space likely to contain the optimal solution, which
can be found by a more detailed local search.

1.3 Scope and outline

This paper proposes a decoupling RO algorithm based on
sampling reliability methods, referred to as CE-LS. The pro-
posed RO algorithm combines the Line Sampling (LS) (e.g.,
Pradlwarter et al. 2007) reliability method and the Cross-
entropy (CE) (e.g., De Boer et al. 2005) global optimization
method. The CE-LS coupling is considered as advantageous
within the context of the RO problem due to the robustness
of the CE global optimization algorithm and the fact that the
LS reliability method provides efficient and unbiased fail-
ure probability estimates in both low- and high-dimensional
reliability problems. Driven by the random search of the CE
algorithm, the CE-LS method proceeds iteratively to update
a set of random search distributions in the design space such
that the optimal or near-optimal solution of the RO problem
is likely to occur. To avoid potentially high computational
demands associated with this double-loop implementation,
a local weighted average (LWA) approximation of the prob-
ability of failure is iteratively refined as the optimization
algorithm proceeds. The adaptive refinement procedure of
the CE-LS algorithm is repeatedly applied until conver-
gence criteria with respect to both the optimization and the
probability of failure estimates are satisfied. The proposed
optimization heuristic is examined on several RO problems
and an RBDO problem.

The paper is organized to provide a basic overview of the
LS method in Section 2 and the CE method for optimiza-
tion in Section 3. The formulation of the proposed CE-LS
algorithm is introduced in Section 4 with a discussion of the
implementation, convergence criteria and constraint model-
ing. The proposed algorithm is examined in Section 5 on
several RO problems and a RBDO problem. A discussion
on the performance of the CE-LS algorithm is provided in
Section 6, followed by a short summary with conclusions in
Section 7.

2 Line sampling

LS formulates a reliability problem as a number of con-
ditional one-dimensional reliability problems in the out-
come space �u (e.g., Hohenbichler and Rackwitz 1988;
Koutsourelakis et al. 2004). The one-dimensional reliability
problems are defined parallel to the important direction, α.
α is a unit vector pointing to the region of the failure domain
nearest to the origin of �u, as illustrated in Fig. 1. A gen-
eral approach for determining α is based on a unit vector
pointing to the average of a set of samples generated with
the Markov Chain Monte Carlo (MCMC) method from the

Fig. 1 Line sampling method

distribution of the random variables conditioned on the fail-
ure event (Koutsourelakis et al. 2004). In case of moderately
nonlinear performance functions, α can be closely approx-
imated by a unit vector pointing to the most likely point in
the failure domain, also known as the design point. Some
of the additional approximate approaches for determining
α include a normalized gradient vector of g(u) pointing to
the direction of the steepest descent, or a unit vector based
on engineering judgment. In this paper, α is selected as the
direction of the design point or approximations thereof.

Sampling is performed on the hyperplane orthogonal to
α. For each sample, the contribution to the PF is calculated
as a one-dimensional reliability integral along α. Given α,
the failure domain, F , can be expressed as:

F =
{
u ∈ R

m : uα ∈ Fα(u⊥
1 , ..., u⊥

m−1)
}

(3)

where uα is a standard normal random variable defined
along α, u⊥ ∈ R

m−1 is a vector of random variables orthog-
onal to α, while Fα is a function representing the failure
domain along α, defined on Rm−1 (Pradlwarter et al. 2007).
PF can be expressed as follows:

PF =
∫

Rm

IF (u)φm(u)du

=
∫

Rm−1

(∫

R

IF (u)φ(uα)duα

)
φm−1(u⊥)du⊥

=
∫

Rm−1

(∫

Fα(u⊥)

φ(uα)duα

)
φm−1(u⊥)du⊥

=
∫

Rm−1
�(Fα(u⊥))φm−1(u⊥)du⊥

= Eu⊥
[
�(Fα(u⊥))

]

where IF (u) is an indicator function, such that IF (u) = 1 if
u ∈ F and IF (u) = 0 otherwise.

In the case that Fα(u⊥) is bounded by
[
β(u⊥),∞)

, the
conditional one-dimensional reliability problem can be eval-
uated as �(Fα(u⊥)) = �(−β(u⊥)), where β(u⊥) is the
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distance from the hyperplane u⊥ = 0 along α to the limit
state surface, g(u) = 0, as indicated in Fig. 1. In the case
that Fα(u⊥) is composed of several discontinuous inter-
vals this formulation is extended analogously, for example(−∞, β1(u⊥)

] ∪ [
β2(u⊥),∞)

, where β2(u⊥) ≥ β1(u⊥),
leads to �(Fα(u⊥)) = �(β1(u⊥)) + �(−β2(u⊥)).

If Fα(u⊥) is bounded by
[
β(u⊥),∞)

, an unbiased esti-
mate of PF is calculated as:

P̂F = 1

N

N∑

i=1

�(Fα(u⊥
i ))= 1

N

N∑

i=1

�(−β(u⊥
i ))= 1

N

N∑

i=1

PFi

(4)

where
{
u⊥

i ∼ φm−1(u⊥) : i = 1, ..., N
}
is a set of samples

from the (m − 1)-dimensional hyperplane orthogonal to α.
It is important to observe from (4) that even a single line
search along the important direction provides an estimate
of PF . This property of the LS method will be one of the
main building elements of the proposed CE-LS method in
the following sections. The variance of the estimator P̂F can
be evaluated as:

V̂ar
[
P̂F

]
= 1

N(N − 1)

N∑

i=1

(
PFi − P̂F

)2
(5)

The coefficient of variation of P̂F , estimated as ˆCoV(P̂F ) =√
V̂ar

[
P̂F

]
/P̂F , is commonly used to asses the accuracy of

P̂F .

3 Cross-entropy method for optimization

The CE method is a heuristic approach for estimating rare
events and solving optimizations problems (De Boer et al.
2005; Botev et al. 2013). The method was initially devel-
oped as an adaptive importance sampling method for the
estimation of rare-event probabilities by minimizing the
cross-entropy or Kullback-Liebler divergence as a measure
of distance between two distributions. Given that the prob-
ability of locating the optimal or a near-optimal solution
using naive random search is usually a rare-event probabil-
ity, the CEmethod can be applied as a randomized algorithm
for optimization (De Boer et al. 2005). The CE method
adaptively updates a series of sampling distributions of the
random search such that the optimal or near-optimal solu-
tion is more likely to occur. The sampling distributions
are adaptively updated to converge to a distribution with
high probability mass in the region of near-optimal solu-
tions (Botev et al. 2013). The method is selected for an
application to RO problems as it features a robust global

optimization algorithm and requires the choice of only a
relatively low number of parameters.

Consider a function S(t) over a search space �t with
a single minimizer, t∗ = [

t∗1 , ..., t∗n
]T ∈ �t, and the

corresponding minimum, γ ∗:

S(t∗) = γ ∗ = min
t∈�t

S(t) (6)

The CE importance sampling formulation for rare-event
estimation is adapted to solve the optimization problem in
(6) by considering the probability P(S(t) ≤ γ ), where
t is associated with a probability density function f (t; θ)

on �t, and θ are distribution parameters, while γ is close
to the unknown minimum γ ∗. The CE algorithm adap-
tively updates γ and θ to provide an importance sampling
distribution that concentrates its probability mass in the
neighborhood of t∗, as illustrated in Fig. 2 a to b. Random
sampling from such a distribution is more likely to provide
the optimal or near-optimal solution (Botev et al. 2013) for
the problem in (6).

This study implements the CE algorithm for optimiza-
tion with normal updating as specified in Algorithm 1.
The CE algorithm with normal updating employs a set of
independent normal distributions to generate design states
separately for each of the components of the parameter
vector t = [t1, ..., tn]T ∈ �t. In the CE algorithm with nor-
mal updating, f (t; θ) is a multivariate normal distribution
with independent components specified by θ = (μ, σ 2),

where μ = [μ1, ..., μn]T is a vector of means and σ 2 =[
σ 2
1 , ..., σ 2

n

]T
is a vector of variances.

The CE algorithm proceeds iteratively to update θ and
γ until a convergence criterion is satisfied. In the imple-
mentation of the CE algorithm with normal updating in
Botev et al. (2013), the convergence criterion is expressed
in terms of the maximum value of the standard deviation
in the ith iteration among the design components, such that
maxr σir < εlim; r = 1, ..., n, where εlim is a tolerance
limit. Once convergence is achieved, it is common to select
the mean value of the random search distributions as the
minimizer (e.g., Botev et al. 2013).

(a) (b)

Fig. 2 Cross-entropy method
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Although global optimization algorithms are relatively
efficient in locating the region of near-optimal solutions,
considerable computational expenses are often required to
locate the true optimum within the region of near-optimal
solutions (e.g., Beck and de Santana Gomes 2012). Differ-
ent techniques can be implemented in such conditions, as
for example hybrid optimization algorithms that combine
global optimization and nonlinear programming algorithms
(e.g., Beck and de Santana Gomes 2012). In the context
of the CE method it is common to implement the dynamic
smoothing (e.g., Kroese et al. 2006) or the injection (e.g.,
Botev and Kroese 2004) techniques. The dynamic smooth-
ing introduces a set of coefficients which impede the updat-
ing of the parameters of the random search distributions.
The coefficients of the dynamic smoothing are selected
to prevent the parameters of the random search distribu-
tion from converging too quickly to a sub-optimal solution.

The injection extension prevents the optimization process
from converging to a sub-optimal solution by increasing
the variance of the random search distribution periodically
throughout the optimization process.

Deterministic (1b) and reliability constraints (1c) can
be incorporated in the CE method by implementing the
acceptance-rejection or the penalty method (Kroese et al.
2006). Given a random search state of the CE algorithm, the
acceptance-rejection method enforces constraints by accept-
ing the state if the constraints are satisfied. Otherwise, the
considered state is rejected and the random search pro-
ceeds to generate another state. The acceptance-rejection
procedure is repeated until the specified number of random
search states are accepted. The efficiency of the acceptance-
rejection method depends on the ratio of accepted over the
total number of proposed design states, known as the accep-
tance rate. In situations with low acceptance rates and/or
computationally demanding numerical models, used to eval-
uate constraints, the acceptance-rejection method can result
in high computational costs.

The penalty method is an alternative to the acceptance-
rejection method in situations with low acceptance rates
and/or computationally demanding constraints. The penalty
method modifies the objective function to penalize the con-
straint violation. For example, in the case of a deterministic
constraint as in (1b), the penalty function can take the
following form:

S̃(t) = S(t) +
nd∑

k=1

Pk(t) (7)

where Pk(t) are penalty functions. The penalty function is
usually defined to penalize the constraint violation propor-
tionally:

Pk(t) = SPk · max [0, hk(t)] (8)

where SPk > 0 is selected according to the importance of
the kth constraint violation.

4 CE-LS method

4.1 Introduction

A straightforward coupling of the CE optimization and the
LS reliability method in a double-loop RO algorithm is asso-
ciated with high computational costs. An alternative CE-LS
coupling is formulated in this study in which an LWA
approximation of the probability of failure in the design
space is constructed and refined throughout the optimiza-
tion process. The LWA approximation of the probability
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of failure enables the CE-LS coupling to avoid repeated
nested estimations of the reliability problem within the
optimization algorithm.

The motivation for the coupling between the CE opti-
mization and the LS reliability methods is rooted in several
important features of the two methods. The CE method is
a robust global optimization algorithm well-suited for noisy
objective functions. The LS method is a robust and highly
efficient reliability method that provides unbiased reliability
estimates for a wide range of problems, including nonlinear
and high-dimensional reliability problems (e.g., Schuëller
et al. 2004). One relevant feature of the LS method is that a
single sample (i.e., line search) provides an estimate of the
failure probability. This property is utilized within the LWA
approximation of the reliability estimates to integrate the CE
and LS methods, as shown later in this Section. The LWA
is selected because it provides a nonparametric local regres-
sion model with a reasonable trade-off between accuracy
and computational efficiency. The LWA model is compati-
ble with the CE method, as the CE algorithm requires only
local estimates of the objective function at each design state.
The compatibility also extends to the LS method, where the
failure probability estimate is defined as an average estima-
tor, which allows for a straightforward implementation of
the LWA estimator.

4.2 Formulation

Consider a set of NS design states generated in the ith step
of the CE algorithm with normal updating:

tj ∼ N(μi−1, σ i−1); j = 1, ..., NS (9)

where tj = [
tj1, ..., tjn

]T , while μi = [μi1, ..., μin]T and

σ 2
i = [

σ 2
i1, ..., σ

2
in

]T
are the parameters of the normal ran-

dom search distribution in the ith step. In order to evaluate
the total cost and the reliability constraints, as defined in
(1a–1d), estimates of the probability of failure are required
for the set of design states generated by the random search in
(9). In contrast to the double-loop algorithm, which requires
highly accurate estimates of the probability of failure for
the design states in (9), the CE-LS algorithm relies on an
LWA approximation of the failure probability. The LWA
approximation of the probability of failure in the design
space is constructed with the Nadaraya-Watson nonpara-
metric regression model (Nadaraya 1964; Watson 1964),
presented in Appendix A.

The LWA approximation is constructed under the
assumption that the limit state surface of the reliability prob-
lem is smooth in the vicinity of a design state, such that the

reliability estimates at the neighboring design states can be
employed collectively to provide an accurate approximation
of the probability of failure. An approximation of the proba-
bility of failure at a design state can be obtained with smaller
sample size relative to the corresponding double-loop algo-
rithm due to the reliance of the LWAmodel on the collective
of reliability estimates at neighboring design states.

The LWA approximation of the reliability problem is
expected to provide sufficient guidance to the random
search of the CE-LS algorithm as it requires information on
the relative optimality of samples within a population, and
not highly accurate estimates of the absolute optimality at
the intermediate sampling steps of the optimization process.
The updating mechanism of the CE algorithm is based on
the identification of the relative difference in the optimal-
ity of the samples within a population at each intermediate
sampling step. This means that although the averaging of
the LWA model results in a certain bias in the total cost
estimates, the optimization process is not expected to be
significantly affected as long as the relative differences in
optimality between the samples can be correctly identified.
Moreover, as the LWA estimate is refined throughout the
optimization process, this bias is expected to decrease at
later sampling steps.

The accuracy of the LWA approximation of the failure
probability estimate at a design state can be controlled by
the sample size at the considered design state and the num-
ber of design states in its neighborhood. To simplify the
implementation of the CE-LSmethod in this study, the accu-
racy of the approximation is here controlled only by the
number of design states. The sample size per design state
in (9) is fixed to a single line search along the important
direction, as defined in the LS method.

Consider that a single line search is evaluated for each
of the design states in (9) for the kth reliability problem, as
presented in Fig. 3:

βk(tj ) = βkj ; j = 1, ..., NS, k = 1, ..., nr (10)

Line searches are conducted along the important direc-
tions, αk; k = 1, ..., nr , for each of the design states. In
general αk is dependent on the design parameters, but often
a single αk provides a reasonable approximation of the
important direction across the design space.

Based on the set of line searches in (10), the estimator in
(4) is transformed into an LWA estimator as follows:

P̂Fk(tj ) =
NS∑

s=1

wks� (−βk(ts)) (11)
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Fig. 3 Illustration of the CE-LS method. A single line search along
the important direction is evaluated for each of the design states

where wks; s = 1, ..., NS is a set of weights:

wks = KH (tj − ts)
NS∑
l=1

KH (tj − tl)

(12)

with kernel function KH (v):

KH (v) = 1

|H |1/2K(H−1/2v) (13)

where K(v) is a function defined to provide higher weights
to the design states closer to v = 0, while H is a n × n non-
singular positive definite bandwidth matrix. In this study,
K(v) is the Gaussian kernel, while H is selected to be
a diagonal matrix with entries proportional to the vari-
ances of the normal random search distributions, H = h ·
diag(σ 2

1 , ..., σ 2
n ), where h is a bandwidth parameter. Proper

selection of h is important as it affects the variance and the
bias of the estimate. Larger values of h reduce the variance
of the estimate as more values have a significant effect on
the estimate. However, as h increases the estimator is aver-
aged across a broader range of design states, which can lead
to a larger bias. The value of h is determined to balance
the effects of variance and bias of the estimators by mini-
mizing the leave-one-out cross validation score, following
Appendix A (42).

An estimate of the variance of the weighted estimator in
(11) is calculated as (Wasserman 2006):

V̂ar
[
P̂Fk(tj )

]
= σ̂ 2

k (tj )
NS∑

s=1

w2
ks (14)

where σ̂ 2
k (tj ) is the estimate of the residual variance

for the kth reliability problem, calculated as discussed in
Appendix A.

An LWA approximation of the total cost is constructed at
the design states in (9) as follows:

Ĉ(tj ) = CD(tj ) +
nr∑

k=1

CFkP̂Fk(tj ) (15)

The total cost estimate is a biased estimator due to the bias
in the estimates of the failure probabilities. The variance of
the total cost is estimated as:

V̂ar
[
Ĉ(tj )

]
=

nr∑

k=1

C2
FkV̂ar

[
P̂Fk(tj )

]
(16)

An estimate of the coefficient of variation for the local
average estimate of the total cost is calculated as:

ˆCoV
[
Ĉ(tj )

]
=

√
V̂ar

[
Ĉ(tj )

]
/Ĉ(tj ) (17)

The estimates of the total cost in (15) and the reliability
problem in (11) are used to evaluate the constraints and
update the parameters of the random search distributions, as
defined in Algorithm 1. The constraints can be included by
the acceptance-rejection or the penalty method, as discussed
in Section 3.

The parameters of the random search distributions are
updated based on the set of Ne samples with the lowest
estimated total cost according to Algorithm 1. With the
parameters of the random search distribution updated, the
procedure in (9) to (17) is reiterated to provide another
set of design states and reliability estimates in the region
of the design space previously identified to minimize the
total cost. Since the CE-LS algorithm requires information
on the regions of the design space minimizing the total
cost, and not necessarily highly accurate estimates of the
total cost, it is expected that the bias in the total cost esti-
mates will not significantly affect the performance of the
algorithm. It is important to note that the design states
generated in the previous iterations of the algorithm are
not discarded, but are used to construct the LWA approx-
imation in the current iteration. As the CE-LS method
localizes the region of the design space with near-optimal
solutions, the LWA approximation of the failure proba-
bility is adaptively refined with additional design states,
thus improving the accuracy of the approximation. Conse-
quently, due to a decreased extent of averaging, the bias
in the LWA approximation of the probability of failure
is reduced.

4.3 Convergence criteria

The CE-LS algorithm proceeds iteratively until certain con-
vergence criteria are satisfied with respect to the random
search in the design space and the convergence of the total
cost estimate. The convergence of the random search is
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monitored with respect to the maximum value of the stan-
dard deviation scaled by the interval between the upper and
lower bound of the corresponding design parameter in the
ith iteration of the algorithm:

ε = max
r

σir/(t
u
r − t lr ) ≤ εlim (18)

where tur and t lr are, respectively, finite upper and lower
bounds for the rth design parameter, while εlim is a tolerance
limit.

Convergence of the total cost estimate can be monitored
by the value of the coefficient of variation in (17). The aver-
age value of the coefficient of variation of the total cost
estimate, among the design states in an iteration step, is
utilized as a convergence criterion:

1

NS

NS∑

j=1

ˆCoV
[
Ĉ(tj )

]
≤ CoVlim (19)

where CoVlim is the limiting value.
Once convergence is achieved, it is common to select the

mean value of the random search distributions as the mini-
mizer (e.g., Botev et al. 2013). Alternatively, the solution to
the RO problem can be further refined by conducting a local
search based on the parameters of the random search dis-
tribution obtained in the last iteration step of the algorithm.
A local search can be conducted with the corresponding
double-loop or any alternative optimization algorithm in the
region of the design space localized in the last iteration of
the CE-LS algorithm.

4.4 Implementation

The implementation of the CE-LS method for an uncon-
strained RO problem is summarized in Algorithm 2. The
total cost is specified with CD(t) and CF , while the bounds
of the feasible design space are specified with tl and tu. The
CE-LS algorithm requires the specification of the maximum
number of iteration steps, NO , the number of design states
per iteration, NS , the number of elite samples, Ne, the ini-
tial parameters of the random search distributions, μ0 and
σ 0, and the convergence limits, εlim and CoVlim. Although
the selection of the parameters of the CE-LS algorithm is
problem dependent, efficient performance of the CE algo-
rithm is achieved in Kroese et al. (2006) with Ne = 10
for n < 50 and Ne = 20 for 50 ≤ n ≤ 100. Provided
that common values of ρ are between 0.01 and 0.1, the
values of 100 < NS < 1000 for n < 50 and 1000 <

NS < 2000 for 50 < n < 100 can serve as an initial
guidance.
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The initial parameters of the random search distribution,
μ0 and σ 0, should be selected such that a set of random
states covers the design space relatively uniformly between
tl and tu. The selection of NO , εlim, and CoVlim primarily
depends on the available computational resources. In gen-
eral, larger values of NO allow for lower values of εlim
and CoVlim to be achieved. Low values of εlim will lead to
finer estimates of the region of the design space with near-
optimal solutions, while low values of CoVlim lead to higher
accuracy in the total cost estimates.

4.5 Constraints

The implementation of the CE-LS method to an uncon-
strained RO problem in Algorithm 2 can be extended to
optimization problems with deterministic and probabilis-
tic constraints by implementing the acceptance-rejection
and/or the penalty method. As discussed in Section 3, the
acceptance-rejection is commonly applied in RO problems
with computationally inexpensive constraints and relatively
large acceptance rates. These criteria are commonly satis-
fied by deterministic constraints, specified by closed form
expressions. Reliability constraints are commonly compu-
tationally expensive to evaluate in structural ROs due to
the application of computationally demanding reliability
methods and/or complex structural models (e.g., finite ele-
ment model). To avoid potentially low acceptance rates and
the corresponding computational costs, the reliability con-
straints are modeled by the penalty method. The penalty
method modifies the objective function to penalize the reli-
ability constraint violations. The following formulation of
the penalty function is adopted in this study:

C̃(t) = C(t) + CP · max

[
0,max

k

(
P̂Fk(t) − P lim

Fk

)]
(20)

where CP > 0 measures the importance of constraint vio-
lation, while P lim

Fk is the kth constraint limitation. The value
of CP should be selected large enough to prevent the sam-
ples violating the constraints from updating the parameters
of the random search distributions in the following iteration
of the CE-LS algorithm.

5 Numerical examples

5.1 Risk optimization problem

The CE-LS method is applied to an RO problem taken
from Gomes and Beck (2016) to investigate the effects of
noise in the objective function on the optimization process.
The RO problem is specified with an n-dimensional vec-
tor of design parameters t = [t1, ..., tn]T , and a vector of

three independent normally distributed random variables,
X = [X1, X2, X3]T , where X1, X2, X2 ∼ N(1, 0.2). The
RO problem is defined as follows:

minimize C(t) = exp

(
n∑

i=1

t4i

)
− 1 + CF PF (21a)

where

PF = P [g(x) ≤ 0] (21b)

g(X) = X1X2 + 2.5

(
n∏

i=1

ti + 1

4

)2

+ 1

n

n∑

i=1

ti − X3 (21c)

0 ≤ ti ≤ 1; i = 1, ..., n (21d)

and CF = 20.
As observed from (21a), the objective function incorpo-

rates a risk term to account for the expected failure cost,
defined as a product of the failure cost and the corre-
sponding failure probability. The application of sampling
reliability methods for the estimation of the failure proba-
bility produces estimates that are subject to a certain degree
of numerical noise. Consequently, the noise is transferred to
the values of the objective function, as illustrated in Fig. 4.
Figure 4 presents a realization of the objective function
where the failure probability estimates were calculated with
the LS method and CoV(P̂F ) ≤ 0.01. From Fig. 4 it can be
observed that the presence of noise in the failure probabil-
ity estimates leads to a noisy objective function. The CE-LS
method is developed to address this type of problems as is
relies on the CE global optimization algorithm.

The CE-LS algorithm is applied to the RO problem in
(21a–21d) with the following parameters; NO = 20, NS =
102, ρ = 0.1, εlim = 0.01. The important directions are
selected to point in the direction of the design point. The
design points are located numerically for each design state.
The results are presented in Table 1 for a range of dimen-
sions of the optimization problem, n = {2, 10, 20}, in terms

Fig. 4 A realization of the cost function in (21a). The grayscale plot
shows the logC(t) values
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Table 1 Results for the RO
problem in (21a–21d) n CE-LS Double-loop DSRF (Gomes and Beck 2016) GA-MC

2 ˆ̄tmin 0.443 0.447 – 0.451

CoV (%) 2.400 0.690 – 1.867

P̂F 1.48 · 10−3 1.26 · 10−3 – 3.37 · 10−3

CoV (%) 17.029 14.071 – 5.236

Ĉmin 0.110 0.109 – 0.110

CoV (%) 2.705 2.427 – 0.821

No 500 450 – 750

CoV (%) 21.082 11.712 – 0

Ng 1.27 · 104 1.63 · 105 8.62 · 106 6.03 · 109
CoV (%) 20.593 11.577 – 4.491

10 ˆ̄tmin 0.426 0.436 – 0.440

CoV (%) 8.472 6.569 – 2.000

P̂F 3.84 · 10−2 3.41 · 10−2 – 5.70 · 10−2

CoV (%) 8.234 11.856 – 0.535

Ĉmin 1.178 1.134 – 1.179

CoV (%) 3.648 3.553 – 0.330

No 1120 970 – 750

CoV (%) 38.300 16.870 – 0

Ng 2.35 · 104 8.58 · 104 1.57 · 107 6.20 · 109
CoV (%) 37.597 17.305 – 3.049

20 ˆ̄tmin 0.374 0.371 – 0.387

CoV (%) 12.049 9.295 – 2.197

P̂F 5.20 · 10−2 5.27 · 10−2 – 7.96 · 10−2

CoV (%) 10.298 8.696 – 0.287

Ĉmin 1.574 1.548 – 1.614

CoV (%) 7.320 5.946 – 0.340

No 1330 1210 – 750

CoV (%) 53.054 32.467 – 0

Ng 2.92 · 104 9.60 · 104 1.83 · 107 5.05 · 109
CoV (%) 52.892 34.909 – 7.767

of the estimate of the average value of the design compo-
nents at the minimizer, ˆ̄tmin = 1/n

∑n
r=1 t̂min,r , estimate

of the minimum, Ĉmin, estimate of PF at the minimizer,
P̂F (t̂min), the total number of objective function calls, No,
and the total number of performance function calls, Ng . The
results in Table 1 correspond to the average values among
ten runs of the algorithm. The results are presented with
the corresponding coefficients of variation, CoV, to exam-
ine the variability in the estimates among the ten runs of the
algorithm. The CoV values are calculated empirically as a
ratio of the standard deviation of an estimate over its average
value.

The performance of the CE-LS method is compared to
the corresponding double-loop algorithm, obtained by cou-
pling the CE optimization and the LS reliability methods.
The double-loop algorithm is implemented with the same
convergence criteria as the CE-LS algorithm. The reliabil-
ity estimates are calculated with a convergence criterion

of CoVlim = 0.05. The double-loop results in Table 1
correspond to the average values among ten runs of the
algorithm.

Additionally, the numerical performance of the CE-LS
approach is compared to the DSRF method in Gomes and
Beck (2016). The DSRF method evaluates the failure prob-
abilities over the design space by calculating the roots of
the limit state function. The RO problem in (21a–21d)
was examined with the DSRF method in Gomes and Beck
(2016) with the primary goal of examining the numerical
efficiency of the approach. Although the estimates of the
minimizer, minimum, and failure probability are illustrated
for some numerical examples in Gomes and Beck (2016),
they are not explicitly presented. For that reason, Table 1
presents only the computational performance of the DSRF
approach in terms of the number of performance function
evaluations, Ng , as these results were explicitly provided in
Gomes and Beck (2016).



1600 I. Depina et al.

A reference estimate of the minimizer for the RO prob-
lem in (21a–21d) is obtained by coupling the Genetic Algo-
rithm global optimization algorithm with the Monte Carlo
method (GA-MC). The Genetic Algorithm is implemented
with 15 generations, a population size of 50 per genera-
tion, and 5 % elite population. The Monte Carlo estimates
of the failure probability are calculated with the conver-
gence criteria defined by the coefficient of variation of the
total cost of CoV(Ĉ) ≤ 0.001 or the maximum number
of samples of 107. Given that the cost function is symmet-
ric with respect to the diagonal between tl = [0, ..., 0]T

and tl = [1, ..., 1]T and that the minimum is found at the
diagonal, as shown in Fig. 4, the application of the GA-MC
algorithm is simplified by considering a one-dimensional
optimization problem along the diagonal. Due to the simpli-
fication of the optimization problem, the GA-MC results in
Table 1 are not directly comparable with the results of the
CE-LS and the double-loop algorithms in terms of accuracy
and computational efficiency. The main purpose of the GA-
MC estimates is to provide reference results to the CE-LS
and the double-loop algorithms.

The comparison of the results in Table 1 reveals that
the CE-LS method located the minimizer and the minu-
mum in the region of near-optimal solutions, comparable
to the results from the double-loop and the GA-MC algo-
rithms. The variabilities in the estimates between the CE-LS
and the double-loop algorithms are comparable and increase
from ≈ 2 % for n = 2 to ≈ 10 % for n = 20. The
results demonstrate that the CE-LS method can be effi-
ciently applied to RO problems characterized by noise in
the objective function introduced by sampling-based failure
probability estimates. The comparison between the number
of objective and performance function evaluations reveals
that the majority of computational expenses are associated
with the performance function evaluations. The number of
objective function evaluations increases with n, with no sig-
nificant difference between the CE-LS and the double-loop
algorithm. The differences in the number of performance
function evaluations reveal that the CE-LS algorithm can
provide significant reductions in computational expenses
when compared to the double-loop and the DSRF algo-
rithms.

5.2 Nonlinear RBDO problem

The CE-LS method is applied to an RBDO problem studied
in Chen et al. (2014), which features a deterministic objec-
tive function with deterministic and reliability constraints.
The problem is selected to investigate the performance of
the CE-LS algorithm on a classic RBDO problem and the
implementation of deterministic and reliability constraints.
The RBDO problem is specified with two design param-
eters t = [t1, t2]T , two independent normally distributed

random variables, X = [X1, X2]T , and three probabilis-
tic constraints, defined by respective performance functions
g1(X), g2(X), and g3(X). The RBDO problem is defined as
follows:

minimize C(t) = t1 + t2 (22a)

subject to

PFj = P
[
gj (x) ≤ 0

] ≤ �(−βj ); j = 1, 2, 3 (22b)

gj (t) > 0; j = 1, 2, 3 (22c)

0 ≤ ti ≤ 10; i = 1, 2 (22d)

where

g1(X) = X2
1X2

20
− 1 (22e)

g2(X) = (X1 + X2 − 5)2

30
+ (X1 − X2 − 12)2

120
− 1 (22f)

g3(X) = 80

X2
1 + 8X2 + 5

− 1 (22g)

Xi ∼ N(ti, 0.3); i = 1, 2 (22h)

β1 = β2 = β3 = 2 (22i)

The RBDO problem in (22a–22i) can be examined graph-
ically in Fig. 5. The reliability constraints in Fig. 5 are
constructed based on Monte Carlo estimates of probabilities
in (22b) with 107 samples of the random parameters X. The
graphical solution (GS) to the RBDO problem is found at
t = [3.312, 2.886]T with the corresponding objective func-
tion value C(t) = 6.198. The values of the performance
functions and the reliability constraints corresponding to the
GS minimum estimate are presented in Table 2.

Fig. 5 Graphical solution to the RBDO problem in (22a–22i). The
grayscale plot shows the objective function. The region of feasible
designs is obtained by bounding the design space, withing the limits in
(22d), with positive values of the deterministic constraints (22c), and
reliability constraints (22b)
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Table 2 Results for the RBDO
problem in (22a–22i) CE-LS Double-loop GS RIA PMAa SORAa SAPa

t̂1 3.308 3.311 3.312 3.295 – – –

CoV(%) 0.579 0.566 – – – – –

t̂2 2.937 2.931 2.886 2.897 – – –

CoV(%) 1.184 1.269 – – – – –

P̂F1 0.0201 0.0192 0.0228c 0.0227b (0.0247c)

CoV(%) 7.807 7.535 – – – – –

P̂F2 0.0137 0.0174 0.0228c 0.0227b (0.0197c)

CoV(%) 32.880 30.324 – – – – –

P̂F3 1.371 · 10−19 3.944 · 10−23 – ≈ 0b – – –

CoV(%) 2.984 · 102 31.166 – – – – –

Ĉmin 6.245 6.242 6.198 6.192 6.192 6.192 6.193

CoV(%) 0.294 0.342 – – – – –

No 820 – – 18 – – –

CoV(%) 12.595 – – – – – –

Ng 7.119 · 104 6.702 · 105 – 2183 540 255 180

CoV(%) 11.693 13.905 – - – – –

aResults from Aoues and Chateauneuf (2010),
bFORM estimate,
cMonte Carlo estimate

In addition to the GS, Table 2 contains the estimates
obtained with the CE-LS algorithm, the corresponding
double-loop algorithm, and a series of RBDO algorithms
that apply approximate reliability methods, which include
RIA, PMA, SORA and SAP. The results corresponding
to the PMA, SORA and SAP methods are obtained from
benchmark tests in Aoues and Chateauneuf (2010).

The CE-LS algorithm is applied to search for the min-
imum value of the objective function with the following
parameters; NO = 10, NS = 102, ρ = 0.1, εlim =
0.05. In order to accelerate the convergence of the CE-LS
algorithm to the minimizer at the intersection of two relia-
bility constraints, the injection technique (Botev and Kroese
2004) was applied to Algorithm 2. After initially satisfy-
ing the convergence criterion defined by εlim, the injection
technique increases the variance of the random search dis-
tributions to prevent the search process from converging to
a sub-optimal solution. In this example, the injection tech-
nique is applied once within a search to set the variance of
the random search distributions equal to the variance in the
second iteration of the CE-LS algorithm.

Since the optimal solution is found on the boundary of
reliability constraints corresponding to PF1 and PF2, the
CE-LS estimate of the minimizer is calculated by conduct-
ing a local search based on the near-optimal design states
in the last step of the CE-LS algorithm. To ensure that the
CE-LS estimate of the minimizer satisfies the reliability
constraints, relatively accurate estimates of the failure prob-
abilities in (22b) are calculated with the LS method for the

design states in the last step of the CE-LS algorithm. The
estimates of the failure probabilities are calculated with a
target CoVlim = 0.1.

The important directions are selected to point in the
direction of the design point. The design points are located
numerically for each design state. The reliability constraints
in (22b) are enforced in the CE-LS algorithm with the
penalty method. The objective function is reformulated as:

C̃(t) = C(t) + Cp · max

[
0,max

j

(
PFj − �(−βj )

)]
(23)

where Cp > 0 is the penalty cost. The value of Cp is
iteratively increased from 102 in the first iteration step up
to 105 at NO = 10 to prevent severe violations of the
reliability constraint as the CE-LS algorithm proceeds to
locate the region of the design space with near-optimal
solution.

The performance and stability of the CE-LS algorithm
are examined on ten evaluations of the RBDO problem in
(22a–22i). The CE-LS results in Table 2 correspond to the
average values among the ten runs of the algorithm. The
results are presented with the corresponding coefficients of
variation, CoV, to examine the variability in the estimates
among the ten runs of the algorithm. The CoV values are
calculated empirically as a ratio of the standard deviation of
an estimate over its average value.

The double-loop algorithm is performed with the same
convergence criteria as the CE-LS algorithm. The reliability
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estimates are calculated with a target CoVlim = 0.05 for
all the reliability problems. The reliability constraints are
enforced by the acceptance-rejection algorithm.

The comparison of results in Table 2 reveals that the
CE-LS method located the region of the design space
with near-optimal solutions, comparable to the results of
the alternative approaches. The comparison of the mini-
mum estimates indicates that the CE-LS and the double-
loop algorithm provide slightly higher estimates than the
GS. This is considered to be primarily a consequence
of the low efficiency of global optimization algorithms
is approaching local optima (e.g., Beck and de Santana
Gomes 2012). The minimum estimates provided by RBDO
algorithms that employ approximate reliability methods
are slightly lower than the GS solution. This is a con-
sequence of the FORM approximation that results in
under-estimates of PF1 and violations of the correspond-
ing reliability constraint. These results demonstrate that
the CE-LS algorithm is capable of incorporating both
the deterministic constraints via the acceptance-rejection
method and the reliability constraints via the penalty
method.

The comparison of computational expenses in terms of
No and Ng shows that CE-LS method can significantly
reduce the computational expenses when compared to the
corresponding double-loop algorithm. However, the com-
putational expenses of RBDO algorithms with approximate
reliability methods are lower as compared to ones of the CE-
LS method. These results indicate that the CE-LS method
is not expected to perform more efficiently than the exist-
ing RBDO algorithms on problems with convex objective
functions and where FORM approximations of the relia-
bility estimates do not lead to constraint violations. The
CE-LS method is expected to perform efficiently on prob-
lems with noisy objective functions and nonlinear reliability
problems.

5.3 High-dimensional RO problems

In the following section, a parametric study is conducted
on an RO problem to evaluate the effect of the number of
design parameters and the number of random variables on
the performance of the CE-LS algorithm. The effect of non-
linearity of a reliability problem on the CE-LS algorithm
is examined by comparing a linear with a parabolic failure
limit. Given that a reliability problem with a linear perfor-
mance function requires a single line search along a known
important direction to be evaluated, the application of the
CE-LS algorithm to the RO problem with a linear reliabil-
ity problem is intended primarily to investigate the effect
of the number of design parameters on the performance of
the algorithm. The implementation of the reliability prob-
lem with a parabolic failure limit serves to investigate the

combined effects of the number of design parameters and
the number of random variables on the performance of the
CE-LS algorithm.

5.3.1 Linear failure limit

The RO problem is defined as follows:

minimize C(t) =
n∑

i=1

Cit
2
i + CF PF (t) (24a)

subject to

PF (t) ≤ P lim
F (24b)

−5 ≤ ti ≤ 25; i = 1, ..., n (24c)

where

g(u, t) =
n∑

i=1

ti −
m∑

j=1

uj (24d)

while C(t) is the total cost as a function of a set of design
parameters t = [t1, ..., tn]T , U = [U1, ..., Um]T is a vector
of independent standard, normally distributed random vari-
ables with zero-mean and unit standard deviation, Ci, i =
1, ..., n are the design cost parameters, CF is the cost of fail-
ure, P lim

F = 10−4 is the failure probability limit. Due to a
relatively simple formulation of the RO problem in (24a–
24d), the minimizer can be found analytically as shown in
Appendix B.

The RO problem in (24a–24d) is studied for a range of
n (number of design parameters) and m (number of random
variables). The location of the minimizer in (47) is defined
by m and the desired reliability index of βmin = 4 at the
minimum. The design cost parameter Ci is defined accord-
ing to (49) in Appendix B by specifying CF = 1010.
The CE-LS method is implemented with the following
parameter values; NO = 100, NS = 103, ρ = 0.1,
CoVlim = 0.1, and εlim = 0.001 for n = 2, while εlim =
0.01 for n = 10 and n = 100. Higher values of εlim for
n = 10 and n = 100 are selected due to higher computa-
tional costs of the CE-LS algorithm in these cases. In the
initial step of the CE-LS algorithm, the design states are
generated uniformly within the bounds of the design space.
Given the linear performance function, the important direc-
tion of the LS method can be determined analytically to be
α = 1/

√
m · [1, ..., 1]T . The reliability constraint in (24b)

is implemented with the penalty method by modifying the
objective function:

C̃(t) = C(t) + Cp · max
[
0, PF (t) − P lim

F

]
(25)
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where Cp is the penalty cost. The value of Cp is iteratively
increased from zero at the first iteration of the algorithm to
1010 at NO = 100.

The performance of the CE-LS algorithm is examined
based on ten evaluations of the RO problem in (24a–24d).
The CE-LS results in Table 3 correspond to the average
values among the ten runs of the algorithm. The variabil-
ity in the estimates among the ten runs of the algorithm is
examined with the corresponding coefficients of variation,
CoV.

The CE-LS estimates are compared to the correspond-
ing analytical solutions for a range of dimensions of the
optimization and the reliability problem. The mean value
of the normal random search distribution is selected as
the estimate of the minimizer. Since the analytical solu-
tion specifies that all the design components have the same
value at the minimum in (46), the results are compared with
respect to the average value of the design components at
the minimizer t̄min = 1/n

∑n
r=1 tmin,r . ˆ̄tmin denotes the CE-

LS estimate of the minimizer, and t̄min denotes that of the
analytical solution. The CE-LS estimates and the analytical
solution agree well. The examination of CoV values reveals
relatively low variation in the estimates of the minimizer,
usually below 10 %. The convergence of the minimizer is
examined by plotting the mean values of the random search
distribution, μir ; r = 1, ..., n, for different iterations steps,
i, in Fig. 6 (n = 10 and m = 2). Figure 6 shows that the
mean values converge relatively uniformly to the value of
ˆ̄tmin = 0.562.

From the results in Table 3, a good agreement is observed
between the CE-LS estimates of the total cost, Ĉmin, and
the analytical values of the minimum total cost, Cmin. The
variation in Ĉmin is relatively low with CoV’s lower than
5 %. The estimates of the total cost are associated with
very low coefficients of variation, ˆCoV

[
Ĉmin

]
, due to accu-

rate estimates of the probability of failure at the minimizer.
Additionally, the estimated value of PF at t̂min, P̂F (t̂min),
is compared to the analytical solution, PF (tmin), to inves-
tigate the accuracy of the local average approximation of
the probability of failure. The comparison between the CE-
LS estimates and the analytical values of PF in Table 3
reveals good agreement. A slightly higher variation in the
P̂F values is expected to be a consequence of the varia-
tion in the minimizer values. The computational demands
of the CE-LS algorithm can be examined with the number
of objective function evaluations, No, and the number of
performance function evaluations, Ng . The value of Ng cor-
responds to three performance evaluations per design state
for the evaluation of the line search along α. An increase in
the computational costs is observed with an increase in the
number of design parameters in Table 3 with a variation up

to 21 %. Since the values of ˆCoV
[
Ĉmin

]
are relatively low,

Table 3 Results for the RO problem in (24a–24d) with the linear
failure limit

m

2 10 100

n = 2

CE-LS ˆ̄tmin 2.818 6.305 19.933

CoV(%) 0.262 0.113 0.0965

Ĉmin 2.994 · 106 2.994 · 106 2.994 · 106
CoV(%) 0.014 0.006 0.005

ˆCoV
[
Ĉmin

]
7.491 · 10−6 4.121 · 10−6 2.205 · 10−6

P̂F (t̂min) 3.375 · 10−5 3.338 · 10−5 3.350 · 10−5

CoV(%) 1.481 1.065 0.760

No 8.9 · 103 1.8 · 104 2.23 · 104
CoV(%) 17.923 21.276 18.191

Ng 2.67 · 104 5.4 · 104 6.69 · 104
CoV(%) 17.923 21.276 18.191

Analytical t̄min 2.828 6.325 20.0

Cmin 2.993 · 106 2.993 · 106 2.993 · 106
PF (tmin) 3.167 · 10−5 3.167 · 10−5 3.167 · 10−5

n = 10

CE-LS ˆ̄tmin 0.562 1.254 3.972

CoV(%) 0.437 0.399 0.212

Ĉmin 3.033 · 106 3.004 · 106 2.997 · 106
CoV(%) 0.937 0.390 0.051

ˆCoV
[
Ĉmin

]
1.30 · 10−3 4.798 · 10−4 1.096 · 10−4

P̂F (t̂min) 3.883 · 10−5 3.729 · 10−5 3.574 · 10−5

CoV(%) 6.686 3.582 1.238

No 1.07 · 104 1.1 · 104 1.39 · 104
CoV(%) 4.514 0.0 5.308

Ng 3.21 · 104 3.3 · 104 4.17 · 104
CoV(%) 4.514 0.0 5.308

Analytical t̄min 0.566 1.265 4.0

Cmin 2.993 · 106 2.993 · 106 2.993 · 106
PF (tmin) 3.167 · 10−5 3.167 · 10−5 3.167 · 10−5

n = 100

CE-LS ˆ̄tmin 0.057 0.127 0.40

CoV(%) 1.071 10.392 3.088

Ĉmin 3.034 · 106 3.002 · 106 2.994 · 106
CoV(%) 0.286 4.497 1.347

ˆCoV
[
Ĉmin

]
3.565 · 10−19 6.222 · 10−19 6.488 · 10−19

P̂F (t̂min) 3.173 · 10−5 3.147 · 10−5 3.121 · 10−5

CoV(%) 14.497 31.248 11.047

No 4.83 · 104 2.95 · 104 3.0 · 104
CoV(%) 1.397 2.397 0.0

Ng 4.83 · 104 8.85 · 104 9.0 · 104
CoV(%) 1.397 2.397 0.0

Analytical t̄min 0.057 0.127 0.40

Cmin 2.993 · 106 2.993 · 106 2.993 · 106
PF (tmin) 3.167 · 10−5 3.167 · 10−5 3.167 · 10−5



1604 I. Depina et al.

the convergence of the CE-LS algorithm is governed by the
value of ε.

5.3.2 Parabolic failure limit

The effects of n and m on the efficiency of the CE-LS
algorithm are evaluated by a performance function with a
parabolic failure limit for the RO problem in (24a–24d):

g(u, t) = a

m∑

j=2

u2j − u1 +
n∑

i=1

ti (26)

where a is a constant.
The performance of the CE-LS algorithm is evaluated

for a range of n and m as presented in Tables 4, 5 and 6.
The parameters of the random variables and the design
cost, Ci and CF , are specified in Section 5.3.1, while
−5 ≤ ti ≤ 5; i = 1, ..., n. The penalty method is
implemented to enforce the reliability constraint with the
parameters specified in Section 5.3.1. To adapt to the per-
formance function in (26), the important direction of the LS
method is selected to point in the direction of the design
point, along the axis of the standard normal space corre-
sponding to u1. The constant of the performance function
is selected to be a = 1 for m = 2 and m = 10, and
a = 0.1 for m = 100 in order to obtain the failure
probability at the optimum in the range between 10−5 and
10−12.

The results of the CE-LS algorithm are validated numer-
ically with a double-loop algorithm, where the optimization
problem is solved with the CE method, while the reliability
problem is solved with the LS method. The CE algorithm is
applied with the convergence limit εlim = 0.01. The conver-
gence limit for the LS estimate of the failure probability is

specified by CoV
[
P̂F

]
≤ 0.1.

Additionally, the performance of the CE-LS method is
compared to the RO algorithms that implement approx-
imate reliability methods with the implementation of
the RIA algorithm. The RIA algorithm is implemented

2 4 6 8 10 12 14 16
0.5

1

1.5

2

Fig. 6 Mean values of the random search distribution of the CE-LS
algorithm for the RO problem in (24a–24d) with n = 10 and m = 2

with the MATLABTM implementation of the Sequential
Quadratic Programming (SQP) optimization algorithm for
the minimization of the cost function and the determi-
nation of the design point for FORM-based reliability
estimates.

The performance and numerical stability of the CE-LS
algorithm are examined by evaluating the RO problem ten
times. The CE-LS results in Tables 4, 5 and 6 correspond
to the average values among the runs of the algorithm. The
variability in the estimates is examined with the correspond-
ing CoV values. The CoV values are calculated empirically
as a ratio of the standard deviation of an estimate over its
average value. The average value among the components
of the CE-LS estimate of the minimizer is denoted by ˆ̄tmin.
The comparison of the results in Tables 4, 5 and 6 reveals
a good agreement between the estimates of the minimizer
with the CE-LS and the double-loop algorithms. A large
relative variation (often relatively low in absolute terms) in
certain CE-LS estimates of the minimizer can be attributed
to the highly nonlinear optimization problem and averages
that approach near-zero values. The comparison between the
CE-LS and RIA estimates shows a significant disagreement.
This is considered to be an outcome of the inadequacy of
the FORM approximation of the reliability problem defined
by the parabolic performance function in (26). The ade-
quacy of the FORM reliability estimates is examined by
comparing them with the corresponding LS reliability esti-
mates in Tables 4, 5 and 6. The comparison of reliability
estimates often reveals a difference of several orders of
magnitude, which can significantly affect the ability of an
RO algorithm implementing approximate reliability esti-
mates in locating the minimizer and satisfying the reliability
constraints.

Figure 7 presents the mean values of the random search
distribution, μir ; r = 1, ..., n (n = 10 and m = 2) with
the iterations of the CE-LS algorithm, i, to illustrate the
convergence of the minimizer. It can be observed that the
CE-LS algorithm locates the area in the proximity of the
minimizer within eleven iteration steps, but continues to
iterate until satisfying the convergence criteria. Figure 8 dis-
plays the convergence of the mean values of the random
search distribution with the iterations of the the double-
loop algorithm (n = 10 and m = 2). The convergence
criteria in (18) is satisfied after ten iterations of the algo-
rithm. The comparison between the results of the CE-LS
and the double-loop algorithm for n = 10 and m = 2 in
Table 5 and in Figs. 7 and 8 reveals that both algorithms
estimate the minimizer in a similar region of the design
space.

The comparison of the CE-LS and the double-loop esti-
mates of the minimal total cost, Ĉmin, in Tables 4, 5 and 6
shows a good agreement. The divergence between the RIA
and the CE-LS estimates of Cmin is caused by the inade-
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Table 4 Results for the RO
problem in (24a–24d) with the
parabolic failure limit and
n = 2

m

2 10 100

CE-LS ˆ̄tmin 1.891 1.381 1.402 · 10−4

CoV(%) 1.50 12.445 64.882

Ĉmin 1.437 · 106 1.693 · 105 7.45 · 10−2

CoV(%) 0.838 51.306 153.75
ˆCoV

[
Ĉmin

]
3.909 · 10−3 5.024 · 10−3 2.214 · 10−2

P̂F (t̂min) 2.393 · 10−5 1.887 · 10−6 6.759 · 10−12

CoV(%) 14.865 170.28 164.35

No 1.2 · 104 1.6 · 104 1.96 · 104
CoV(%) 17.123 19.764 7.295

Ng 3.6 · 104 4.8 · 104 5.88 · 104
CoV(%) 17.123 19.764 7.295

Double-loop ˆ̄tmin 1.956 1.002 5.310 · 10−5

Ĉmin 1.420 · 106 9.563 · 104 8.610 · 10−2

P̂F (t̂min) 1.368 · 10−5 3.206 · 10−6 7.082 · 10−12

No 4.0 · 103 4.0 · 103 3.0 · 103
Ng ≈ 1.2 · 107 ≈ 2.1 · 108 ≈ 3.3 · 108

RIA ˆ̄tmin 2.080 2.256 2.489

Ĉmin 1.607 · 106 3.727 · 105 4.467 · 104
P̂F (t̂min)

a1.590 · 10−5 a3.201 · 10−6 a3.224 · 10−7

b4.992 · 10−6 b6.055 · 10−11 b2.772 · 10−27

No 65 65 68

Ng 1.179 · 103 4.323 · 103 4.121 · 104

aFORM estimate,
bLS estimate

quacy of the FORM approximation of the reliability prob-
lem defined by the performance function in (26). Similar
to the estimates of the minimizer, a relatively large rela-
tive variation of Ĉmin in certain conditions can be partially
attributed to the highly nonlinear optimization problem and
averages that approach near-zero values. The values of the
coefficient of variation for the CE-LS total cost estimates,
CoV

[
Ĉmin

]
, in Tables 4, 5 and 6 indicate a relatively accu-

rate approximation of the total cost based on the LWAmodel
of the reliability problem. The accuracy of the LWA model
can be also examined by comparing the CE-LS and the cor-
responding double-loop estimate of PF at the minimizer,
P̂F (t̂min), in Tables 4, 5 and 6. The variation in the values of
P̂F (t̂min) increases as the effect of the risk term on the total
cost reduces.

The computational costs of different approaches are
examined in terms of the total number of objective function
evaluations, No, and the total number of performance func-
tion evaluations, Ng . The CE-LS algorithm was executed
with a single line search per design state, which required
three performance function evaluations. The double-loop

algorithm required significantly larger number of line
searches per design state to satisfy the target CoVlim = 0.1,
ranging approximately from 3 · 103 for m = 2 to 1.1 · 105
for m = 10. The computational expenses of the RIA algo-
rithm increase with the dimensionality of the optimization
problem in terms of both No and Ng . As the dimensional-
ity of the optimization problem increases, the computational
expenses of the RIA algorithm become comparable or sur-
pass the expenses of the CE-LS algorithm.

5.4 RO of a monopile foundation

An RO of a monopile foundation for offshore wind turbines
is conducted to examine the performance of the CE-LS algo-
rithm on a design of an engineering structure. The goal of
the RO is to guide the selection of the monopile design
parameters such that the total cost is minimized, while satis-
fying safety criteria specified by a reliability constraint. The
response of a monopile is simulated by a finite element pile-
soil model, and it is subject to uncertainties in lateral load
and soil properties.
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Table 5 Results for the RO
problem in (24a–24d) with the
parabolic failure limit and
n = 10

m

2 10 100

CE-LS ˆ̄tmin 0.377 0.159 0.028

CoV(%) 3.369 23.714 29.687

Ĉmin 1.545 · 106 1.282 · 105 2.70 · 102
CoV(%) 1.706 24.112 70.401

ˆCoV
[
Ĉmin

]
5.124 · 10−3 1.506 · 10−2 7.623 · 10−6

P̂F (t̂min) 3.450 · 10−5 6.445 · 10−6 3.675 · 10−12

CoV(%) 8.073 39.463 128.15

No 2.19 · 104 1.51 · 104 1.29 · 104
CoV(%) 16.457 10.564 9.052

Ng 6.57 · 104 4.53 · 104 3.87 · 104
CoV(%) 16.457 10.564 9.052

Double-loop ˆ̄tmin 0.388 0.208 0.024

Ĉmin 1.436 · 106 1.004 · 105 3.592 · 102
P̂F (t̂min) 1.725 · 10−5 2.139 · 10−6 2.341 · 10−12

No 9.0 · 103 8.0 · 103 8.0 · 103
Ng ≈ 2.70 · 107 ≈ 4.57 · 108 ≈ 8.80 · 108

RIA ˆ̄tmin 0.416 0.451 0.498

Ĉmin 1.607 · 106 3.727 · 105 4.467 · 104
P̂F (t̂min)

a1.590 · 10−5 a3.201 · 10−6 a3.224 · 10−7

b4.971 · 10−6 b5.721 · 10−11 b5.360 · 10−26

No 498 549 441

Ng 8.97 · 103 3.630 · 104 2.675 · 105

aFORM estimate,
bLS estimate

5.4.1 Numerical pile-soil model

The response of a pile to lateral load is commonly simu-
lated by a finite element model, known as the p-y model
(Matlock 1970). The p-y model is based on Winkler’s beam
on elastic foundation, where the response of soil is sim-
ulated by a series of elastic springs. The p-y formulation
extends the Winkler model by incorporating nonlinearities
in the soil response. The nonlinearities are modeled by p-y
curves, where p is the soil reaction per unit length of a pile,
and y is the lateral displacement of a pile. The p-y curves
were developed by backcalculating a series of field test on
laterally loaded piles in different soil types (e.g., Matlock
1970).

The monopile, in this study, is a hollow tube specified
by length LP , diameter D, and a constant pile wall thick-
ness w. Basic elements of the monopile model are presented
in Fig. 9. The pile material is steel with Young’s modu-
lus of ES = 2.1 · 105 MPa, Poisson’s ratio of νS=0.3,
and density ρS = 7850 kg/m3. The material behavior of
the pile is assumed to be linear elastic. On the other hand,

the material behavior of soil is nonlinear, defined by the
p-y curves for medium stiff clay. The monopile is later-
ally loaded with a random load, consisting of H and M =
H · 30 m applied at the sea bed level. H is assumed to
be distributed according to the Gumbel distribution, H ∼
fH (μH , μH · CoV(H)), where μH = 2500 kN is the
mean and CoV(H) = 0.2 is the selected coefficient of
variation.
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Fig. 7 Mean values of the random search distribution of the CE-LS
algorithm for the RO problem in (24a–24d) with the parabolic failure
limit for n = 10 and m = 2
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Table 6 Results for the RO
problem in (24a–24d) with the
parabolic failure limit and
n = 100

m

2 10 100

CE-LS ˆ̄tmin 0.031 0.014 0.002

CoV(%) 61.826 139.86 245.21

Ĉmin 4.186 · 106 7.866 · 105 4.608 · 103
CoV(%) 10.125 15.289 17.089

ˆCoV
[
Ĉmin

]
2.009 · 10−3 3.170 · 10−3 8.453 · 10−11

P̂F (t̂min) 8.260 · 10−7 2.566 · 10−7 9.950 · 10−11

CoV(%) 102.54 93.150 130.93

No 2.82 · 104 2.74 · 104 2.75 · 104
CoV(%) 2.166 1.885 1.917

Ng 8.46 · 104 8.22 · 104 8.25 · 104
CoV(%) 2.166 1.885 1.917

Double-loop ˆ̄tmin 0.042 0.017 0.006

Ĉmin 4.583 · 106 8.477 · 105 1.157 · 104
P̂F (t̂min) 3.752 · 10−6 8.660 · 10−6 2.824 · 10−12

No 2.9 · 104 2.8 · 104 2.7 · 104
Ng ≈ 8.7 · 107 ≈ 1.60 · 109 ≈ 2.97 · 109

RIA ˆ̄tmin 0.042 0.045 0.050

Ĉmin 1.607 · 106 3.727 · 105 4.467 · 104
P̂F (t̂min)

a1.590 · 10−5 a3.201 · 10−6 a3.224 · 10−7

b5.003 · 10−6 b5.953 · 10−11 b3.091 · 10−27

No 1.577 · 104 1.589 · 104 1.672 · 104
Ng 2.838 · 105 1.049 · 106 1.013 · 107

aFORM estimate,
bLS estimate

5.4.2 Soil Variability

A parameter of the p-y curves for medium stiff clay, known
as the undrained shear strength, su, is considered as uncer-
tain to account for variability of soil properties. Other
parameters of the p-y curves are assumed to be determin-
istic with the following values; unit weight γ=18.0 kN/m3,
empirical model parameter J=0.25, strain corresponding to
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0.2
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0.6

0.8

1

1.2

Fig. 8 Mean values of the random search distribution of the double-
loop algorithm for the RO problem in (24a–24d) with the parabolic
failure limit for n = 10 and m = 2

one half of the maximum principal stress difference y50 =
0.005.

The variability of su is expected to significantly influ-
ence the pile-soil response due to the formulation of the p-y
curves for clay, where su is directly related to the peak value

Fig. 9 Laterally loaded monopile foundation
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of soil resistance (Matlock 1970). The variability of su is
modeled by means of a one-dimensional random field:
{
su(d); d ∈ G ⊂ R

1
}

∼ fsu(su) (27)

where G is the studied soil domain, d is soil depth or the
reference variable {d ∈ G : 0 ≤ d ≤ LP }, while fsu(su) is
the lognormal marginal pdf of su(d). The mean function of
su(d) is:

μsu(d) = αsu + βsu · d (28)

with parameters αsu = 50 kPa and βsu = 3 kPa/m. The
covariance structure of the logarithm of the random field is
determined by a given coefficient of variation CoV(su) =
0.4, and the Markov correlation function:

ρln su(d
′, d ′′) = exp

(
−2 · |d ′ − d ′′|

θd

)
(29)

where
{
(d ′, d ′′) ∈ G

}
, and θd is the correlation length of

ln su = 2 m, as in Fenton and Griffiths (2008).
Realizations of the random field in (27) are generated

with the midpoint method (e.g., Sudret and Der Kiureghian
2000) by discretizing the domain {d ∈ G : 0 ≤ d ≤ LP } in
P = 40 equal intervals, with interval length of dL = LP /P .
The derived random variables are denoted with Xsu . The
intervals are selected to correspond to the discretization of
the finite element mesh of the numerical pile-soil model.

5.4.3 Reliability analysis

The ultimate limit state is defined by the monopile steel
yield stress, σlim = 235 MPa, being exceeded. A trans-
formation of random variables X = [

Xsu , H
]T to a set

of independent standard normally distributed random vari-
ables,U, is applied to implement the LS method. For a given
realization of random parameters u and a combination of
design parameters t, which are introduced in the following
section, the performance function is defined as:

g(u, t) = σlim − σ(u, t) (30)

where σ(u, t) is the maximal stress along the monopile for
a given u and t.

5.4.4 RO problem

The RO is performed to optimize the monopile total
cost, C(t), with respect to the design parameters t =
[D, w, LP ]T ∈ �t. The total cost is composed of the
design cost, CD(t), and the failure cost, CF . The design cost
approximates the cost of production, transportation, and
installation of a monopile with an expense of Cd = 2 C/kg
of the monopile weight.The cost of failure is CF = 107 C.

The RO is employed to guide the selection of the design
parameters such that the total cost is minimized while sat-
isfying certain safety criteria, specified by a limiting failure
probability, P lim

F = 10−4. The value of P lim
F = 10−4 is

selected based on the analysis of the consequences asso-
ciated with failures of offshore wind turbines in Sørensen
and Tarp-Johansen (2005). The RO problem is defined as
follows:

minimize C(t) = CD(t) + CF PF (t) (31a)

where

CD(t) = CdLP ρSπ
[
(D/2)2 − (D/2 − w)2

]
(31b)

subject to

PF (t) ≤ P lim
F (31c)

[5, 0.05, 25]T ≤ t ≤ [10, 0.1, 40]T (31d)

The CE-LS algorithm is applied to the RO problem in
(31a–31d) with the following parameter values; NO = 20,
NS = 500, ρ = 0.1, εlim = 0.01 and CoVlim = 0.1. Due
to a dominant influence of H on the monopile response, the
important direction of the LS method is selected to point
approximately in the direction of the design point, parallel
to the axis assigned to H in the standard normal space. The
reliability constraint in (31c) is approximated by a penalty
function which modifies the total cost as follows:

C̃(t) = C(t) + CP · max
[
0, PF (t) − P lim

F

]
(32)

where CP > 0 is a term penalizing the reliability constraint
violation. The value of CP is selected to increase iteratively
from CP = 0 C at the first iteration up to CP = 1020 C at
NO = 20.

To evaluate the performance and numerical stability of
the CE-LS method, the RO problem in (31a–31d) is evalu-
ated ten times with the CE-LS algorithm. The CE-LS results
in Table 7 correspond to the average values among the
ten runs of the algorithm. The variability in the estimates
is examined with the corresponding empirical CoVs. The
results in Table 7 indicate that the region of the design space
with near-optimal total costs is found in the proximity of the
parameter values t̂min = [5.528, 0.051, 33.575]T m with a
cost of Ĉmin = 4.616 · 105 C. A relatively low variability in
the CE-LS estimates with CoV values of ≈ 1%.

The results of the CE-LS algorithm are validated with a
double-loop algorithm, where the optimization problem is
solved with the CE method, while the reliability problem
is solved with the LS method. Due to the computationally
demanding finite element pile-soil model, the CE algorithm
is implemented with NS = 100 design states per iteration
and the same convergence criteria as the optimization com-
ponent of the CE-LS algorithm. The convergence criteria
for the LS estimate of the failure probability is defined by
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Table 7 Results for the RO problem in (31a–31d)

CE-LS Double-loop

D̂ (m) 5.528 5.797

CoV(%) 0.235 –

ŵ (m) 0.051 0.054

CoV(%) 1.135 –

L̂P (m) 33.575 30.512

CoV(%) 1.452 –

P̂F 9.830 · 10−5 5.065 · 10−5

CoV(%) 1.715 –

Ĉmin (C) 4.616 · 105 4.679 · 105
CoV(%) 1.035 –

No 4.70 · 103 1.0 · 103
CoV(%) 12.487 –

Ng 2.714 · 104 9.515 · 104
CoV(%) 12.487 –

the coefficient of variation CoV
[
P̂F

]
= 0.1. The compar-

ison of the results in Table 7 shows similar estimate of the
minimum total cost between the two approaches.

Although the double-loop algorithm was implemented
with fewer design states per iteration step, NS = 100 com-
pared to the CE-LS algorithm with NS = 500, the CE-LS
algorithm was able to provide reductions in computational
efforts. An evaluation of the CE-LS algorithm required
on average 27136 simulations of the finite element pile-
soil model, while an evaluation the double-loop algorithm
required 95145 finite element simulations.

6 Discussion

A coupling between the CE optimization and the LS relia-
bility method for RO of engineering structures is developed
in this study. In contrast to the straightforward double-
loop coupling of the two methods, the CE-LS coupling
relies on an LWA approximation of the probability of fail-
ure to avoid repeated evaluations of the reliability problem
throughout the optimization process. The LWA approxi-
mation of the probability of failure is constructed with
the Nadaraya-Watson nonparametric regression model and
adaptively refined throughout the optimization process to
provide information on the regions of the design space
minimizing the objective function. Due to the LWA approx-
imation of the probability of failure, the reliability and
the total cost estimates are biased. However, as the algo-
rithm localizes the region of the design space with near-
optimal solutions, the extent of averaging is reduced, thus
limiting the bias in the reliability and the total cost esti-
mates. It is expected that the bias in the estimates will

not affect the performance of the algorithm significantly
since the CE-LS algorithm requires information on the rel-
ative optimality of samples within the population at each
intermediate sampling step, and not highly accurate esti-
mates of the absolute optimality. The updating mechanism
of the CE algorithm is based on the identification of the
relative difference in the optimality of the samples at each
sampling step. This means that although the averaging
of the LWA model results in a certain bias in the total
cost estimates, the optimization process is not expected
to be significantly affected as long as the relative differ-
ences in optimality between the samples can be correctly
identified.

The CE-LS algorithm was validated on several RO prob-
lems including a monopile foundation design for offshore
wind turbines. The algorithm demonstrated efficient perfor-
mance with good agreement between the estimates of the
minimizer and the validation results for a range of num-
bers of design parameters and random variables. Only a
slight decrease in the accuracy of the CE-LS estimates of
the minimum is observed with increasing number of design
parameters. The decrease in the accuracy is likely to be
attributed to the reduced convergence of the Nadaraya-
Watson model with the increase in the dimensionality of
the model (Wasserman 2006). The Nadaraya-Watson model
was found to provide satisfying approximation of the relia-
bility problem, with the CE-LS estimates of failure proba-
bilities usually found within one order of magnitude of the
validation results for the studied range of dimensions of the
optimization and reliability problems.

More advanced local weighted approximation models
(e.g., local polynomial regression, penalized regression,
splines (Wasserman 2006)) are not considered here. The
implementation of such models is expected to further
improve the approximation of the probability of failure (e.g.,
local polynomial regression reduces bias on the boundary),
but also increase the computational demands of the CE-LS
algorithm. In reliability problems where the important direc-
tion is unknown, the approximation of the probability of
failure furthermore depends on the selection of the impor-
tant direction for the LS method. This is a consequence of
the convergence rate of the LS method being dependent on
the accuracy of the approximation of the important direction
(e.g., Koutsourelakis et al. 2004). The approximation of the
reliability problem, in situations where the important direc-
tion is unknown, might be improved by implementing the
Advanced Line Sampling method (De Angelis et al. 2015).
The Advanced Line Sampling method provides improved
convergence when compared to the LS method by adap-
tively refining the approximation of the important direction
throughout the analysis.

The acceptance-rejection algorithm was applied to
enforce deterministic constraints, commonly defined with
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computationally inexpensive functions. The reliability con-
straints were modeled by the penalty method, which pre-
vented severe constraint violations and guided the optimiza-
tion algorithm in locating a region of the design space with
near-optimal solutions in problems where the optimum is
located on the boundary of reliability constraints. In situa-
tions where the optimal solution is found at the constraint
boundary, a detailed local search is advised at the final itera-
tion step to locate the minimizer. Otherwise, the mean value
of the random search distribution can be selected as the
estimate of the minimizer.

7 Conclusion

A coupling between the CE optimization method and the
LS reliability method for RO of engineering structures or
systems, referred to as CE-LS, is proposed in this study.
The CE-LS coupling relies on an LWA approximation of
the probability of failure to avoid repeated evaluations of
the reliability problem throughout the optimization process,
associated with the corresponding double-loop coupling of
the methods. The LWA approximation of the probability
of failure is refined throughout the optimization process to
guide the optimization process to the region of the design
space with near-optimal solutions and provide total cost
estimates with relatively low bias and variance.

The CE-LS algorithm was validated on several analytical
ROs and on a practical RO of a monopile foundation for off-
shore wind turbines. The algorithm demonstrated efficient
performance with accurate estimation of the minimizer for
a range of dimensions of the optimization and reliability
problems.

Based on the demonstrated performance, it is expected
that the CE-LS method has a considerable application
potential for ROs of engineering structures. The method
performs optimally in ROs with moderately nonlinear relia-
bility problems and medium dimensional (n < 100) design
parameter spaces.
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Appendix A: Nadaraya-Watson kernel estimator

The Nadaraya-Watson kernel estimator (Nadaraya 1964;
Watson 1964;Wasserman 2006) is constructed onN pairs of
observations (t1, Y1), ..., (tN, YN), where a response vari-
able Y is related to the covariate t = [t1, ..., tn]T with the
following model:

Yi = r(ti ) + σ(ti )κi; i = 1, ..., N (33)

such that r is the regression function, while σ(ti )κi is the
residual with location dependent variance, σ 2(ti ).

The Nadaraya-Watson kernel estimator of r(t) is defined
by:

r̂N (t) =
N∑

i=1

wi(t)Yi (34)

where wi(t) is a weight:

wi(t) = KH (t − ti )
N∑

j=1
KH (t − tj )

(35)

with kernel function:

KH (v) = 1

|H |1/2K(H−1/2v) (36)

K is a function defined to provide higher weights to obser-
vations closer to v = 0, while H is a nonsingular positive
definite bandwith matrix. Often the covariates are scaled so
that a one-dimensional kernel with bandwidth, h > 0, can
be employed:

Kh(v) = h−kK(||v||/h) (37)

The variance of the estimator in (34) is (Wasserman 2006):

Var
[
r̂N (t)

] = σ 2(t)
N∑

i=1

w2
i (t) (38)

An estimate of σ 2(t) is evaluated based on a vector of fitted
values, r̂N = [

r̂N (t1), ..., r̂N (tN)
]T , which is calculated as:

r̂N = WY (39)

where Y = [Y1, ..., YN ]T is the vector of observed response
variables, while W is a N × N ’hat’ or ’smoothing’ matrix
with entries Wij = wj(ti ). Starting from the expression in
(33), a second regression model is introduced to estimate
σ 2(t) (Wasserman 2006):

Zi = ln(Yi − r̂N (ti ))2

= ln(σ 2(ti )κ2
i )

= ln(σ 2(ti )) + ln(κ2
i ) (40)

From (40) it can be observed that an estimate of ln(σ 2(t))
can be obtained by regressing Zi’s on ti’s. For example, a
non-parametric regression model can be employed to obtain
an estimate ν̂(t) of log σ 2(t). The estimate of the variance
then becomes:

σ̂ 2(t) = exp(ν̂(t)) (41)
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A value of h for the kernel function in (37) is commonly
selected by minimizing the leave-one-out cross-validation
score (e.g., Wasserman 2006):

R̂(h) = 1

N

N∑

i=1

(
Yi − r̂N (ti )
1 − Wii

)2

(42)

where Wii = wi(ti ) is the ith diagonal element of the
smoothing matrix.

Appendix B: Analytical solution to the linear
optimization problem

The RO problem in (24a–24d) can be solved analytically,
based on the fact that g(u, t) is a linear combination of
independent standard normally distributed random vari-
ables. Consequently, this leads to g(u, t) being a normally
distributed random variable with mean, μg , and standard
deviation, σg . The mean and the standard deviation are cal-

culated to be, respectively, μg =
n∑

i=1
ti and σg = √

m. The

failure probability is calculated as:

PF (t) = �

(
−μg

σg

)
= �

(
− 1√

m

n∑

i=1

ti

)
= �(−β(t))

(43)

where � is the standard normal cumulative density func-
tion. With the analytical solution of the reliability problem
in (43), the total cost is formulated as:

C(t) =
n∑

i=1

Cit
2
i + CF �

(
− 1√

m

n∑

i=1

ti

)
(44)

The minimum of the total cost is located by differentiating
the cost function with respect to the design parameters, set-
ting it equal to zero, and solving for the design parameters.
The derivative of the cost function with respect to ti is:

∂C(t)
∂ti

= 2Citi − CF√
m

φ

(
− 1√

m

n∑

i=1

ti

)
(45)

where φ is the standard normal probability density func-
tion. After setting the derivative equal to zero, the following
expression is obtained:

ti = CF

2Ci

√
m

φ

(
− 1√

m

n∑

i=1

ti

)
(46)

Since (46) contains ti on both sides, the ith component of
the minimizer is defined by specifying a desired reliability
index, βmin at the minimizer.

βmin = 1√
m

n∑

i=1

ti = ntmin√
m

(47)

where all the design parameters have the same value at the
minimum, tmin. From (47) it follows:

tmin = 1

n
βmin

√
m (48)

In order for (46) to be consistent, the values of the design
cost parameters, Ci , are defined based on the values of βmin,
tmin, and CF :

Ci = CF

2tmin
√

m
φ(−βmin) (49)

An additional requirement for the results in (47) to (49) is
that �(−βmin) ≤ P lim

F . Otherwise, the minimum is found at
the reliability constraint.
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