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Abstract Time-dependent reliability (failure probability)
aims at measuring the probability of the normal (abnormal)
operation for structure/mechanism within the given time inter-
val. To analyze the maximum probable life time under a re-
quired time-dependent failure probability (TDFP) constraint,
an inverse process corresponding to the time-dependent reli-
ability is proposed by taking the randomness of the input
variables into consideration. The proposed inverse process
employs the monotonicity between the TDFP and the upper
boundary of the given time interval which reflects the life
time, and an adaptive single-loop sampling meta-model for
the time-dependent limit state function is presented to estimate
the TDFP at the given time interval flexibly. Since the TDFP is
generally monotonic to the upper boundary of the given time
interval, thus by adjusting the probable upper and lower
boundaries of the time interval in which the corresponding
TDFPs include the required TDFP constraint, the proposed
approach can always search the maximum probable life time
at the required TDFP by the dichotomy. By introducing the
time variable as an input which is the same level as the input

random variables and constructing the adaptive single-loop
sampling meta-model for the time-dependent limit state func-
tion in a longer time interval with the TDFP bigger than the
required TDFP, the TDFP in any subintervals of the time in-
terval involved in the constructed meta-model can be estimat-
ed as a byproduct of the constructed meta-model without any
additional actual limit state evaluations. Then the efficiency
for analyzing the maximum probable life time is improved by
the dichotomy and the unified meta-model of the time-
dependent limit state function. Two examples are employed
to illustrate the accuracy and the efficiency of the proposed
approach.
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1 Introduction

Time-dependent reliability analysis aims at estimating the
time-dependent failure probability (TDFP) of a structural or
mechanical system with respect to a prescribed failure criteri-
on during the given time interval [0, te]. Since material prop-
erties may be deteriorating in time and loading may be ran-
domly varying with time (Hu and Du 2013; Singh et al. 2010),
the time-dependent reliability analysis is very significant in
engineering. The time-dependent reliability is a function with
respect to the given time interval and the distribution param-
eters of the random inputs. Reliability-based design optimiza-
tion (RBDO) for the time-dependent problem is a trade-off
between obtaining higher reliability (lower TDFP) and lower
cost during the certain time interval [0, te] (Wang and Wang
2012; Bisadi and Padgett 2015). The aim of the RBDO is to
design the distribution parameters of the basic input variables
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within the certain time interval. From another point of view, if
the distribution parameters are assured, i.e., the epistemic un-
certainty (Krzykacz-Hausmann 2006) isn't considered. The
mainly concerned variable is the time t, i.e., given the required
TDFP constraint to determine the maximum probable life
time. To analyze the maximum probable life time under a
required TDFP constraint, an inverse process is proposed cor-
responding to the TDFP in this paper. Due to that the episte-
mic uncertainty of the random inputs isn't considered in this
paper, the time-dependent reliability becomes a function with
respect to the upper boundary of the time interval, i.e., te and
the randomness of the inputs. Generally, the TDFP is mono-
tonic to the upper boundary of the time interval so that the
dichotomy can be efficiently employed in the inverse process
to determine the maximum probable life time under the re-
quired TDFP, whose solution needs to repeatedly evaluate the
straightforward model. Thus, an efficient straightforward
model analysis is a quite vital factor for the inverse process.

At present, three mainstream approaches are widely inves-
tigated to estimate the TDFP, i.e., first-passage based ap-
proaches (Rice 1944; Andrieu-Renaud et al. 2004; Lutes and
Sarkani S. Reliability analysis of system subject to first-
passage failure. NASA Technical Report 2009; Hu et al.
2013), extreme performance based approaches (Li et al.
2007; Chen and Li 2007; Zhang et al. 2014; Wang and
Wang 2015) and the meta-model based approaches (Wang
and Wang 2015). The key to the first approach is the compu-
tation of the upcrossing rate. The PHI2 approach (Andrieu-
Renaud et al. 2004) is relatively popular of the first-passage
based approaches, but for the highly nonlinear limit state func-
tion, the error of the time-dependent reliability estimation may
be very notable since the first order reliability approach is
integrated. Besides, for some cases of larger TDFP, the error
is often notable as the assumption that all the upcrossings are
independent doesn't hold. The extreme performance based
approaches equivalently define the TDFP according to the
extreme performances to convert the time-dependent reliabil-
ity analysis into the time-independent reliability analysis.
Thus, the approaches in static reliability analysis (Zhou et al.
2015; Du and Sudjianto 2004; Au and Beck 2001; Zhao and
Ono 2001) can be introduced in the time-dependent reliability
analysis. Li and co-workers (Li et al. 2007; Chen and Li 2007)
developed the probability density evolution and Zhang et al.
(Zhang et al. 2014) introduced the maximum entropy ap-
proach based on the fractional moment constraints to approx-
imate the extreme distribution of the time-dependent limit
state function. Through the integral of the extreme distribution
in the failure domain, the TDFP can be readily obtained.
Although the sample size of the random inputs is significantly
reduced by themaximum entropy approach, yet it is extremely
expensive to obtain the maximum performance during the
time interval [0, te] for each random input sample point as they
convert the continuous time into a series of discrete time

instants. The composite limit state (CLS) (Singh and
Mourelatos 2010) also discretizes the time interval into a se-
ries of subintervals and establishes the limit state by assem-
bling all instantaneous limit states in all time subintervals,
which is also expensive. To extremely reduce the high com-
putational cost in the extreme performance based time-
dependent reliability analysis, a confidence-basedmeta-model
approach was proposed in Ref. (Wang and Wang 2015),
which uses a nested extreme response surface approach to
surrogate the relationship between the random inputs and the
extreme performance of the time-dependent limit state func-
tion with a double-loop adaptive sampling (DLAS). To further
reduce the computational cost, a single-loop Kriging (SILK)
surrogate modeling approach is proposed by Hu and
Mahadevan (Hu and Mahadevan 2016), in which they re-
moved the optimization loop used in the DLAS approach
and generated the random variables and the time variable at
the same level. However, the learning function of the SILK
surrogate modeling approach only can guarantee the accurate
estimation of the TDFP within the given time interval [0, te].
Since that for the failure point x*, if ∃ t ∈ [0, te] makes
ĝ(x*, t) < 0, and for the safe point x', if ∀ t ∈ [0, te] makes
ĝ(x', t)≥0, the SILK surrogate modeling approach will think
the surrogate is successfully constructed to accurately estimate
the TDFP within the time interval [0, te]. ∃ t∈ [0, te] making
ĝ(x*, t) < 0 always can't identify all the failure time instants of
the failure point x*, thus, the existing SILK surrogate model-
ing approach can't simultaneously estimate the TDFPs within
any subintervals of the given time interval [0, te] by the
Kriging model constructed within the time interval [0, te].
Along with the SILK surrogate modeling approach proposed
by Hu andMahadevan, another single-loop adaptive sampling
(SLAS) meta-model is constructed in this paper, in which time
is regarded as a random variable uniformly distributed in the
interval [0, te] and the sample points of the time variable are
generated at the same level of the input random variables. The
condition of the surrogate accuracy in the proposed SLAS
meta-model approach can guarantee the correct classification
between all the instantaneous failure events and all the instan-
taneous safe events. Therefore, the proposed SLAS approach
can cover all the instantaneous failure events during the cer-
tain time interval [0, te] while the existing SILK surrogate
modeling approach merely can identify whether failure or
not at each realization of the input random variables within
the time interval [0, te]. Thus, the proposed SLAS meta-model
not only inherit the advantages of the existing SILK surrogate
modeling approach but also can simultaneously obtain the
TDFPs within any subintervals of the given time interval with-
out any extra model evaluations, which the existing approach
can't provide concurrently. Compared with the DLAS meta-
model approach, the proposed approach reduces the compu-
tational cost by transforming the double-loop into the single-
loop. In addition, the proposed approach can cover all the
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instantaneous failure events during the certain time interval
while the DLAS meta-model approach only covers the ex-
treme failure events.

Based on the SLAS meta-model approach, the repeatedly
evaluating the straightforward model, i.e., evaluating any
TDFPs within the subintervals of the larger given time inter-
val, can be efficiently implemented.

The paper is outlined as follows. Section 2 reviews the
definition of the time-dependent reliability/TDFP and de-
fines the maximum probable life time under the required
TDFP constraint. Section 3 reviews the existing main-
stream approaches for the TDFP analysis. Section 4 de-
scribes the proposed SLAS meta-model approach for the
time-dependent reliability/TDFP analysis. Section 5 gives
the implementation progress of the maximum probable life
time analysis with the integration of the dichotomy and
the proposed time-dependent reliability/TDFP analysis ap-
proach. Section 6 illustrates the accuracy and the efficien-
cy of the proposed time-dependent reliability/TDFP analy-
sis approach especially compared with the nested extreme
response surface based DLAS meta-model and other
existing approaches. In addition the accuracy and the effi-
ciency of the proposed maximum probable life time anal-
ysis are demonstrated by the examples. Conclusions are
summarized in section 7.

2 The concept of the maximum probable life time

Let X= (X1,X2,…,Xn)
T denote the n -dimensional random

vector, te be the designed life time or univariate motion input
of interest, and g(X, t) represent the time-dependent limit state
function, the time-dependent reliability within [0, te] can be
described as

R 0; teð Þ ¼ Pr ∀t∈ 0; te½ �; g X ; tð Þ≥0f g ð1Þ

where the time-dependent limit state equation can be deter-
mined by g(X, t) =0.

Analogously, the TDFP is defined as

Pf 0; teð Þ ¼ Pr ∃t∈ 0; te½ �; g X ; tð Þ < 0f g ð2Þ

where the lower boundary of the time interval can be any
constant for the practical applications, for convenience we
fix it on zero, and Pf(0, te) +R(0, te) =1.

The time-dependent reliability analysis is a straight-
forward analysis. In some cases, engineers may desire to
know the maximum probable life time for a required
TDFP constraint under the assumed distribution func-
tions of the input variables, i.e., determine the [0, t*]
to ensure the TDFPs within any subintervals of [0, t*]
are smaller than the limit Pf

*. t* is defined as the

maximum probable life time and can be determined by
the following equation

Pr ∃t∈ 0; t*
� �

; g X ; tð Þ < 0
� � ¼ P*

f ð3Þ

Obviously, the solution of (3) is an inverse process cor-
responding to solving the TDFP, i.e., determining the maxi-
mum upper boundary of the time interval under the required
TDFP. Generally, Pf(0, t) is monotonic to the upper boundary
of the time interval, i.e., t so that the dichotomy can be
employed in the inverse process to efficiently determine the
maximum probable life time t* under the given Pf

*, i.e., deter-
mine the root of ξ(t*)=Pr{∃ t∈ [0, t*], g(X, t) <0}−Pf* =0.
In the process of the dichotomy, the straightforward analysis,
i.e., the time-dependent reliability analysis, is indispensable.

In the next section, this paper will briefly review the
existing mainstream TDFP analysis approaches and analyze
the applicability of these approaches in the inverse process.
Based on inheriting the advantages of the existing TDFP anal-
ysis approaches, a new SLAS meta-model approach is pre-
sented which can be repeatedly utilized to estimate the TDFPs
within any subintervals of the given larger time interval in the
constructed meta-model to efficiently solve the inverse
problem.

3 Review of the time-dependent reliability analysis
approaches

At present, the first-passage based approaches, the extreme
performance based approaches and the meta-model based ap-
proaches are the representative time-dependent reliability
analysis approaches, thus the following subsections provide
brief reviews on the out-crossing rate-based approach, the
nested extreme response surface approach, and the existing
SILK meta-model approach.

3.1 Out-crossing rate-based approach

In the out-crossing rate-based approach, the latent assumption
is that all the crossing events are independent. The instanta-
neous out-crossing rate at time instant t is defined as

vþ tð Þ≈ lim
Δt→0

Pr g X ; tð Þ > 0∩g X ; t þΔtð Þ < 0f g
Δt

ð4Þ

The TDFP within the time interval [0, te] is estimated as
(Hu and Du 2012)

Pf 0; teð Þ ¼ 1− 1−P f 0; 0ð Þ� �
exp −

Z te

0
νþ tð Þdt

� 	
ð5Þ

where Pf(0, 0) is the failure probability which is performed at
the initial time instant te=0.
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The key to the out-crossing rate-based approach is to cal-
culate the out-crossing rate which is inconvenient to estimate.
When the time-dependent limit state function is a certain sto-
chastic process like stationary Gaussian processes, an analyt-
ical out-crossing rate is available (Breitung 1988). While for
the practical applications, the type of the stochastic process is
anomalistic, thus the asymptotic integration is extensively
used to calculate the out-crossing rate (Breitung and
Rackwitz 1998). Sometimes, the latent independent
upcrossing assumption doesn't hold for some applications,
especially for the cases that the time interval of interest is long
and many upcrossings exist.

3.2 Nested extreme response surface approach

Compared with the out-crossing rate-based approach, the
nested extreme response surface approach based on the ex-
treme performance during the time interval [0, te] converts the
time-dependent reliability analysis into the time-independent
one, i.e.,

Pf 0; teð Þ ¼ Pr g X ; T Xð Þð Þ < 0f g ð6Þ

where T(X) is the extreme response surface associating with
the input vector X and the time interval. For the given time
interval [0, te], T(X) only depends on the input vector, i.e.,

T Xð Þ ¼ t



min

t
g X ; tð Þ; t∈ 0; te½ �

n o
ð7Þ

For this time-independent reliability analysis, many time-
independent reliability analysis approaches can be integrated
into the time-dependent reliability analysis like FOSM (Hu
and Du 2015), importance sampling based approaches
(Singh et al. 2011), moment method (Zhang et al. 2014; Xu
2016), meta-model method (Sundar and Manhar 2013) and so
on. The straightforward way to estimate the extreme time at a

certain input X is to discrete the time interval of interest into a
series of time instants, which is prohibited in practical engi-
neering. To efficiently identify the extreme time response,
Ref. (Wang andWang 2015) constructed the Gaussian process
based time meta-model.

Although the nested meta-models significantly decrease
the computational cost in the time-dependent reliability anal-
ysis, yet it always contains DLAS processes. Besides, it only
provides the extreme response information and the time-
dependent reliability in the time interval [0, te] and can't pro-
vide other instantaneous failure events in the time interval
[0, te] as well as the time-dependent reliability in any subinter-
vals of the [0, te] which is involved in the constructed extreme
response surface.

3.3 SILK surrogate modeling approach

To overcome the two drawbacks of the DLAS meta-model
based approach analyzed in Ref. (Hu and Mahadevan 2016),
i.e., (1) the accuracy of the identification of the extreme re-
sponse in the inner loop will influence the accuracy of the
extreme response surface in the outer loop, (2) the large com-
putational cost in identifying the extreme value in the inner
loop with stochastic processes through a long time interval, a
SILK surrogate modeling approach is proposed in Ref. (Hu
and Mahadevan 2016). The SILK surrogate modeling ap-
proach generates the random variables and the time variable
at the same level in place of two separate levels to construct
the Kriging surrogate model ĝ(X, t). Although the SILK sur-
rogate modeling approach can overcome the two drawbacks
of the DLAS and efficiently estimate the TDFP within the
given time interval [0, te], yet it can't use the constructed
Kriging model in the given time interval [0, te] to estimate
the TDFPs in any subintervals of the given time interval
[0, te] for the following indicator defined being used to refine
the surrogate model ĝ(X, t), i.e.,

Umin x ið Þ
� �

¼
ue if g x ið Þ; t jð Þ

� �
< 0 and U x ið Þ; t jð Þ

� �
≥2 ∃ j ¼ 1; 2;…;Nt

min
j¼1;2;…;Nt

U x ið Þ; t jð Þ
� �n o

otherwise

8<:
ð8Þ

where U x ið Þ; t jð Þ� � ¼ gK x ið Þ;t jð Þð Þj j
σgK x ið Þ;t jð Þð Þ , gK(⋅) and σgK ⋅ð Þ are the ex-

pected value and standard deviation of the prediction, Nt is the
number of the time instants generated by discretizing the time
interval [0, te], and ue is any number so that ue>2.

It can be seen that within the given time interval [0, te], the
constructed Krigingmodel by the adaptive refined indicator of
(8) can accurately classify the failure sample points and the
safe sample points of the model inputs. While, for the failure
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sample point x*, the (8) only can guarantee at least one
failure time instant is accurately identified. Therefore, the con-
structed SILK surrogate can't identify all the instantaneous
failure events which include different failure time instants at
the same realization of the model inputs when there are many
failure instants within the time interval [0, te], which means
that the constructed SILK surrogate can't simultaneously esti-
mate the TDFPs in any subintervals of the given time interval
[0, te]. Therefore, the existing SILK surrogate modeling ap-
proach can't be efficiently and directly utilized in solution of
the (3).

To inherit the advantage that regard the model input vari-
ables and the time variable at the same level in the SILK
surrogate modeling approach and make the constructed
meta-model within the time interval [0, te] be used to simulta-
neously estimate the TDFPs in any subintervals of the given
time interval [0, te] without any extra model evaluations, a
revised SILK surrogate modeling approach, i.e., SLAS
meta-model approach is proposed in which the maximum
confidence enhancement (MCE) based sequential sample
scheme (Wang and Wang 2014) is employed to identify all
the instantaneous failure events within the involved time in-
terval [0, te]. The next section will describe the SLAS meta-
model approach in detail.

4 SLASmeta-model based time-dependent reliability
analysis approach

To cover all the instantaneous failure events, a SLAS meta-
model based approach is proposed in this section.

In the time-dependent limit state function g(X, t), X is the
model input variables following their distributions and t is a
time variable within the given time interval. To identify all the
potential instantaneous failure events, in the proposed ap-
proach, the time interval is treated as a uniform variable t in
the interval [0, te], and the samples of t can be generated as the
same level as the X, which is similar to the existing SILK
surrogate modeling approach. Then the meta-model between
g X ; tð Þ and X ; tf g is constructed by the Kriging-based
(Kaymaz 2005) meta-model approach. The difference be-
tween the proposed SLAS meta-model approach and the
existing SILK surrogate modeling approach is the stopping
criterion in improving the fidelity of the time-dependent limit
state surface identification. The stopping criterion in the
existing SILK surrogate modeling approach only can guaran-
tee the accurate identification of the failure model inputs sam-
ples and can't identify when the failure occurs and how many
failure instants exists within the time interval [0, tε] of interest.
In the revised SILK surrogate model approach in this paper, a
maximum confidence enhancement approach (Wang and
Wang 2014) is utilized to update the Kriging model and

enhance the fidelity of the time-dependent limit state surface
identification consecutively which can consider all the dis-
crete time instants for each realization of model inputs with
the time interval [0, tε] of interest. Thus, all the instantaneous
failure events accurately are identified with the given time
interval [0, te] by the proposed SLAS meta-model based
time-dependent reliability analysis approach.

4.1 Kriging model

The Kriging approach is a semi-parametric interpolation tech-
nique based on the statistical theory (Sacks et al. 1989), which
involves two parts, i.e., the parametric linear regression part
and the nonparametric stochastic process. Its mathematical
expression is

gK X ; t
� �

¼
Xp
i¼1

f i X ; t
� �

βiþZ X ; t
� �

¼ f T X ; t
� �

βþ Z X ; t
� �

ð9Þ

where f X ; tð Þ ¼ f 1 X ; tð Þ; f 2 X ; tð Þ;…; f p X ; tð Þ
h i

T is base

functions of vector X ; tð Þ which can offer a global simulation,
β= [β1,β2,…,βp]

T is the regression coefficient vector which
needs to be determined, and p denotes the number of base
functions. Z X ; tð Þ is a stationary Gaussian process with zero
mean and covariance which can be defined as follows:

cov Z xi; ti
� �

; Z x j; t j
� �h i

¼ σ2R xi; ti
� �

; x j; t j
� �� �

i; j ¼ 1;…;N ð10Þ

where N is the number of experimental points, σ2 is the vari-
ance and R xi; tið Þð ; x j; t j

� �Þ is the correlation function.
Generally, Gaussian correlative model is selected (Koehler
and Owen 1996; Welch et al. 1992).

Define

R ¼
R x1; t1ð Þ; x1; t1ð Þð Þ ⋯ R x1; t1ð Þ; xN ; tNð Þð Þ

⋮ ⋱ ⋮
R xN ; tNð Þ; x1; t1ð Þð Þ ⋯ R xN ; tNð Þ; xN ; tNð Þð Þ

24 35, F
is a vector of f X ; tð Þ and g is corresponding vector of the
limit state functions calculated at each experimental points
xi; tið Þ i ¼ 1; 2;…;Nð Þ, the unknown β and σ2 can be esti-
mated as follows:

β̂ ¼ FTR−1F
� �−1

FTR−1g ð11Þ
bσ2 ¼ 1

N
G−Fβ̂
� �T

R−1 g−Fβ̂
� �

ð12Þ

Then, for any unknown points X, the Best Linear Unbiased
Predictor of model gK X ; tð Þ is shown to be a Gaussian random
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gK X ; tð Þ∼N μgK
X ; tð Þ;σgK X ; tð Þ

� �
where the mean and the

variance are given as follows:

μgK
X ; t
� �

¼ f T X ; t
� �

β̂þ rT X ; t
� �

R−1 g−Fβ̂
� �

ð13Þ

σ2gK X ; t
� �

¼ σ2− f T X ; t
� �

rT X ; t
� �h i

0 FT

F R

 �−1 f X ; t
� �

r X ; t
� �24 35 ð14Þ

w h e r e rT X ; tð Þ ¼ R X ; tð Þð½ ; x1; t1ð ÞÞ;…;R X ; tð Þð ;

xN ; tNð ÞÞ� T.

4.2 Single-loop adaptive sampling approach based
on maximum confidence enhancement

To identify all the instantaneous failure events in the time-
dependent reliability, the relationship between X ; tf g and g
is surrogated by the Kriging model gK X ; tð Þ. Let Ω ¼
X ; tð Þjg X ; tð Þ < 0f g denote the instantaneous failure do-

main, thus the time-independent instantaneous FP is estimated
by

Pf ¼ Pr gK X ; t
� �

∈Ω
� �

¼ E I X ; t
� �� �

ð15Þ

where E[⋅] denotes the expectation operator and I X ; tð Þ is a
failure domain indicator function defined as

I X ; t
� �

¼ 1 gK X ; t
� �

< 0

0 else

(
ð16Þ

Due to that a few number of samples are selected to con-
struct the Kriging model, there may exist the problem of fi-
delity of the initial model. To boost the fidelity of the current
Kriging model to identify all the instantaneous failure events
including different failure time instants at the same realization
of the model inputs, the maximum confidence enhancement
(MCE) based sequential sample scheme (Wang and Wang
2014) is employed in this paper. In MCE, the probability of
correct classification (Echard et al. 2011) for the sample point
xi; t j
� �

is

Prc xi; t j
� �

¼ Φ
gK xi; t j
� �


 




σgK xi; t j
� �

0@ 1A ð17Þ

where | ⋅ | is the absolute operator. Thus the cumulative confi-
dence level of the reliability approximations for Kriging mod-
el is measured by

C ¼ E Prcð Þ ¼ 1

N

XN
i¼1

1

Nt

X
j¼1

Nt

Prc xi; t j
� � !

ð18Þ

where N is the number of sample points of the model inputs
generated by their probability density functions (PDF) and Nt

is the number of sample points of the time variable uniformly
generated within the given time interval. Generally, the longer
the time interval is, the larger the Nt needs to be.

Measurement C measures the average identification accu-
racy of the Monte Carlo simulation (MCS) sample pool which
is constituted by the N sample points of the model inputs and
theNt sample points of the time variable, i.e., x1; t1ð Þ½ ; x1; t2ð Þ
;…; x1; tNtð Þ ; x2; t1ð Þ ; x2; t2ð Þ;…; x2; tNtð Þ;…; xN ; t1ð Þ
; xN ; t2ð Þ;…; xN ; tNtð Þ�. Note that measurementC is a positive
value within (0.5, 1] and the bigger the value is, the more
failure instants of each realization of model inputs are accu-
rately identified so that the more accurate of the time-
dependent reliability approximations in any subintervals are.
While the (8) only can guarantee the accurate identification
of each failure point and each safe point for model inputs
within the time interval [0, te]. For each failure point of model
inputs, the (8) can't make the Kriging model accurately
identify when the failure occurs and all the failure instants
within the time interval [0, te]. From Fig. 1, it can be seen that
for the failure points x*, the time-dependent structure/
mechanism belongs to failure when t∈ [t1, t2] or t∈ [t3, t4].
Only one failure time instant belonging to the interval [t1, t2]
or [t3, t4] is identified, will the Kriging model constructed by
the SILK approach think the accurate identification of the
failure point x*. While for the proposed SLAS approach, the
Kriging model thinks the accurate identification of the failure
point x* only when all the failure instants in the time intervals
[t1, t2] and [t3, t4] are accurately identified. Therefore, the pro-
posed SLAS can distinguish all the failure instants from all the
safe instants so that it can be utilized to estimate any TDFPs of
different subintervals of the time interval of interest involved
in the Kriging model.

However, Prc doesn't reflect the global fidelity of the cur-
rent Kriging model. To make up it, an adaptive sampling
based on MCE is developed (Wang and Wang 2014). In
MCE, the most contributive sample point is selected in the
Monte Carlo simulation (MCS) sample pool x1; t1ð Þ½ ; x1; t2ð Þ
;…; x1; tNtð Þ ; x2; t1ð Þ ; x2; t2ð Þ;…; x2; tNtð Þ;…; xN ; t1ð Þ ;

xN ; t2ð Þ;…; xN ; tNtð Þ� by the following criterion

ψ xi; t j
� �

¼ 1−Prc xi; t j
� �� �

� f
X ;t

xi; t j
� �

� σgK xi; t j
� �

ð19Þ

0
1t 2t 3t 4t t

*( , )g tx

Fig. 1 The time-dependent failure events
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where 1−Prc xi; t j
� �� �

measures the probability of incorrect

classification, f X ;t xi; t j
� �

is the probability density value at

xi; t j
� �

which reflects the importance of xi; t j
� �

, and σgK

xi; t j
� �

is the estimated mean square error of the prediction
of Kriging model. Thus, the most contributive sample point is
selected by maximizing ψ(⋅) from the MCS sample pool, i.e.,

x; t
� �0

¼ arg
i; j

maxψ xi; t j
� �

i ¼ 1; 2;…;N ; j ¼ 1; 2;…;Nt ð20Þ

By adding the most contributive sample point se-
quentially in the current Kriging model, the fidelity of
the current model is enhanced till the criterion C sat-
isfies a predefined confidence target.

Through transforming time t into a uniform random
variable t, an efficient time-dependent reliability analysis
meta-model is established which can cover all the in-
stantaneous failure events within the given time interval
[0, te] by the principle of selecting the most contributive
sample point from the MCS sample pool and the stop-
ping criterion, i.e., (20) and (18) so that the direct
MCS can be involved to estimate the time-dependent
reliability/TDFPs in any subintervals of the given time
interval [0, te] based on the unified meta-model of the
time-dependent limit state function. Not only that, the
meta-model also can provide the time-dependent limit
state function with respect to time for the input vari-
ables taking their realizations so that its first time to
failure can be conveniently obtained, but the nested
meta-model extreme performance based approach and
the existing SILK surrogate modeling approach can't
provide.

Consider this simple example: g(X, t) = 10−Xt2 where
X is a normal distribution variable with mean 10 and
standard derivation 1, and t is the time variable varying
within [0, 1]. Set C> 0.999999, only 11 model evalua-
tions are needed to construct the Kriging model of g
X ; tð Þ in which 8 training points are involved in the
initial Kriging model and 3 extra points are subsequent-
ly selected to update the initial model by MCE. The
nested meta-model extreme performance based approach
merely provides the extreme response at any nominal
points of X within the time interval [0, te]. While our
proposed approach not only can provide what the nested
meta-model extreme response based approach provide,
but also can provide the responses at any time instants
within [0, te] for a nominal point of X like the first time
to failure. Figure 2 plots the response varying with time
at x* = 12.5393. From Fig. 2, we not only can obtain
the extreme time i.e. tmin = 1, but also can obtain the
first failure time at x* = 12.5393, i.e., t= 0.8930.

4.3 Time-dependent reliability analysis

Based on the Kriging model gK X ; tð Þ, direct MCS ap-
proach integrated with the (6) is used to estimate the
TDFP. Firstly, generate N× n sample matrix A of ran-
dom inputs X according to their PDFs and Nt× 1 sample
vector T of time t uniformly distributed in [0, te], i.e.,

A ¼
x 1ð Þ
1 x 1ð Þ

2 ⋯ x 1ð Þ
n

x 2ð Þ
1 x 2ð Þ

2 ⋯ x 2ð Þ
n

⋮ ⋮ ⋱ ⋮
x Nð Þ
1 x Nð Þ

2 ⋯ x Nð Þ
n

26664
37775 ð21Þ

T ¼
t 1ð Þ

t 2ð Þ

⋮
t Ntð Þ

2664
3775 ð22Þ

Secondly, define the matrix B(i)(i=1,2,…,N), i.e.,

B ið Þ ¼
B ið Þ
1

B ið Þ
2
⋮
B ið Þ
Nt

26664
37775 ¼

x ið Þ
1 x ið Þ

2 ⋯ x ið Þ
n t 1ð Þ

x ið Þ
1 x ið Þ

2 ⋯ x ið Þ
n t 2ð Þ

⋮ ⋮ ⋱ ⋮ ⋮
x ið Þ
1 x ið Þ

2 ⋯ x ið Þ
n t Ntð Þ

26664
37775 ð23Þ

Take the each row Bj
(i)(j= 1, 2,…,Nt, i= 1, 2,…,N) of

matrix B(i)(i= 1, 2,…,N) in gK X ; tð Þ to find the mini-

mum va lue and check whe the r min
1≤ j≤Nt

gK B ið Þ
j

� �
< 0.Traverse all the matrixes B(i) from B(1) to B(N) to
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Fig. 2 The response varying with time in [0,1] at x* = 12.5393
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count the number of min
1≤ j≤Nt

gK B ið Þ
j

� �
< 0 and denote it

as Nf. Thus, the TDFP is estimated as

Pf 0; teð Þ ¼
XN
i¼1

I min
1≤ j≤Nt

gK B ið Þ
j

� �n o� �
=N ¼ N f =N ð24Þ

5 The implementation of the maximum probable life
time analysis

An elaborate summary of the implementation of the maximum
probable life time analysis by the meta-model integrated with
the dichotomy approach in a more efficient way is demonstrat-
ed in this section. The flowchart of the proposed approach is
given in Fig. 3. It can be simply divided into nine steps and the
procedure is revealed as follows:

Step 1 Input the required TDFP constraint Pf
*

Step 2 Input the upper boundary tu of the time interval for the
dichotomy which is problem-dependent, generally,
the larger the better, to guarantee that Pf(0, tu) >Pf

*.
Step 3 Generate N0 sample points of X ; tð Þ in which t is

uniformly distributed within [0, tu] and evaluate cor-
responding time-dependent limit state function of the
sample points. In the initial step,N0 can be small, and
the sample points can be generated by making use of
some low discrepant sampling approaches like Latin
hypercube sampling approach, Sobol' sequence sam-
pling approach (Sobol 1976, 1998), and so on.

Step 4 Construct the Kriging model using the selected ex-
perimental points, generate N sample points of X and
Nt sample points of t to constitute the MCS sample

pool x1; t1ð Þ½ ; x1; t2ð Þ;…; x1; tNtð Þ ; x2; t1ð Þ ; x2; t2ð Þ
;…; x2; tNtð Þ;…; xN ; t1ð Þ ; xN ; t2ð Þ;…; xN ; tNtð Þ�
and commonly N and Nt are large, and calculate the
cumulative confidence levelC of these sample points
and judge whether it is larger thanC_given. If so, turn
to step 6 directly.

Step 5 Select the x; tð Þ0 ¼ arg
i; j

maxψ xi; t j
� �

i ¼ 1; 2;…ð ;

N ; j ¼ 1; 2;…;NtÞ and evaluate the actual limit
state value, then add this sample point into the set
of experimental points and turn to step 4.

Step 6 Calculate the Pf(0, tu) denoted as Pf
u
and judge wheth-

er Pf
u
is larger than Pf

*
. If so, execute the next step

continuously, otherwise, let tu= tu+Δtu, and turn to
step 3.

Step 7 Input the lower boundary of the dichotomy tl.
Because [0, tl] is a subinterval of [0, tu], the TDFP
of Pf(0, tl) denoted as Pf

l can be conveniently obtain-
ed by the current meta-model which doesn't need
extra model evaluations.

Step 8 Judge whether Pf
l is smaller than Pf

*. If so, execute the
next step continuously, otherwise, let tl= tl−Δtl, and
turn to step 7.

Step 9 Use the dichotomy to efficiently determine the root of
t h e e q u a t i o n ξ ( t * ) = P r { ∃ t ∈ [ 0 , t * ] ,
g(X, t) <0}−Pf

*=0 and output the root t* as the max-
imum probable life time under the required TDFP Pf

*.

6 Case studies

In this section, two examples, a mathematical and a four-bar
function generator mechanism problem are used to illustrate

Fig. 3 Flowchart of the proposed
approach for maximum probable
life time analysis
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the accuracy and the efficiency of the proposed approach in
the time-dependent maximum probable life time analysis.

6.1 Case study I : a mathematical problem

A time-dependent limit state function g(X, t) is given by

g X ; tð Þ ¼ X 2
1X 2−5X 1t þ X 2 þ 1ð Þt2−20 ð25Þ

where t is the time variable, X1 and X2 are random inputs
normal ly d is t r ibu ted , i . e . , X 1 ~ N (3 .5 , 0 .32 ) and
X2 ~N(3.5, 0.3

2). To compare with the result estimated in
Ref. (Wang andWang 2015), the time interval [0, 5] is chosen.
Then the SLAS Kriging model gK X ; tð Þ is constructed till the
confidence level C>0.99999. Table 1 shows the initial sam-
ple, updating sample, and the corresponding responses. From
Table 1, it is shown that the total number of model evaluations
is 20. To illustrate the efficiency of the proposed approach,
Table 2 gives the estimations of the TDFP within the time
interval [0, 5] by the proposed approach, PHI2, CLS, DLAS
and MCS. The data of PHI2, CLS, DLAS and MCS are di-
rectly employed which are provided in Ref. (Wang and Wang
2015). Ref. (Wang and Wang 2015) has demonstrated the
superiority of DLAS compared with PHI2 and CLS, which
totally needs 40 number of model evaluations. While, our
proposed SLAS merely requires 20 number of model

evaluations which is a half of DLAS. Besides, the accuracy
of the SLAS also is superior to that of the DLAS.

Compared with the DLAS, the proposed SLAS not only
can provide the extreme response value of any sample points
of the random inputs within the given time interval, but also
can provide response values of any sample points and any
time instants within the time interval [0, 5]. Therefore, the
SLAS can catch all the instantaneous failure events within
the time interval [0, 5] so that the proposed SLAS can simul-
taneously obtain the TDFPs in any different subintervals of
the time interval [0, 5]. Figure 4 plots the TDFPs varying with
time t with the time interval [0, 3], the subintervals of [0, 5],
thus the process doesn't need to run the actual limit state func-
tion. It is observed that the abundant amount of information
can be provided by the proposed approach.

To verify the efficiency and the accuracy of the proposed
approach in the inverse process to determine the maximum
probable life time, let Pf

*=0.01. Firstly we attempt to fix tu=1
and construct the Kriging model gK X ; tð Þ with t∈ 0; 1½ �. The
initial samples, updating samples, and the corresponding re-
sponses are displayed in Table 3. From Table 3, we can see
that only 18 model evaluations are needed to construct the
Kriging model where the confidence level C>0.9999. Using

Table 1 Samples used in Case study I for constructing the Kriging
model where t ∈ [0, 5]

X1 X2 t Response

Initial samples 2.9554 3.6086 0.3629 6.7630

3.5261 3.1776 2.8628 3.2754

3.3293 3.4172 1.6129 2.5200

3.7365 3.8700 4.1129 39.5720

3.2013 2.8589 4.7379 20.0834

3.6235 3.5123 2.2379 8.1683

3.4315 3.7180 3.4878 21.3329

3.9017 3.3128 0.9879 15.3690

Sequential updating samples 3.1477 3.3783 2.6057 2.1902

3.3236 3.0949 1.5328 −1.6635
2.9881 3.4563 1.8733 −1.4891
3.0145 3.2308 0.9079 −0.8382
3.3262 2.9936 3.0557 −0.4090
3.2822 2.9596 0.9298 0.0474

3.6792 3.0248 2.0992 0.0652

3.7363 2.9540 2.8445 0.0902

3.3246 3.2715 2.0254 0.0140

3.3412 3.1016 1.2759 −0.0131
3.8012 2.7704 1.5207 −0.1529
2.8118 3.8087 1.5981 −0.0747

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

t

P
f

MCS
Proposed

Fig. 4 TDFPs varying with lower boundary of time t within [0,3]

Table 2 Comparison the results of PH12, CLS, and DLAS estimated in
Ref. (Wang and Wang 2015) with the results of SLAS estimated by the
proposed approach

Approach Reliability Error Computational
cost

PH12 0.8334 2.09% 438

CLS 0.8312 1.82% >1000

DLAS 0.8169 0.07% 40

SLAS 0.8168 0.06% 20

MCS 0.8163 - 109
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direct MCS under the current Kriging model, the TDFP with
upper limit of time is estimated to be 0.0614. Fortunately, the
first attempt of tu satisfies the condition that Pf

u>Pf
*, if the first

attempt fails, let tu= tu+Δtu and repeat the calculation till
Pf
u>Pf

* is satisfied. Then, choose tl which is smaller than the
current tu, in the first attempt tl=0.4 is chosen. Under the
current Kriging model, the TDFP with time interval [0, 0.4]
can be estimated by the constructed meta-model without extra
actual time-dependent limit state evaluation due to that
[0, 0.4]∈ [0, 1], and Pf

l= 0.0062 which is smaller than Pf
*.

Thus, the upper and lower boundaries of the dichotomy can
be given by [a,b] = [0.4, 1]. Set the limit to the error of the
dichotomy, ε = 0.5 × 10− 2. Through the (26), the least
number k of bipartition can be determined.

k≥
lg b−að Þ−lgε

lg2
ð26Þ

Table 4 gives the procedure of the dichotomy, where we
can determine the solution of the inverse process, namely,
the maximum probable life time tmax for the given TDFP
constraint 0.01 is tmax=0.5172. To illustrate the accuracy of
the results we use the result calculated by MCS as a refer-
ence and the results are shown in Table 5. In MCS, 106

input variable samples are generated and the time interval
is discreted into 100 time instants evenly. Results demon-
strate that the accuracy and the efficiency of the proposed
approach are very high in the inverse process to determine
the maximum probable life time.

To avoid the extra model evaluations generated from
selecting the interval of the dichotomy, i.e., repeatedly execut-
ing the procedure of step 3 to step 6, generally, the maximum
interval of interest can be chosen, which is problem-depen-
dent. In this case, [0, 5] is chosen to construct the Kriging
model gK X ; tð Þ which totally utilized 20 training points. In
addition, [0, 5] is used in dichotomy as the boundary to deter-
mine the maximum probable life time in the inverse process.
The procedure of the dichotomy is shown in Table 6. The
result of the inverse process is 0.5029296875, and the relative
error referring to MCS is 1.9%, which also is accurate. To
further improve the accuracy of the result, the confidence level
C of the constructed Kriging model can be set to a larger one
to guarantee the fidelity of the Krigingmodel to identify all the
failure events within the given time interval.

6.2 Case study II : a four-bar generator mechanism

Case study I confirms the superiority of the proposed ap-
proach, in this case study a four-bar generator mechanism in
Ref. (Du 2014) is concerned to demonstrate the engineering
application of the proposed approach.

The four-bar mechanism is shown in Fig. 5 and the geomet-
ric dimension variables are X= (R1,R2,R3,R4) and they are
assumed to follow normal distribution with means μ1=53.0
mm, μ2=122.0 mm, μ3=66.5 mm, μ4=100.0 mm and stan-
dard derivations σ1=σ2=σ3=σ4=0.1 mm. The motion output
can be easily derived by the following loop equations:

R1cosθþ R2cosδ−R3cosφ−R4 ¼ 0
R1sinθþ R2sinδ−R3sinφ ¼ 0

�
ð27Þ

Table 3 Samples used in Case study I for constructing the Kriging
model where t ∈ [0, 1]

x1 x2 t Response

Initial samples 2.9554 3.6086 0.0726 10.4700

3.5261 3.1776 0.5726 10.7847

3.3293 3.4172 0.3226 12.9682

3.7365 3.8700 0.8226 21.9582

3.2013 2.8589 0.9476 −2.4033
3.6235 3.5123 0.4475 18.9105

3.4315 3.7180 0.6976 14.1081

3.9017 3.3128 0.1975 26.7460

Sequential updating samples 3.0626 3.3979 0.9983 0.9663

3.0026 3.2054 0.7355 0.1303

2.8537 3.5350 0.9052 −0.4118
3.1899 3.1010 0.9550 0.0632

2.7376 3.3434 0.4568 −0.2887
2.8941 3.0543 0.4416 −0.0167
3.3236 2.8183 0.8192 0.0815

2.6929 3.7641 0.7283 0.0175

3.2854 2.9423 0.9185 −0.0042
2.9811 2.9053 0.4420 −0.0065

Table 4 The procedure of the dichotomy with the interval [0.4,1] for
Case study I

k ak tk bk

1 0.4(−) 0.7(+) 1(+)

2 0.4(−) 0.55(+) 0.7(+)

3 0.4(−) 0.475(−) 0.55(+)

4 0.475(−) 0.5125(−) 0.55(+)

5 0.5125(−) 0.53125(+) 0.55(+)

6 0.5125(−) 0.521875(+) 0.53125(+)

7 0.5125(−) 0.5171875(−) 0.521875(+)

Table 5 Comparison results of MCS and the proposed method for the
maximum probable life time

Approach tmax Error Computational
cost

MCS 0.5130 - 9 × 108

Proposed 0.5172 0.8% 18
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where θ is the motion input, φ and δ are the two motion
outputs. By solving (27), the two motion output can be
derived as:

φ ¼ 2arctan
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ E2−F2

p
E þ F

δ ¼ arctan
R3sinφ−R1sinθ

R4 þ R3cosφ−R1cosθ

8>><>>: ð28Þ

where D = − 2R1R3 sin θ , E = 2R3(R4 − R1 cos θ) and
F=R2

2−R1
2−R3

2−R4
2+2R1R4 cosθ. The motion output of con-

cern isφ and the desired motion output function is assumed to
be

φd θð Þ ¼ 76� þ 60�sin 3 θ−95:5�ð Þ
.
4

� �
ð29Þ

Thus, by treating the motion input θ as the time variable t in
time-dependent reliability analysis, the instantaneous limit
state function of the four-bar function generator can be
expressed as

g R1;R2;R3;R4; tð Þ

¼ c−abs 2arctan
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ E2−F2

p
E þ F

− 76� þ 60�sin 3 t−95:5�ð Þ=4ð Þð Þ
 !

ð30Þ

where c is the allowable threshold and we set 0.6 in this case.
The lower limit of t is 95.5°.

Firstly, SLAS is used to construct a Kriging model in which
the time interval is [95.5°, 225.5°]. The total number of model

evaluations is 182, i.e., 32 initial sample points and 150
updating sample points. The confidence level of the current
Kriging model is larger than 0.99999999. Figure 6 shows the
TDFPs varying with the upper boundary of time interval in
[95.5°, 225.5°]. From Fig. 6 we can see that the accuracy and
the efficiency of the proposed approach are satisfied.

To inversely obtain the maximum probable life time for the
required TDFP 0.09. We directly choose [95.5°, 225.5°] as the
boundary of the dichotomy. The range of the TDFPs in the
interval [95.5°, 225.5°] is 0 ~1 which includes 0.09. Set the
error limit 0.5×10− 2 in the dichotomy and the procedure is
shown in Table 7. The inverse results are shown in Table 8.
From Table 8 we can see that the maximum probable life time
of the given TDFP constraint 0.09 is 118.544° and the relative
error compared with MCS only is 0.24% while the total num-
ber of model evaluations is 182 in the time-dependent reliabil-
ity and the maximum probable life time analysis by the pro-
posed approach, and it is shown that the proposed approach is
much more efficient than MCS.

Table 6 The procedure of the
dichotomy with the interval [0,5]
for Case study I

k ak tk bk
1 0(−) 2.5(+) 5(+)

2 0(−) 1.25(+) 2.5(+)

3 0(−) 0.625(+) 1.25(+)

4 0(−) 0.3125(−) 0.625(+)

5 0.3125(−) 0.46875(−) 0.625(+)

6 0.46875(−) 0.546875(+) 0.625(+)

7 0.46875(−) 0.5078125(+) 0.546875(+)

8 0.46875(−) 0.48828125(−) 0.5078125(+)

9 0.48828125(−) 0.498046875(−) 0.5078125(+)

10 0.498046875(−) 0.5029296875(−) 0.5078125(+)

95.5 115.5 135.5 155.5 175.5 195.5 225.5
10

-3

10
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10
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10
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t
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f
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Proposed

Fig. 6 TDFPs varying with the upper boundary of time t within
[95.5°, 225.5°]Fig. 5 A four-bar function generator mechanism
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7 Conclusion

In this paper, the maximum probable life time is proposed and
analyzed. Determining the maximum probable life time is an
inverse process of the time-dependent reliability analysis. The
solution of the inverse process needs repeating of the direct
process. Thus, the paper firstly introduces a confidence-based
meta-model approach for the direct time-dependent reliability
analysis, referred to SLAS, in which the time is regarded as a
uniform variable within the time interval. The meta-model can
identify all the instantaneous failure events so that the pro-
posed approach can estimate the TDFPs in any subintervals
of the given time interval involved in the constructed meta-
model, which provides much more information than the
DLAS approach and the existing SILK surrogate modeling
approach. Commonly, the TDFP is monotonic to the upper
boundary of the time interval so that the dichotomy and the
SLAS meta-model based approach can be efficiently integrat-
ed in the inverse process to determine the maximum life time
under the required TDFP constraint. The results illustrate that
the accuracy and the efficiency of the proposed approach is
superior to the existing approaches in terms of the time-
dependent reliability and the maximum probable life time
analysis.
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