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Abstract Light weight and crashworthiness signify two main
challenges facing in vehicle industry, which often conflict with
each other. In order to achieve light weight while improving
crashworthiness, tailor rolled blank (TRB) has become one of
the most potential lightweight technologies. To maximize the
characteristics of TRB structures, structural optimization has
been adopted extensively. Conventional optimization studies
have mainly focused on a single loading case (SLC). In prac-
tice, however, engineering structures are often subjected to
multiple loading cases (MLC), implying that the optimal design
under a certain condition may no longer be an optimum under
other loading cases. Furthermore, traditional deterministic op-
timization could become less meaningful or even unacceptable
when uncertainties of design variables and noises of system
parameters are present. To address these issues, a multi-
objective and multi-case reliability-based design optimization
(MOMCRBDO) was developed in this study to optimize the
TRB hat-shaped structure. The radial basis function (RBF)
metamodel was adopted to approximate the responses of ob-
jectives and constraints, the non-dominated sorting genetic al-
gorithm II (NSGA-II), coupled with Monte Carlo Simulation
(MCS), was employed to seek optimal reliability solutions. The
optimal results show that the proposed method is not only
capable of improving the reliability of Pareto solutions, but also
enhancing the robustness under MLC.
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1 Introduction

The research attention in automotive industry has been paid to
vehicle lightweight and crashworthiness due to ever-growing
requirements in environmental concerns, government legisla-
tions and consumer demanding (Sun et al. 2010).
Unfortunately, these two performances always conflict with
each other. To maintain crashworthiness performance during
vehicular lightweighting, high strength steel (HSS) and ultra-
high strength steel (UHSS) have been widely adopted to re-
place conventional steel. In this regard, the Ultralight Steel
Auto Body (ULSAB) project achieved a body-in-white
(BIW) weight reduction of 68 kg (from 271 kg to 203 kg)
by using HSS (Kim et al. 2010). Zhang et al. (2006) developed
a rule to carry out lightweight design of automobile parts by
replacing mild steel with HSS, which was validated by numer-
ical simulations. Jiang et al. (2012) designed the door beam
with UHSS to realize full marks of crash tests, with a stiffness
increase of 2.5 times, strength increase of 3.8 times, and
weight reduction of 9.32%.

Although the aforementioned methods of material substi-
tution can reduce vehicle weight effectively, the high prices of
these materials hinder their large-scale application in a highly
competitive market. Moreover, conventional uniform thick-
ness structures may not exert their maximum capacities of
crashworthiness and light weight. Therefore, tailor welded
blank (TWB) process has been developed as an advanced
manufacturing technology. TWB structures are manufactured
by welding metal sheets with different materials and/or thick-
ness prior to the forming process (Merklein et al. 2014). Thus,
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not only does it save materials appreciably, but also provides a
more flexible combination of different sheets. In this regard,
frontal side rails, the inner door panels and B-pillars are some
typical examples (Li et al. 2015; Pan et al. 2010; Shi et al.
2007; Xu et al. 2013). However, since the material properties
in the thermal influence zone can be rather different from base
materials, potentially causing stress concentration and leading
to high risk of fatigue failure. The transverse movement of
seam during deep drawing is disadvantageous and the seam
could abrade the tools significantly (Hirt et al. 2005).

Recently, a new rolling technology, namely tailor rolled
blank (TRB), is developed to overcome these defects of
TWB. Compared with TWB, TRBs allow a continuous tran-
sition between the thick and thin zones leading to better form-
ability and a higher surface quality. Furthermore, the produc-
tion cost of TRBs is independent of the number of thickness
transitions (Merklein et al. 2014). To understand the crushing
behaviors of TRB, TRB thin-walled structures under axial and
lateral impacts have been studied recently (Sun et al. 2015b;
Sun et al. 2014). For example, Sun et al. (2014) investigated
the crashworthiness of a square TRB tube under an axial im-
pact. Chuang et al. (2008) adopted the TRB manufacturing
technology for designing a vehicle underbody. Duan et al.
(2016) redesigned a front longitudinal beam using the TRB
technology, and claimed that the weight of FLB was reduced
by 15.21%, whereas the crashworthiness was improved com-
pared with the baseline design.

While there have been some studies on the design of TRB
structures, most of them were conducted under a specific load-
ing case. As a matter of fact, practical engineering structures are
often subjected to multiple load cases (MLC), implying that an
optimal design under a certain loading condition may not meet
the performance requirements under other loading conditions
(Fang et al. 2015a). The literature indicated that although struc-
tural optimization allows enhancing crashworthiness of vehicle
in a specific loading case, the effectiveness of optimization
could be challenged if different crushing velocities and direc-
tions are considered (Duddeck and Wehrle 2015; Zhang et al.
2014). From a design perspective, an optimum is expected to
accommodate not only a single loading case (SLC), but also
MLC. In this regard, Zhang et al. (2014) proposed a dual
weight factor method to optimize the hollow and conical tubes
under MLC. Qiu et al. (2015) investigated the multi-cell hex-
agonal tube under MLC by using complex proportional assess-
ment and multi-objective optimization approaches.

Furthermore, these abovemntioned MLC designs were large-
ly restricted to deterministic optimization, in which all design
parameters involved are certain. However, engineering problems
inevitably involve uncertainties in loads, geometry, material
properties and operational conditions, etc., in which a determin-
istic optimization could lead to unreliable or unstable designs
thereby increasing risk of design failure (Choi et al. 2006; Fang
et al. 2014; Yang and Gu 2004; Fang et al. 2016). Therefore,

many nondeterministic optimization algorithms have been pro-
posed to take into account the effects of various uncertainties
(Cheng et al. 2006; Youn and Choi 2004) and effectively re-
solved design problems in real-life (Du and Chen 2004; Fang
et al. 2015b; Gu et al. 2013b; Li et al. 2011; Zhu et al. 2011). In
this regard, Du and Chen (2004) proposed the sequential optimi-
zation and reliability assessment (SORA) method and used in
reliability-based design for vehicle crashworthiness of side im-
pact. Chen et al. (2013) developed an optimal shifting vector
approach to enhancing the efficiency of reliability-based design
optimization (RBDO) for the design of honeycomb cellular
structures. Fang et al. (2013) presented a reliability-based multi-
objective design optimization for the design of a vehicle door. To
the authors’ best knowledge, however, there have been limited
studies on the multi-objective reliability-based design optimiza-
tion (MORBDO) for multiple loading case problems.

The rest of the paper is organized as follows: Section 2 pro-
poses the mathematical modeling of multi-objective and multi-
case reliability-based design optimization (MOMCRBDO) pro-
cedure and relevant algorithms, including Monte Carlo simula-
tion (MCS), radial basis function (RBF) metamodeling and the
non-dominated sorting genetic algorithm II (NSGA-II) optimi-
zation. In Section 3, the finite element modeling of TRB hat-
shaped (TRBHS) structures are developed and then the quasi-
static axial crushing and drop-hammer impact tests are per-
formed to validate the accuracy of the FE models. Section 4
depicts the optimization process of MOMCRBDO for
TRBHS, followed by the results and discussions. Finally,
Section 5 draws some conclusions.

2 Methods for design analysis and optimization

2.1 Multi-objective and multi-case reliability-based design
optimization

Generally speaking, engineering structures likely have to be
operated in MLC, and thus a design is expected to be an
optimum under MLC. A multi-objective deterministic design
optimization (MODDO) under MLC can be formulated as
follows (Qiu et al. 2015):

min
Xq

k¼1

λk f i;k xð Þ i ¼ 1; 2;…;m

s:t: g j;k
xð Þ≤0 j ¼ 1; 2;…; nXq

k¼1

λk ¼ 1 λk ≥0

xL≤ x≤xU

8>>>>>>>><
>>>>>>>>:

ð1Þ

where x denotes the vector of design variables, fi,k(x) is the ith
objective under the kth load case; gj,k(x) is the jth inequality

ð1Þ
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constraint function; m and n are the numbers of objective
functions and inequality constraints, respectively; λk is the
weighting factor to reflect the relative importance and/or oc-
currence probability of the kth loading case, q represents the
number of load cases considered; xL and xU are the lower and
upper bounds, respectively. Eq. (1) is a typical deterministic
optimization problem.

To obtain the multi-objective reliable optimization under
MLC, MOMCRBDO is explored in this study. Different from
the deterministic optimization, reliability-based design seeks an
optimum subject to certain probabilistic constraints, mathemat-
ically expressed as:

min
Xq

k¼1

λk f i;k xð Þ i ¼ 1; 2;…;m

s:t: p g j;k
xð Þ≤0

h i
≥Rj;k j ¼ 1; 2;…; n

Xq

k¼1

λk ¼ 1 λk ≥0

xL≤ x≤xU

8>>>>>>>>><
>>>>>>>>>:

ð2Þ

where the design feasibility is formulated as the probability
(p[·]) of constraint satisfaction (i.e., gj,k(x)≤0) bigger than or
equal to a desired probability Rj,k.

2.2 Monte Carlo simulation (MCS) method

The MOMCRBDO problems in Eq. (2) always involve a pro-
cedure to evaluate the failure probability or reliability of con-
straints. Many reliability analysis methods have been devel-
oped, including the approximation methods (e.g., the first order
and second order reliability analysis methods), direct integra-
tion, and sampling methods (e.g., MCS). Among which, MCS
is the most commonly used approach for its accuracy and ap-
plicability (Gu and Yang 2005).

Mathematically, the failure probability pf can be formulated
by the multivariate integration, given as (Melchers 1987):

pf ¼
Z

g xð Þ≤0
f xð Þdx ¼

Z þ∞

−∞
I g xð Þ≤0½ � f xð Þdx ¼ E I g xð Þ≤0½ �f g ð3Þ

where x is the vector of random parameters, g(x) is the
performance function defined such that failure occurs when
g(x) <0, f(x) is the joint probability density function, I[·] is
the indicator function for event g(x) <0, having the value 1
if event g(x) <0 and value 0 otherwise. E{·} is the expec-
tation of the indicator function.

According to Eq. (3), pf can be evaluated using MCS as
follows:

p̂ f ¼
1

N

X N

i¼1
I g xið Þ≤0½ � xið Þ ð4Þ

where p̂ f is the estimated failure probability, and N is the

number of sample points, xi for i=1, 2, …, N are the sample
points generated according to f(x).

The accuracy ofMCS estimation can be quantified with the
standard error, defined as:

error ¼ σ f xð Þffiffiffiffi
N

p ð5Þ

The error is therefore unrelated to the problem dimension
(i.e., the number of design variables), which is very appealing
for large-scale problems. And the error is proportional to

1=
ffiffiffiffi
N

p
, implying that the improvement of accuracy by one

order of magnitude will require 100 times more samples.
Such computational cost can be prohibitive in application
for complex and highly nonlinear problems.

On the other hand, the minimum sampling size required for
the failure probability level p[g(x)≤0] as suggested by (Tu
et al. 1999) is:

L ¼ 10

p g xð Þ≤0½ � ð6Þ

which indicates that for a 10% estimated probability
of failure; about 100 function evaluations (e.g., FEA
runs) are required with some confidence on the first
digit of failure prediction. To verify an event having a
1% failure probability; about 1000 structural analyses
are required, which would be usually considered too
expensive for some engineering applications. To im-
prove computational efficiency, MCS combined with
metamodels, has been employed to quantify the failure
probability, which makes a great number of model eval-
uations feasible (Abdessalem and El-Hami 2015; Fang
et al. 2013; Jansson et al. 2008).

2.3 Metamodeling

Crashworthiness optimization requires a considerable
number of nonlinear finite element (FE) runs which
typically leads to high computational cost, especially
for a MOMCRBDO problem in Eq. (2). As an alterna-
tive, the metamodeling techniques have been widely
used, which can largely reduce the number of FE runs.
In this regard, the radial basis function (RBF) has ex-
hibited a fairly good accuracy for highly nonlinear prob-
lems (Fang et al. 2005; Sun et al. 2011; Xu et al. 2013)
and was utilized to construct the metamodel for re-
sponses in this study.

To construct a metamodel accurately, design of exper-
iment (DOE) needs to be first employed to sample the
design space. Among many available DOE approaches,
the optimal Latin hypercube sampling (OLHS) (Park
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1994; Sun et al. 2012) has proven effective and was im-
plemented here to generate sample points. Then, the re-
sponses of these sample points need to be evaluated by
FEA for constructing RBF models.

A typical RBF model can be formulated as (Hardy 1971):

f xð Þ ¼
XN
i¼1

wiϕ x‐xik kð Þ þ
XM
j¼1

c jp j xð Þ ð7Þ

where N is the number of sampling points, ∥x ‐ xi∥ is the
Euclidean norm of design variable vectors x and the ith
sampling point xi, ϕ is a basis function, wi is the un-
known weighting factor positioned at the ith sampling
point; M is the number of polynomial terms, pj(x) are
the polynomial terms and cj is the corresponding coef-
ficient for pj(x), usually M <N. Obviously, an RBF
model is actually a linear combination of N radial basis
functions and M polynomial terms with the weighted
coefficients.

Of those feasible basis functions, the multi-quadric

formulation (specifically ϕ rð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
, where c is

the free shape parameter) was chosen for its prediction
accuracy as well as commonly linear and possibly ex-
ponential rate of convergence with increasing sampling
points (Acar et al. 2011). More discussion about RBF in
crashworthiness design can be found in literature (Fang
et al. 2005).

It should be noted that RBF passes through all sam-
ple points, meaning that the fitness accuracy of an ap-
proximate function from the existing sampling points
cannot be checked directly. For this reason, a series of
additional validation points were generated to verify the
accuracy of the constructed metamodels. Three different
fitting indicators, namely R-square (R2), relative average
absolute error (RAAE) and relative maximum absolute
error (RMAE), are employed here (Jin et al. 2001) and
given as

R2 ¼ 1−

X K

i¼1
yi−ŷi

� �2

X K

i¼1
yi−y

� �2 ð8Þ

RAAE ¼
X K

i¼1
yi−ŷi
��� ���X K

i¼1
yi−yi
��� ��� ð9Þ

RMAE ¼
max y1−ŷ1

��� ���;…; yK−ŷK
��� ���n o

X K

i¼1
yi−ŷi
��� ���.K

ð10Þ

whereK is the number of newly generated validation points, yi
is the true values, ŷi is the corresponding approximate
metamodel value, and y is the mean of yi. In general, the larger
the R2 values, the more accurate the metamodel. The smaller
the RAAE and RMAE, the better the metamodel.

2.4 Non-dominated sorting genetic algorithm II
(NSGA-II)

In this study, the NSGA-II (Deb et al. 2002) was
employed to obtain the non-dominated optimal
solutions for the multi-objective optimization problem.
The main features of NSGA lie in that it ranks
solutions with non-dominated sorting and assigns them
in fitness based on their ranks. While the crossover and
mutation operators remain similar to a simple GA, the
selection operator distinguishes itself. As an improve-
ment of NSGA, NSGA-II is characterized by a fast
non-dominated sorting procedure that is an elitist strat-
egy, a parameter-less diversity-preservation mechanism
and a simple yet efficient constraint-handling method.
Many crashworthiness design problems (Gu et al.
2013a; Gu et al. 2013b; Liao et al. 2008; Xu et al.
2013) have been successfully solved using NSGA-II.
The details of NSGA-II can be found in Deb et al.
(2002).

During the optimization progress, accurate RBF
models were first constructed with the given weighting
factors for different loading case. Then, the NSGA-II
algorithm was employed to perform the deterministic
and non-deterministic optimization with MCS. For clar-
ification, the proposed MOMCRBDO procedure for the
crashworthiness optimization of TRB structures is fur-
ther depicted in the flowchart (Fig. 1).

3 Numerical modeling and experimental validation

3.1 Description of geometrical features

The front longitudinal beam is the most significant
energy-absorbing component for frontal impacts, and
its collapse modes and energy absorbing capability can
greatly influence the full vehicle crashworthiness and
safety of passengers. To simplify the complexity of real
front longitudinal beam, a representative TRB hat-
shaped (TRBHS) structure was extracted for design
analysis and optimization, as shown in Fig. 2.

The TRBHS specimen consists of a hat-shaped sheet
and a bottom sheet which are joined by spot-welding
along the center line of the flange with a spot diameter
of 5mm at an interval of 30 mm, as shown in Fig. 3a.
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These two sheets are divided into three different thick-
ness zones, namely thin zone, thick zone and thickness
transition zone (TTZ), respectively. The total length
and the flange width of TRBHS are L = 400 mm and
30 mm, respectively. The corner radii near the weld
flange and at the top edges are R = 4 mm. The other
detailed dimensions of the TRBHS are illustrated in
Table 1. The transition slope of the TTZ are set as
1:100 to meet the economic requirement (Hirt et al.
2005). Herein, the length of the TTZ, l2 in Fig. 3b,
is 40 mm.

3.2 Numerical modeling

3.2.1 Material constitutive model for TRB

To systematically understand the crashworthiness char-
acteristics of TRBHS, the finite element models under

quasi-static loading case and dynamic loading case
were established. The material of hat-shaped specimen
considered herein is high-strength steel HSLA 340,
whose density, Poisson’s ratio and Young’s modulus
are 7.8 × 103 kg/m3, 0.3 and 210 GPa, respectively.
To consider the non-uniform material properties of
TRB due to the variable thickness, Duan et al. (2016)
have developed the effective stress vs. effective strain
relation of TRBs made of HSLA 340 by the Lagrange
polynomial interpolation, as illustrated in Fig. 4. Based
on the interpolation surface in Fig. 4b, the material
properties can be obtained for any thickness.

3.2.2 Finite element modeling

The explicit nonlinear FE code LS-DYNA was
employed to simulate the crashworthiness of the
TRBHS. Figure 5 shows the FE model of the TRBHS
subjected to axial impact. The 4-node quadrilateral
Belytschko-Lin-Tsay shell elements with reduced inte-
gration were used to model the TRBHS walls. To model
the thickness variation more realistically, different thick-
nesses were assigned to four nodes of the shell elements
using the keyword *ELEMNET_SHELL_THICKNESS
in LS-DYNA (Hallquist 2007), as shown in Fig. 6.
Five integration points were employed across the thick-
ness to capture the local element bending, and stiffness-
type hourglass control was utilized to eliminate spurious
zero energy models. The constitutive behavior of
HSLA340 was modeled via the piecewise linear plastic-
ity material model, MAT 24, in LS-DYNA (Hallquist
2007; Kopp et al. 2005). To accurately consider the
different material properties in the different thicknesses,
the elements with nearly the same thickness were

Fig. 1 The flowchart of multi-objective and multi-case reliability-based design optimization

Fig. 2 The typical hat-shaped structure in vehicle
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defined as one component and each component was
assigned its own mechanical properties that were inter-
polated from the effective stress vs. effective strain re-
lationship (i.e. Fig. 4) as illustrated in Fig. 6. To deter-
mine the proper mesh size, several simulations were
carried out and an element size of 3 × 3 mm was found
sufficient for the numerical simulations. The two parts
of the TRBHS were welded together along the center
line of the flange by employing a constrained spot-weld
option.

The FE model of quasi-static axial crushing tests is shown
in Fig. 5a, where the two platens were both modeled to be
rigid and the bottom one was fixed. A constant velocity V=5
mm/min was applied to the top platen to gradually crush the
specimen. The contact between the specimen and two rigid
walls was modeled using “automatic node to surface” algo-
rithm. The “automatic single surface” algorithm was
employed to the specimen itself to avoid interpenetration dur-
ing axial collapse.

Figure 5b shows the FE modeling of dynamic impact tests.
The bottom of the specimen was fixed to a rigid wall and a

rigid platen impacted onto the specimen at an initial velocity
of 8 m/s with an additional mass of 706 kg. The “automatic
single surface” algorithm was defined to simulate the self-
contact of the specimen in buckling and “automatic node to
surface” algorithm was defined between the specimen and the
two rigid walls. The static and dynamic coefficients of fric-
tions were set as 0.35 and 0.25, respectively.

Since HSLA340 is a strain-rate sensitive material, the
strain-rate effect should be taken into account. In this
study, the effect was accounted for using the Cowper-
Symonds model given as (Hallquist 2007):

σy εpeff ; ε
p

eff

� �
¼ σs

y εpeff

� �
1þ ε

p

eff

C

0
@

1
A

1=p
2
64

3
75 ð11Þ

where σy εpeff ; ε
p
eff

� �
is the dynamic yield stress, σy

s(εeff
p ) is the

static stress and εpeff is the strain rate. C and p denote two

strain-rate parameters.

3.3 Experimental validation

To validate the TRBHS modeling accuracy under different
loading cases, the quasi-static crushing test and the drop-
hammer impact test were carried out in this study.

(a)

(b)

Fig. 3 Description of a
manufacturing process, b the
dimensions of the TRBHS

Table 1 The dimensions of the TRBHS

Parameters t1 t2 l1 w h

Dimension (mm) 1.2 1.6 180 105 85
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3.3.1 Experimental details

The quasi-static crushing tests were performed in a stan-
dard universal testing machine MTS647, as shown in
Fig. 7. To ensure a central crushing, two steel plates

were respectively placed at the upper and lower end
of the specimens without other constraints. The thin
zone of the TRBHS specimens was placed at the inci-
dent (top) end for all the tests to generate progressive
folding collapses. A constant crushing speed of 5 mm/
min was set. The total compression displacement was
set as a constant of 270 mm, which represents 67.5%
of the specimen length.

The drop-hammer impact tests were performed in a
dynamic test rig, as illustrated in Fig. 8. To prevent the
toppling of the specimens, a steel plate was welded to
the bottom end of the specimens. The other steel plate
was placed at the top end of the specimens to ensure a
central loading. The dynamic procedure was conducted
at the initial impact velocity 8 m/s with an additional
mass of 706 kg.

3.3.2 Validation of the FE model

To systematically study the crashworthiness of structures,
crashworthiness indicators, i.e., peak crash fore (Fmax) and
energy absorption (EA), were usually used, as shown in
Fig. 5c.

The EA of a structure subjected to the axial compression
loading can be calculated as:

EA ¼
Z dmax

0
F xð Þdx ð12Þ

where dmax is the maximum crushing distance, F(x) de-
notes crashing force. The peak value of F(x) during the
whole crashing progress is denoted as Fmax.

The experimental and corresponding simulation re-
sults are given in Figs. 9 and 10, respectively. It is clear
that the force versus displacement and energy versus

Fig. 5 Schematic of a quasi-static axial crushing tests b dynamic impact tests c indicators of axial crushing

Fig. 4 Effective stress–strain relationship a Different thicknesses, b
Interpolation surface (Duan et al. 2016)

Multi-objective and multi-case reliability-based design 1905



displacement curves of the FE simulation agree well
with the experimental results. Moreover, the deformation
modes of the simulation match very well with those of
the experiments. The satisfactory correlations suggested
that the FE models is able to well predict the crash
process of the TRBHS specimen and can be employed
for the further design analysis and optimization.

3.3.3 Numerical results and discussion

To better understand the crashworthiness of TRBHS under
axial crushing loading, a range of TRBHSs with different
dimensions were investigated using the FE simulation. As
shown in Table 2, Case 0 is the experimentally-validated
model. Other cases were modeled to investigate the effects
of the thicknesses of the thin and thick zones (t1, t2), the
position of TTZ (l1) and sectional dimensions (w, h) of
TRBHS on crashworthiness. For Cases 1 to 4, only one

parameter was changed each time to quantify the parametric
influence by comparing with Case 0. All the cases in this
study were summarized in Table 2.

Figures 11 and 12 plot the histograms of crashworthiness
indicators (i.e., Fmax and EA), respectively. From these two
figures, it is easily found that the structural parameters signif-
icantly affect the TRBHS crashworthiness. Specifically, Fmax

is strongly influenced by the thickness of thin zone (t1) while
EA is affected by all the structural parameters considered.
Note that greater values of the thicknesses of the thin and thick
zones (t1, t2) can improve EA, but a larger value of the thick-
ness of the thin zone (t1) influences Fmax negatively. Besides,
EA decreased with the increase in the length of thin zone (l1)
and the effect of sectional dimensions on EA is far greater than
that on Fmax. More importantly, the change trends of design
variables to the crashworthiness indicators significantly differ
under the quasi-static and dynamic crashes, further reinforcing
the strategy of design optimization under MLC.

Fig. 7 Quasi-static axial crushing
tests setup

Fig. 6 Schematic of FE modeling of TRB with a variable thickness
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4 Multi-objective and multi-case reliability-based
design optimization

4.1 Definition of optimization problem

For addressing crashworthiness and lightweight criteria, the
design optimization presented here aims to maximize energy

absorption and minimize the mass, while limiting the
peak force during collapse (White and Jones 1999).
Thus, the EA and mass M of TRBHS are chosen as
objective functions, whilst the peak force Fmax should
be constrained within a certain level. To account for the
effects of different loading cases, the deterministic
multi-objective optimization problem can be defined

Fig. 8 Drop-hammer impact test
setup

Fig. 9 Comparison between the quasi-static FE simulation and corresponding experimental test: a impact force versus displacement curves, b energy
versus displacement curves, c deformation modes under quasi-static axial crushing
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mathematically as

min −
Xq

k¼1

λkEAk t1; t2; l1; w; hð Þ;
Xq

k¼1

λkMk t1; t2; l1; w; hð Þ
( )

s:t: Fmax;k t1; t2; l1; w; hð Þ≤ F0
max;kXq

k¼1

λk ¼ 1 λk ≥0

1≤ t1≤ t2≤2 50≤ l1≤ 250 80≤w≤280 60≤h≤ 100

8>>>>>>>><
>>>>>>>>:

ð13Þ

where Fmax,k
0 is the limit to the peak force; the thicknesses

of thin and thick zones (t1, t2), the location of TTZ (l1)
and sectional dimensions (w, h) are chosen as the design
variables, seen in Fig. 3b.

When the number of loading case, q in Eq. (13), is set
as 1, the optimization problem would downgrade to a
SLC problem, which represents either the quasi-static
loading case or the dynamic loading case herein. Fmax,k

0

for the quasi-static and the dynamic loading cases were
set as 90 kN and 320 kN herein, respectively. When load
case number q is set as 2, λ1 and λ2 represent the weight
factors for the quasi-static loading case and the dynamic
loading case, respectively.

To take into account the effects of uncertainties of design
variables and obtain the reliable optimal design underMLC, the
MOMCRBDO can be formulated as

min −
Xq

k¼1

λkEAk t1; t2; l1; w; hð Þ;
Xq

k¼1

λkMk t1; t2; l1; w; hð Þ
( )

s:t: p Fmax;k t1; t2; l1; w; hð Þ≤ F0
max;k

h i
≥RkXq

k¼1

λk ¼ 1 λk ≥0

1≤ t1≤ t2≤2 50≤ l1≤ 250 80≤w≤280 60≤h≤ 100

8>>>>>>>>><
>>>>>>>>>:

ð14Þ

where the design feasibility is formulated as the probability
(p[·]) of constraint satisfaction Fmax,k(t1, t2, l1, w, h)≤Fmax,k

0

bigger than or equal to a desired probability Rk, which was set
as different levels of 90%, 95%, 99% in this study.

To solve the problems defined in Eq. (13) and Eq. (14), the
multi-objective optimization procedure was employed based on
the RBF metamodels, NSGA-II algorithm with MCS. The de-
tailed parameters of NSGA-II employed herein were summa-
rized in Table 3. It is assumed that all the design variables are
normally disturbed with a coefficient of variation of 0.05. For
the probabilistic constraints defined in Eq. (14), MCS were
performed to estimate the reliability by employing metamodels

Fig. 10 Comparison between the dynamic FE simulation and corresponding experimental test: a impact force versus displacement curves, b energy
versus displacement curves, c deformation models under drop-hammer impact tests.
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instead of FEA runs, where the OLHS was employed to gener-
ate 100 sample points and then their responses were extracted
from FEA. Based on the simulation results, the RBFs of EA,M
and Fmax under different loading cases can be easily construct-
ed. To analyze the influence of the free shape parameter c on the
accuracy of RBFs, c=0, 0.25, 0.5, 0.75 and 1 were adopted to
construct the metamodels for quasi-static and dynamic loading
cases, respectively. 18 new validation points were generated by
OLHS and used to evaluate the accuracy of the RBF models.
The results of R2, RAAE and RMAEwere listed in Tables 4 and

5. Although the free shape parameter c has certain effect on the
RBF performance, it is hard to say which one is the most suit-
able for all the cases. In general, regardless of c value, these
metamodels are considered sufficiently accurate to be
employed in the crashworthiness design. Furthermore, some
researchers (Gu et al. 2013b; Xu 2015; Xu et al. 2013) found
that c=0.5 is suitable for most crashworthiness problems, thus
c=0.5 is adopted herein.

4.2 Result of MORBDO under different SLC

Figure 13 presents the Pareto fronts for the deterministic and
reliable designs with different reliability levels under the
quasi-static loading case and dynamic loading case, respec-
tively. It can be clearly observed that these two objective EA
andM conflict with each other for all the cases, indicating that
any increase in EA always leads to an undesirable increase in
M, and vice versa. Although the shapes of the Pareto fronts
under different reliability levels look similar, their ranges
change fairly evidently. That is to say, the uncertainties of
design variables have an important influence on the crashwor-
thiness of the TRBHS. More specifically, the Pareto front of
the reliable design was further away from the deterministic
design when the reliability level increases.

Furthermore, it can be noted that the Pareto fronts can be
divided into an insensitive region in the upper-left and a sen-
sitive region in the lower-right. The insensitive region pos-
sesses a smaller mass, which would possibly result in a lower
peak force and push the design far away from the constraint
boundary. Thus, this region has a higher reliability, where the
Pareto fronts of deterministic design and reliable design al-
most coincide. On the contrary, the sensitive region had a
lower reliability and the Pareto front of reliable design was
pushed away from the deterministic counterpart.

Although the Pareto fronts provide the designer with
a great number of solutions over the Pareto space,

Fig. 11 Variation of a Fmax and b EA for different design parameters under quasi-static crushing

Table 2 Parametrical analysis of the TRBHSs

Case t1 t2 l1 w h

Case 1 1.2 1.6 180 105 65 (↓)

1.2 1.6 180 85 (↓) 85

1.2 1.6 160 (↓) 105 85

1.2 1.4 (↓) 180 105 85

1.0 (↓) 1.6 180 105 85

Case 2 1.2 1.6 180 105 75 (↓)

1.2 1.6 180 95 (↓) 85

1.2 1.6 170 (↓) 105 85

1.2 1.5 (↓) 180 105 85

1.1 (↓) 1.6 180 105 85

Case 0 1.2 1.6 180 105 85

Case 3 1.3 (↑) 1.6 180 105 85

1.2 1.7 (↑) 180 105 85

1.2 1.6 190 (↑) 105 85

1.2 1.6 180 115 (↑) 85

1.2 1.6 180 105 95 (↑)

Case 4 1.4 (↑) 1.6 180 105 85

1.2 1.8 (↑) 180 105 85

1.2 1.6 200 (↑) 105 85

1.2 1.6 180 125 (↑) 85

1.2 1.6 180 105 105 (↑)
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decision must be made for the most satisfactory solution
from the Pareto-sets. The minimum distance selection
method (TMDSM) (Sun et al. 2010) was employed
herein to obtain the most satisfactory solution (namely
a Knee point) for different loading cases. A brief over-
view of the TMDSM was presented in the Appendix.
The reliable optima for R= 90%, 95%, 99% along with
the deterministic optimum and baseline design were
summarized in Tables 6 and 7. And MCS with 100,
500, 800 and 1000 samples were conducted, respective-
ly, at each optimum to obtain the corresponding reliabil-
ities. It turned out that 1000 MCSs was adequate herein.
The reliabilities of the constraints were also presented in

Tables 7 and 8. The relative error of the deterministic
optimal design was summarized in Table 8. It can be
seen easily that the maximum error was less than 6.6%,
which indicates that the metamodel-based optimization
was reasonably accurate. From Tables 6 and 7, it can
be seen that both the deterministic design and reliable
design can improve the crashworthiness of the TRBHS.
However, the reliability of the deterministic optimum
was very low. The crashworthiness of TRBHS gradually
decreased when the reliability requirement increases
from 90% to 99%. Therefore, a compromise should be
made between the desired reliability level and the ob-
jective performances in practical applications.

4.3 Result of MOMCRBDO

Because the impacting velocity was really unpredictable
in car accidents, Therefore, it is essential and practical
to consider the uncertainty of the collision velocity in
designing the energy-absorbing structures. To take into
account the effects of multiple load cases, the weighting
factor approach, as formulated in Eqs. (13) and (14),
was adopted. To investigate the effect of weighting

Table 4 Accuracy evaluation for different free shape parameter c under quasi-static loading case

c EA M Fmax

R2 RAAE RMAE R2 RAAE RMAE R2 RAAE RMAE

0 0.9832 0.1361 2.081 0.9996 0.0207 1.775 0.9858 0.1393 1.789

0.25 0.9854 0.1326 1.889 0.9997 0.0193 1.987 0.9887 0.1305 1.632

0.5 0.9873 0.1273 1.698 0.9997 0.0173 1.144 0.9877 0.1355 1.375

0.75 0.9886 0.1222 1.677 0.9993 0.0287 1.905 0.9906 0.1350 1.311

1 0.9865 0.1175 1.706 0.9998 0.0134 1.742 0.9855 0.1360 1.457

Table 3 Details of the NSGA-II parameters used in this study

NSGA-II parameter name Value

Population size 100

Generation 100

Probability of crossover 0.9

Distribution index for crossover 10

Distribution index for mutation 20

Fig. 12 Variation of a Fmax and b EA for different structural parameters under dynamic crushing
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factors on the optimum, three design cases were consid-
ered here to emphasize static and dynamic crash differ-
ently, as follows:

Case 1 : λ1 ¼ 0:25; λ2 ¼ 0:75
Case 2 : λ1 ¼ 0:5; λ2 ¼ 0:5
Case 3 : λ1 ¼ 0:75; λ2 ¼ 0:25

8<
: ð15Þ

To compare the deterministic design under SLC and
MLC, the corresponding Pareto fronts were plotted in
Fig. 14a together. Obviously, the selection of weight

factors for different loading cases had considerable ef-
fect on the optimal solution. Taking Case 1 (Fig. 14a)
as an example, the Pareto front located fairly closely to
the optimal solution generated from the dynamic loading
case, while the Pareto fronts generated by the other
cases were far away. This was because a heavier
weighting factor was placed to the dynamic loading
case (i.e., λ2 = 0.75). Similarly, Case 3 assigned a heavi-
er weight to the quasi-static loading case, thus its Pareto
front was close to the quasi-static loading solution, as
shown in Fig. 14a. The trend of Case 2 was not obvious

Fig. 13 Pareto fronts for a quasi-static loading case; and b dynamic loading case

Table 5 Accuracy evaluation for different free shape parameter c under dynamic loading case

c EA M Fmax

R2 RAAE RMAE R2 RAAE RMAE R2 RAAE RMAE

0 0.9646 0.2037 2.1421 0.9974 0.3590 2.230 0.8938 0.3690 2.012

0.25 0.9644 0.1999 2.2365 0.9633 0.2989 2.583 0.9072 0.3427 2.063

0.5 0.9648 0.1972 2.256 0.9946 0.2281 1.755 0.9263 0.3219 2.117

0.75 0.9647 0.1962 2.257 0.9487 0.1731 2.851 0.9227 0.3057 2.168

1 0.9675 0.1899 2.206 0.9697 0.1317 2.884 0.9276 0.2917 2.218

Table 6 MCSs at deterministic and reliable optimal design under
quasi-static loading case

Response Baseline Deterministic 90%
Reliable

95%
Reliable

99%
Reliable

EA 8.8120 10.199 9.5471 9.5594 9.0928

M 2.2480 1.8610 1.7840 1.8084 1.7473

Fmax 87.143 89.523 79.179 77.416 73.000

Feasibility / 48.42% 90.87% 94.71% 99.14%

Table 7 MCSs at deterministic and reliable optimal design under
dynamic loading case

Response Baseline Deterministic 90%
Reliable

95%
Reliable

99%
Reliable

EA 15.933 19.918 18.851 18.667 18.380

M 2.2480 1.5590 1.5173 1.5390 1.5944

Fmax 336.17 319.46 300.73 296.05 287.55

Feasibility / 52.47% 90.24% 95.00% 99.15%
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because it emphasized all the loading cases equally.
The difference of these Pareto fronts indicates that
the selection of weighting factors for different loading
cases was critical in the MOMCRBDO solution.
Therefore, weighting factors for different loading case
should be determined based on the occurrence frequen-
cy or statistical data in real life.

Fig. 15 compared the Pareto solutions of MLC for
different weighting factors under quasi-static and dy-
namic loading. From which, it is easily found that the

optimal solution under quasi-static loading case may
not be an optimum in dynamic loading case, and vice
versa. The specific solution to the quasi-static loading
case was able to simultaneously reduce the M and
enhance the EA compared to the dynamic loading
case. That is to say, the optimal designs for SLC only
favored a specific loading case. When the designs
were subjected to other loading case, the crashworthi-
ness would deteriorate to a certain extent. It is inter-
esting to note that the Pareto fronts for MLC were all
located not far away from the corresponding Pareto
fronts for SLC in the design space as shown in
Fig. 15. That is to say, although the optimal designs
under MLC are not able to obtain the optimal solu-
tions for a specific single case, they can obtain a
range of compromise solutions for the MLC.

To obtain the reliable optimal design for MLC, the
MOMCRBDO were performed at different reliability
levels (i.e., R = 90%, 95%, 99%) and the optimal re-
sults were plotted in Fig. 14c-d. It can be easily seen
that the range of Pareto front with MOMCRBDO was

Table 8 Error analysis of the deterministic optimal design

Description EA M Fmax

Quasi-static loading case Optimal 10.199 1.8610 89.523

FE model 9.6800 1.8560 94.653

error % 5.08% 0.27% −5.73%
Dynamic loading case Optimal 19.918 1.5590 319.46

FE model 18.519 1.6410 327.18

Error (%) −5.06% −6.60% −3.93%

Fig. 14 Pareto fronts for a deterministic design b reliable design of Case 1 c reliable design of Case 2 and d reliable design of Case 3
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significantly less than the MODDO for MLC, and the
Pareto fronts of the reliable design moved gradually
toward right as the reliability requirement increases.
In other words, the EA needs to be decreased to ac-
commodate the uncertainty of design variables in
MOMCRBDO. This phenomenon is consistent with
the results of MORBDO for SLC.

To obtain the most satisfactory solution from the
Pareto-fronts, the TMDSM was employed and the opti-
mum results were listed in Tables 9, 10 and 11, respec-
tively. The MCS with 1000 samples were also per-
formed at each optimum to obtain the corresponding
reliability. Compared with the baseline design, it can
be seen that the MOMCDDO solution can improve the
crashworthiness of the TRBHS, but is worse than the
deterministic optimal solutions. In addition, the reliabil-
ity of the reliable optimal solution was higher. This

means that although the objective performances were
sacrificed, the reliability of design increased significant-
ly through MOMCRBDO.

5 Conclusions

Vehicular crashworthiness design without considering
the random nature of design variables and unpredictabil-
ity of collision would reduce the reliability of structures.
Based on the reliability-based multi-objective design
strategy, the tailor rolling blank hat-shaped (TRBHS)
structure was optimized in this study. To systematically
investigate the crashworthiness of the TRBHS structure,
the FE modeling was developed and the corresponding
FE analysis was conducted by employing the explicit
nonlinear FE code LS-DYNA. Then the quasi-static

Fig. 15 Pareto Solutions of MLC for different weighting factors: a quasi-static loading case b dynamic loading case

Table 9 MCSs at deterministic and reliable optimal design (Case 1)

Response Baseline Deterministic 90% Reliable 95% Reliable 99% Reliable

EA 14.152 15.584 14.711 14.499 14.220

M 2.2480 1.6381 1.5769 1.5556 1.4917

Fmax,1/Fmax,2 87.248/336.17 89.975/279.83 81.214/272.33 79.016/270.74 74.951/271.27

Feasibility / 50.43%/94% 90.4%/99% 95.34%/100% 99.04%/99.98%

Table 10 MCSs at deterministic and reliable optimal design (Case 2)

Response Baseline Deterministic 90% Reliable 95% Reliable 99% Reliable

EA 12.373 13.601 13.669 13.920 13.328

M 2.2480 1.6881 1.7690 1.8093 1.7368

Fmax,1/Fmax,2 87.248/336.17 89.999/276.85 79.397/280.92 76.781/271.26 71.945/270.33

Feasibility / 50%/96% 90.24%/94.34% 95.16%/99.88% 99.06%/99.93%
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axial crushing and drop-hammer impact tests were per-
formed to validate the FE models. The uncertainties in
key geometric dimensions and weighting factors for dif-
ferent loading cases were considered, and NSGA-II and
MCS were integrated to seek the Pareto fronts for the
multi-objective and multi-case reliability-based design
optimization (MOMCRBDO) problems. To provide the
decision-maker with insightful information, the MODDO
and MORBDO were conducted to maximize the energy
absorption and minimize the mass simultaneously under
single and multiple loading cases respectively. From the
Pareto fronts, it can be seen that the proposed method is
not only capable of improving the reliability of Pareto
solutions, but also generates more competent solution to
the crashworthiness for MLC. Finally, the selected opti-
mums from these Pareto fronts demonstrate that the ob-
jective performances could be sacrificed somewhat to
satisfy the reliability constraints compared with
MODDO, indicating that compromise should be made
between the desired reliability level and objective per-
formances in crashworthiness design.

Nevertheless, there exist some limitations in this work.
Firstly, this study considered only the uncertainties in geomet-
rical dimensions as well as unpredictability of collision veloc-
ity. Despite their critical importance to optimization of TRB
structure, other uncertainties, such as collision direction, can
affect the reliability of the optimal solutions to some extent,
which should be taken into account. Secondly, the weighting
factor technique was adopted to combine different loading
cases. It turned out that the weighting factors have significant
influence on the Pareto’s location, range and shape. For this
reason, the weighting factors for different load cases should
follow the statistical data and/or occurrence frequency under
multiple impact velocity in real life. Thirdly, the
MOMCRBDO presented in this paper used the RBF
metamodels to approximate the responses. However, for
multi-variable problems, constructing a fine RBF metamodel
requires substantial number of FE analyses, whose computa-
tional cost may become prohibitive in more complex
problems.
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Appendix: brief of the minimum distance selection
method (TMDSM)

In this study, TMDSM is employed to obtain a most satisfac-
tory solution from the Pareto-sets. Brief description of the
TMDSM is provided below.

The TMDSM can be mathematically formulated as (Sun
et al. 2010):

min D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

τ¼1

f cτ−min f τ xð Þð Þð ÞNN

vuut ðA1Þ

where fcτ is the τ th objective value in the c th Pareto set and n
is the number of the objective functions, N=2, 4, 6,…, D is
the least distance from the “Knee point” to a “utopia point (see
Fig. 16), which is composed of the optimum value of each
objective and normally not attainable in real life problems
with conflicting objectives.

Table 11 MCSs at deterministic and reliable optimal design (Case 3)

Response Baseline Deterministic 90% Reliable 95% Reliable 99% Reliable

EA 10.592 12.263 11.625 11.506 11.145

M 2.2480 1.8527 1.7821 1.7771 1.7343

Fmax,1/Fmax,2 87.248/336.17 89.766/300.29 79.524/287.68 76.928/275.72 72.119/273.69

Feasibility / 48.62%/87.37% 89.78%/98.07% 95.10%/99.83% 99.31%/99.88%

Fig. 16 The knee point on the Pareto front having the least distance from
the utopia point
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