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Abstract For tailoring the non-uniform axial compres-
sion, each sub-panel of stiffened shells should be de-
signed separately to achieve a high load-carrying effi-
ciency. Motivated by the challenge caused by numerous
variables and high computational cost, a fast procedure
for the minimum weight design of non-uniform stiffened
shells under buckling constraint is proposed, which de-
composes a hyper multi-dimensional problem into a hi-
erarchical optimization with two levels. To facilitate the
post-buckling optimization, an efficient equivalent analy-
sis model of stiffened shells is developed based on the
N um e r i c a l I m p l em e n t a t i o n o f A s ym p t o t i c
Homogenization Method. In particular, the effects of
non-uniform load, internal pressure and geometric imper-
fections are taken into account during the optimization.
Finally, a typical fuel tank of launch vehicle is utilized to
demonstrate the effectiveness of the proposed procedure,
and detailed comparison with other optimization method-
ologies is made.
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1 Introduction

During the flight condition of launch vehicles, stiffened shells
in the boosters would suffer from a non-uniform axial com-
pression along circumferential direction, as shown in Fig. 1.
As is well known, stiffened shells under axial compression are
prone to buckling and collapse (Degenhardt et al. 2008;
Loughlan 1994), and their load-carrying capacities are very
sensitive to geometric imperfections (Paulo et al. 2013; Hao
et al. 2015a). The design of stiffened shells under non-uniform
axial compression is very complicated, since the buckling be-
havior is prominently characterized by geometric nonlinearity
due to the coupling effects of axial compression and additional
bending loads, as well as initial imperfections.

In the previous works, an exhaustive study of imperfection
sensitivity analyses has been conducted for cylindrical shells
under axial compression with the goal of determining the
knockdown effect with more accuracy (Hilburger et al.
2006; Castro et al. 2014; Wang et al. 2014; Degenhardt et al.
2014; Godoy et al. 2015; Azarboni et al. 2015; Friedrich et al.
2015; Wang and Croll 2015; Liang et al. 2015). Since the
buckling behavior of thin-walled structures with geometric
imperfections is very complicated, high-fidelity post-buckling
analysis procedure becomes more popular for the imperfec-
tion sensitivity analysis and design optimization of stiffened
shells. Up to now, eigenmode-shape imperfection was com-
monly used in the load-carrying capacity assessment of thin-
walled structures, because it represents the deformation shapes
with a high bias towards buckling (Teng and Song 2001; Hao
et al. 2013).

With the growing application of stiffened shells in future
launch vehicles, structural weight becomes increasingly more
important for lifting payload. Therefore, many optimizations
have been conducted in previous studies. Typically, the min-
imum weight design optimization of stiffened panels was
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carried out based on PANDA2 and validated by STAGS
(Bushnell and Bushnell 1994). Also, the buckling, strength
and displacement constraints were considered by Starnes Jr
and Haftka (1979). The optimization and antioptimization of
composite cylindrical shells based on measured imperfections
were conducted by Elishakoff et al. (2012). Foryś (2015) per-
formed the optimization of stiffened shells using the modified
particle swarm optimization method. Recently, the optimiza-
tion of composite panels considering worst shape imperfec-
tions was performed by Henrichsen et al. (2015). In addition,
the crack propagation was also taken into account in the de-
sign of composite stiffened panels (Vitali et al. 2002). Since
nonlinear post-buckling analysis of stiffened shells is general-
ly time-consuming, the availability of a fast analysis method
indeed represents a crucial aspect to move from a more costly
optimization to a faster optimization loop. Therefore, Smeared
Stiffener Method (SSM) in conjunction with the Rayleigh-
Ritz method were utilized to calculate the buckling load of
stiffened shells in the preliminary design phase (Lamberti
et al. 2003). Then, a bi-step procedure for post-buckling anal-
ysis of stiffened panels was developed based on the energy
principle and the Rayleigh-Ritz method (Vescovini and
Bisagni 2013). Fukunaga and Vanderplaats (1991) carried
out the buckling optimization of composite shells using lam-
ination parameters, and then solved the inverse problem to
obtain explicit lamination sequences. Moreover, Hao et al.
(2014) proposed a hybrid optimization framework of stiffened

shells by combining the efficiency of SSM with the accuracy
of FEM, and then a hybrid reliability-based design optimiza-
tion framework was established based on SSM and FEM (Hao
et al. 2015b). Compared to the SSM, the asymptotic homog-
enization (AH) method has a higher prediction accuracy of
effective stiffness for periodic structures, which is derived
based on a rigorous mathematical foundation (Kalamkarov
et al. 2009). However, the AH method is difficult to be imple-
mented numerically, which severely limits its applications.
Motivated by this difficulty, Cheng et al. (2013) and Cai
et al. (2014) established a novel numerical implementation
of the asymptotic homogenization (NIAH) method for period-
ic plates. Furthermore, Wang et al. (2015) developed a hybrid
analysis and optimization framework for hierarchical stiffened
plates based on the NIAH method. However, small deflection
assumption was made in the previous studies, and geometric
nonlinearity was not taken into account, which would signif-
icantly affect the post-buckling behavior of stiffened shells. To
this end, Hao et al. (2016a) proposed an efficient optimization
framework of curvilinearly stiffened shells by utilization of
the NIAH method, where the effect of large deflection was
considered. As a supplement of current theory, Meziane et al.
(2014) developed a simple higher order shear and normal
deformation theory to improve the efficiency and accuracy
of buckling analysis. However, with regard to the design of
fuel tank in the boosters of launch vehicle, the non-uniform
compression and internal pressure should be considered si-
multaneously for stiffened shells. Obviously, the complex
load conditions put forward a higher accuracy requirement
for the equivalent stiffness coefficients of equivalent model,
especially for the coupling stiffness coefficients.

In addition, there is only limited work on the analysis and
optimization of stiffened shells under non-uniform axial com-
pression in the available literatures. As was stated by
Greenberg and Stavsky (1995), the buckling response of com-
posite cylindrical shells under circumferentially non-uniform
axial loads was studied. Also, the buckling behavior of com-
posite panels subjected to non-uniform loads was investigated
by Soni et al. (2013). Ovesy and Fazilati (2014) investigated
the dynamic buckling behavior of composite panels under
non-uniform in-plane load. Since non-uniform stiffened shell
usually involves a wide range of parameters associated with a
complex buckling behavior, the design of such structures re-
quires sophisticated analysis and optimization techniques.
Hierarchical optimization is also a good choice for such a
complex problem. The global/local design optimization of
large wing structures was performed by Ragon et al. (1997).
Carrera et al. (2003) carried out the optimization of space
vehicles by a novel bi-level optimization procedure. Peeters
et al. (2015) presented a multi-level approach to reduce the
required number of FE analyses in the optimization of variable
stiffness laminates. Another example is the work by Hao et al.
(2012) who proposed a surrogate-based optimization

Fig. 1 Stiffened shells subjected to non-uniform load in launch vehicles
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framework with adaptive sampling for stiffened panels sub-
jected to non-uniform load, where stiffener dimensions (rather
than stiffener types) can be different in each sub-panel.

Motivated by these previous studies, a fast procedure for
non-uniform optimum design of stiffened shells under buck-
ling constraint is proposed in this study, whose major contri-
bution lies in the utilization of equivalent analysis model and
hierarchical optimization methodology. This paper is orga-
nized as follows. A brief introduction of NIAH method is
given in Section 2. Then, the fast optimization procedure is
proposed in Section 3, and the proposed hierarchical optimi-
zation framework is validated by a simple benchmark exam-
ple. To reduce the computational burden of post-buckling
analysis, an efficient equivalent model of fuel tank in launch
vehicles is developed based on the NIAHmethod in Section 4.
Different from the previous studies, the effects of non-uniform
load, internal pressure, as well as geometric imperfections are
considered simultaneously herein. After that, the non-uniform
optimum design of the illustrative example is obtained by the
proposed procedure. Finally, detailed comparisons with cur-
rent design methods are made from the point-of-view of com-
putational efficiency and weight reduction.

2 Numerical implementation of asymptotic
homogenization (NIAH) method

To fully explore the potential of load-carrying capacity, stiff-
ened shells usually serve in nonlinear post-buckling regime
until global collapse occurs. For this reason, the explicit dy-
namic analysis method should be employed to solve the prob-
lem of convergence. As mentioned earlier, since nonlinear
post-buckling analysis of stiffened shells based on the explicit
dynamic method is generally time-consuming, global optimi-
zation of stiffened shells based on detailed FE models is al-
most not affordable. For this reason, the NIAH method is
adopted in this study to release the computational burden.

For the traditional implementation of AH method, the ef-
fective stiffness coefficients Aij, Bij and Dij of the periodic unit
cell Ω can be obtained as
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where c is the elasticity matrix, the superscripts i and j denote
the load cases (i, j∈ {1, 2, 6 }). The unit strain fields contain
three in-plane strain fields εi

0 and three flexural strain fields

ε0i , and the characteristic strain fields include three in-plane

strain fields εi
∗ and three flexural strain fields ε*i . For the AH

method, a unit stain field is required in solving the cell equa-
tion, which cannot be easily obtained from the FEM method.
The formula derivation and numerical implementation of the
NIAH method can be summarized in Fig. 2.

Firstly, the unit strain fields εi
0 and ε0i can be expressed by

the corresponding nodal displacement fields χi
0 and χ0

i with
strain–displacement matrix B

ε0i ¼ Bχ0
i

ε
0

i ¼ Bχ
0

i

ð2Þ

Then, the FE model of the structure cell is established, and

the nodal displacement fields χi
0 and χ0

i are applied to the FE
model. By performing the first static analysis, the reaction

nodal force vectors fi and f i are obtained as follows

f i ¼
Z
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After that, the corresponding force vectors are applied to
each node in the unit cell, and the equilibrium equations in
Eq. (4) under periodic boundary conditions can be solved by
performing the second static analysis to obtain characteristic
displacement fields (nodal displacement fields) ai

∗ and āi∗

~Ka*i ¼ f i
~Ka

*

i ¼ f i
ð4Þ

where ~K is the stiffness matrix under periodic boundary con-
ditions. The above characteristic displacements ai

∗ and āi∗ can
be calculated directly by use of commercial software.

The characteristic strain fields εi
∗ and ε*i can also be

expressed by the corresponding characteristic displacement
fields ai

∗ and āi∗ with strain–displacement matrix B

ε*i ¼ Ba*i

ε
*

i ¼ Ba
*

i

ð5Þ

The above characteristic displacement fields ai
∗ and āi∗ are

applied to the initial FE model, and the corresponding nodal

reaction forces Pi
∗ and P

*
i can be obtained by performing the

third static analysis

Ka*i ¼ P*
i

Ka
*

i ¼ P
*

i

ð6Þ
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Submitting Eqs. (2, 3, 4, 5, 6) into Eq. (1), the effective
stiffness coefficients of the periodic unit cell Ω can be
expressed as

Ai j ¼ 1
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In this way, stiffened shell can be converted into an
unstiffened shell with anisotropy property, and thus the compu-
tational cost of nonlinear post-buckling analysis can be reduced
significantly.More importantly, the difference of computational
cost between the equivalentmodel and detailedmodelwould be
much greater in the context of optimization, where hundreds of
analyses are required. It should be noted that the post-buckling
analysis of the equivalent unstiffened shell enable the possibility
ofhandling thegeometric nonlinearity.However, this equivalent
model cannot take local buckling modes into account, thus the
final optimum design should be validated by detailed model.

3 Fast procedure for non-uniform optimum design
of stiffened shells under buckling constraint

3.1 Framework of fast procedure

With regard to non-uniform axial compression, each sub-
panel of stiffened shells should be designed separately to
achieve a simultaneous buckling pattern and high load-
carrying efficiency. However, this may result in numerous
design variables and unbearable computational burden,
which is a great challenge for existing optimization meth-
odologies due to the convergence rate and computational
burden (Haftka and Watson 2006; Schutte and Haftka
2010). For the gradient-based optimization methods, it is
not applicable because of the discrete variables. For the
Mixed-Integer Nonlinear Programming method (MINLP),
the number of variables is too many, and the design do-
main is non-convex. More importantly, the necessary con-
dition of global optimum is very hard to describe for the
MINLP method. For this type of problems, evolutionary
optimization algorithms have the potential to find the
global optimum. However, once the evolutionary algo-
rithms are employed, the computational burden is hard
to afford, even if surrogate model is utilized. To this
end, a fast procedure for non-uniform optimum design
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Fig. 2 Formula derivation and numerical implementation of the NIAH method
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of stiffened shells under buckling constraint is proposed,
as shown in Fig. 3.

Since the computational cost of nonlinear post-buckling
analysis is unaffordable for detailed FEA of stiffened shells,
the NIAH method is utilized to smear out the stiffened sub-
panels into unstiffened shells, aiming to improve the compu-
tational efficiency with only little accuracy sacrifice. It should
be noted that weld lands are still treated as unstiffened thick
shells, which are used to link the adjacent sub-panels. Then,
the equivalent model can be constructed for post-buckling
analysis. The prediction accuracy of the equivalent model
should be validated before it can be utilized with full
confidence.

In the previous studies, it has been demonstrated that geo-
metric imperfections play a significant role on the variable
values of the optimum design, and eigenmode-shape imper-
fection is a conservative choice for the prediction of knock-
down effect. In particular, the presence of imperfections in-
creases the nonlinearity of post-buckling behavior of stiffened
shells, which needs to be taken into full consideration, in order
to give an accurate prediction of collapse load in real working
condition. Subsequently, the post-buckling analysis of stiff-
ened shells with geometric imperfections can be performed
based on the equivalent model, with a large improvement of
computational efficiency but only little accuracy sacrifice.

On this basis, the emphasis is then put on the design of
stiffened shells with different sub-panels. Before stiffened

shells can be optimized, the independent sub-panels should
be determined firstly in terms of non-uniform load, since the
optimization efficiency would be significantly reduced with the
increase of the number of independent sub-panels. Therefore, it
is strongly recommended that the stiffener configurations of
sub-panels under the symmetric non-uniform load are imposed
to be identical, for the purpose of reducing the number of in-
dependent variables. Furthermore, some symmetric sub-panels
along axial direction can also be linked together.

Then, the hierarchical optimization for non-uniform opti-
mum design of stiffened shells under buckling constraint can
be carried out, which can be divided into two levels. The
involved variables include stiffener type, skin thickness, stiff-
ener height and thickness, the numbers of axial and circum-
ferential stiffener cells. In the first level, the stiffener type and
numbers of axial and circumferential stiffener cells of each
independent sub-panel are optimized, in order to obtain an
optimum stiffness design in the upper level. Based on the
optimum design, the second-level optimization can be per-
formed, and more detailed variables are involved, including
skin thickness, stiffener height and thickness. In particular, the
considered stiffener type contains of orthogrid, triangle grid,
rotated triangle grid and diamond grid shapes, as shown in
Fig. 4 (Wang and Abdalla 2015). Besides, from the point-of-
view of easy manufacturing and economy, the stiffener height
and skin thickness of each sub-panel are imposed to be equal.
The effectiveness of the proposed hierarchical optimization
framework would be validated through a simple benchmark
example in the following section.

For the optimizations in each level, surrogate-based tech-
niques are recommended to be used to further release the
computational burden of the optimization. To ensure the fea-
sibility of the predicted optimum design, a typical surrogate-
based optimization usually consists of two loops: inner opti-
mizations and outer updates, as shown in Fig. 5 (Queipo et al.
2005). The surrogate model is improved by sampling new
points in promising areas. If the relative error between the
results predicted by surrogate model and the ones from de-
tailed FEA is less than 0.1%, the optimization is considered to
be converged, otherwise, the surrogate model would be up-
dated by the current optimum design, and then another inner
optimization is performed based on the new surrogate model
(Hao et al. 2016b and 2016c). For the surrogate-based optimi-
zation of stiffened shells, computational time has mainly been
spent on the sampling points in design of experiment and outer
updates. Once the surrogate model is constructed successfully,
the optimization process only requires negligible computa-
tional cost even if genetic algorithm is employed. Finally,
the detailed model of the optimum design is established, and
the post-buckling analysis is performed to verify the optimum
design obtained by the equivalent model. If succeed, the op-
timization iteration is terminated, otherwise, go back to the
step of constructing the equivalent model.

Fig. 3 Fast procedure for non-uniform optimum design of stiffened
shells under buckling constraint
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3.2 Validation of hierarchical optimization framework

To demonstrate the efficiency of the proposed hierarchical
optimization framework, a simple benchmark example is in-
vestigated in this Section. An orthogrid stiffened shell under
uniform compression is established according to the literature
(Wang et al. 2014), as shown in Fig. 6. This stiffened shell is
representative of the interstage of current launch vehicles,
with a diameter of D = 3000.0 mm, length of L = 2000.0
mm. To be specific, the numbers of axial and circumferential
stiffener cells Na and Nc are 12 and 45, respectively. The skin
thickness ts is 4.0 mm. The stiffener width tr and height h are
9.0 and 15.0 mm, respectively.

For this example, the design space of each variable is listed
in Table 1. Three types of surrogate-based optimizations are
performed for the purpose of comparison, where the total
number of sampling points in the design of experiment are
identical. Specifically, the sampling points are generated by
the Optimal Latin Hypercube Sampling (OLHS) method, and
then Radial basis functions (RBF) model is constructed based
on the sampling data. After that, Multi-Island Genetic
Algorithm (MIGA) is utilized to search for the global opti-
mum design. The first optimization is a direct surrogate-based
optimization (DSBO), where all the design variables are opti-
mized simultaneously, and the number of sampling points is
120. The last two optimizations are hierarchical optimizations
with two levels, and the number of sampling points in each
level is 60. For the second optimization (referred as

hierarchical optimization I), the stiffener type p1 and the num-
ber of circumferential stiffener cells Nc and the number of
axial stiffener cells Na are involved in the first level, and the
skin thickness ts, stiffener width tr and stiffener height h are
optimized in the second level. For the third optimization (re-
ferred as hierarchical optimization II), the variables in each
level are exchanged in comparison with the hierarchical opti-
mization I. The iteration histories of three optimizations are
shown in Fig. 7. It can be observed that the hierarchical opti-
mization I is competitive in searching for the optimum design,
increasing by 15.2% than the result of DSBO. By comparison
with the result of hierarchical optimization II, the reasonability
of the level decomposition of hierarchical optimization I is
highlighted, which achieves an improvement of 9.6%.
Through this benchmark example, the efficiency of the pro-
posed hierarchical optimization framework can be validated.

4 Non-uniform optimumdesign of fuel tank in launch
vehicles

4.1 Model description

A 1600-mm-diameter fuel tank in the booster of launch vehi-
cles is established, as shown in Fig. 8. Differing from other
previous studies (Hilburger et al. 2006; Degenhardt et al.
2008; Hao et al 2016d), the domes and internal pressure are
taken into consideration. The fuel tank is composed of a

(a) Orthogrid sub-panel

(b) Triangle grid sub-panel

(c) Rotated triangle grid sub-panel

(d) Diamond grid sub-panel

Fig. 4 Sub-panels with different
stiffener types. a orthogrid sub-
panel; b triangle grid sub-panel; c
rotated triangle grid sub-panel; d
diamond grid sub-panel

Fig. 5 Typical framework of a
surrogate-based optimization
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welded stiffened shell, two Y-rings and two domes. In partic-
ular, the cylindrical stiffened shell can be segmented into nine
sub-panels, and each sub-panel has a height of 1000mm and a
circumferential angle of 120°. Different sub-panels are
manufactured separately and then welded together to form a
whole stiffened shell. The upper and lower Y-rings are con-
nected with the stiffened shell, and the upper and lower domes
are attached to the Y-rings. The sub-panel is stiffened by equi-
lateral triangle stiffeners, with a stiffener thickness of 6.0 mm,
a stiffener height of 12.0 mm, a skin thickness of 4.0 mm, the
numbers of axial and circumferential stiffener cells of 8 and 8.
The width and thickness of weld lands are 30.0 mm and 9.0
mm, respectively. The height and thickness of Y-rings are
simplified to take uniform values of 80.0 mm and 12.0 mm,
respectively. The height and thickness of domes are 300.0 mm
and 5.0 mm, respectively. Typical properties of the aluminum
alloy used are assumed as follows: Young’s modulus E = 68
GPa, Poisson’s ratio υ = 0.3, yield stress σs = 410 MPa, ulti-
mate stress σb = 480 MPa, elongation δ = 0.07. The structural
weight of the initial design is 285 kg.

To simulate the load path of booster, a rigid nose cone is
also established and connected to the upper end of fuel tank,
and the axial compression is loaded at the nose. Based on this
model, the load distribution can vary circumferentially every
time when the stiffness changes, which coincides with the true

condition of launch vehicle. The loading process is composed
of internal pressure and axial compression loading processes,
and the lower end of fuel tank is fully clamped. From 0 to 100
ms, increase the internal pressure linearly from zero to the
maximum value 0.155 MPa. After that, from 100 to 300 ms,
keeping the internal pressure as a constant status, increase the
axial compression load at the nose proportionally from zero to
the maximum until collapse occurs. In this case, the axial
compression at the upper end of fuel tank would be non-
uniform along circumferential direction. According to the
symmetry of loading condition, there are six independent
sub-panels in the fuel tank model. The panel number is
assigned for each independent sub-panel, as shown in Fig. 8.

The finite element model is established in ABAQUS soft-
ware by use of S4R shell element, which is a 4-node doubly
curved general-purpose shell element with reduced integra-
tion. According to our previous works (Hao et al. 2013), the
imperfection shape changes during the optimization, which is
selected as the lowest mode shape of current design in each
iteration. However, the maximal normalized imperfection am-
plitude is fixed once it is determined according to the imper-
fection sensitivity analysis of the initial design. This means
that the absolute imperfection amplitude still changes in the
optimization process with the change of skin thickness. As is
evident from the imperfection sensitivity curve of the initial

Fig. 6 Schematic diagram of the
benchmark example

Table 1 Design space and
optimum results for the
benchmark example

Type Initial
design

Lower
bound

Upper bound Optimum design

Direct surrogate-
based
optimization

Hierarchical
optimization I

Hierarchical
optimization II

p1 1 1 4 2 2 2

ts [mm] 4.0 2.5 5.5 3.1 4.2 4.1

tr [mm] 9.0 6.0 15.0 10.6 6.0 7.2

H [mm] 15.0 9.0 23.0 15.0 21.4 18.2

Na 12 6 18 6 7 7

Nc 45 25 65 52 43 44

W [kg] 354 — — 354 354 354

Pco [kN] 16792 — — 18190 20735 19120
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designshown inFig.9, thecollapse loadalmostdoesnotdecrease
with the increaseof imperfectionamplitude,when thenormalized
imperfection amplitude is larger than 0.3. Therefore, the normal-
ized imperfectionamplitude is selectedas0.6 (theabsolute imper-
fectionamplitudeequals to0.6 timesof theskin thickness) for this
example, which can reduce the influence of imperfection change
during the optimization in a rational manner.

Based on the nonlinear explicit dynamic analysis, the collapse
loadpredictedbythedetailedmodel is7250kN,andtheCPUtime
is about 1.0 h, using awork stationwith aCPUof Intel Xeon E5-
2697 2.7 GHz and 128G RAM. The predicted load versus end-
shortening curve is shown in Fig. 10, together with the deforma-
tion shape at the collapse load. To bemore clear, this curve starts
from the point when axial compression is applied. As is evident
fromFig.10, thebucklingdeformationmainlyconcentrates in the

sub-panel 3, which coincides with the tendency of applied axial
load. In addition, it shouldbenoted that the internal pressurehas a
positive effect on the axial load-carrying capacity of fuel tank.

4.2 Validation of equivalent analysis model

Since there are many small-size elements involved in the de-
tailed model due to the presence of stiffeners, the computa-
tional cost of post-buckling analysis is usually very high for
the detailed model. To cope with this issue, the equivalent
analysis model is constructed by utilization of NIAH method.
To be specific, stiffened sub-panels are smeared out into
equivalent unstiffened shells, while weld lands, domes and
other attachments are reserved. Since most small-size

Fig. 7 Histories of outer updates for three optimizations of the
benchmark example

Fig. 8 Schematic diagram of the
fuel tank

Fig. 9 Imperfection sensitivity curve of the initial design
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elements are eliminated, the time increment of explicit dynam-
ic analysis can be increased to improve the computational
efficiency. However, it should be noted that the equivalent
model would overestimate the collapse load, once material
yielding occurs before global collapse (i.e. plastic buckling),
because the equivalent model cannot obtain the true stress at
smeared regions due to the lack of mapping between the
smeared unit cell (descried by the effective stiffness coeffi-
cients) and real geometry. Fortunately, the weld lands in the
equivalent model still have the true material property, thus the
definition of collapse load (referred as nominal collapse load)
is improved by considering the stress constraint of weld lands,
rather than purely selected as the peak of load versus end-
shortening curve. Specifically, the nominal collapse load is
defined as the smaller axial load at the time increment when
global collapse occurs and the one when material yielding of
weld lands occurs. By this way, the influence of plastic buck-
ling on the prediction error of equivalent model can be
reduced.

Then, the predicted load versus end-shortening curve can
also be obtained by use of equivalent model, as shown in
Fig. 10. The predicted collapse load is 7703 kN, and the nom-
inal collapse load is 7436 kN, which is closer to the one

obtained by the detailed model. The nominal collapse load
indicates a relative error of 1.2% compared to the detailed
model. Also, the tendencies of two load versus end-
shortening curves agree well, especially for the deformation
at the collapse load. The comparison with the detailed model
reveals that the equivalent model can be confidently used to
predict the post-buckling behavior of the fuel tank under non-
uniform load. More importantly, the CPU time can be reduced
to 0.3 h, which is only 1/3 of the one of detailed model. It can
be concluded that the gain in terms of the CPU time is very
significant.

Before the optimization can be performed by use of equiv-
alent model, it should be validated by the detailed model.
Therefore, a set of 100 sampling points is uniformly selected
from the design space. For the illustrative example, the design
spaces of each variable are specified to guarantee the rational-
ity of each design point, as listed in Table 2, including the
stiffener type p, the skin thickness ts, the stiffener height h,
the numbers of axial and circumferential stiffener cells Na and
Nc, respectively. In particular, four stiffener types are assigned
with type numbers, ranging from 1 to 4. Besides, Na and Nc

are determined in terms of stiffener type. To keep a consistent
representation, the nominal number of stiffener cells Ña and

Fig. 10 Load versus end-shortening curves of the initial design obtained
by the detailed model and equivalent model

Table 2 Design space of
variables for the fuel tank
example

Type Initial design Lower bound Upper bound Stiffener type

pi 2 1 4 —

ts [mm] 4.0 2.5 5.5 Arbitrary

tri [mm] 6.0 3.0 9.0 Arbitrary

h [mm] 12.0 8.0 16.0 Arbitrary

Nai — 6 16 Orthogrid

Nci — 13 23 Orthogrid

Nai 8 4 14 (Rotated) triangle grid, diamond grid

Nci 8 6 16 (Rotated) triangle grid, diamond grid

Note that the subscript i stands for the independent sub-panel number

Fig. 11 Frequency histogram of relative errors between the collapse
loads predicted by the equivalent model and detailed model
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Ñc are used in the optimization process for each stiffener type,
which are in the ranges of [2, 12].

The frequency histogram of relative errors between the
collapse loads predicted by the equivalent model and detailed
model is shown in Fig. 11. The relative errors of equivalent
model are within ±10% in most situations, accounting for
about 65% of the total sampling points, and the maximal

relative error is 49.0%. However, the error of equivalent mod-
el is slightly higher than the example provided in Hao et al.
(2016a), because several nonlinear factors are involved in this
study, including non-uniform axial load, internal pressure, ma-
terial yielding and geometric imperfections. For the error
sources, it can generally be attributed to two causes: periodic-
ity and plasticity. The periodic boundary condition is not
strictly satisfied for the stiffened cells with a relatively large
spacing, which may cause the accuracy loss of stiffness ma-
trix. This can be verified by the fact that the prediction accu-
racy of close-spaced stiffened shells is generally higher than
that of stiffened shells with large spacing. On the other hand,
plastic buckling is also the main source of prediction errors for
equivalent model. Since the equivalent model is constructed
based on the asymptotic homogenization method, the true
stress field cannot be obtained at each load increment.
Fortunately, a large relative error usually corresponds to a
design that severely violates constraints, which would only
have little impact on searching the optimum design, since
the optimum design is usually near the boundary of con-
straints. Thus, the equivalent model can be adopted in the
hierarchical optimization of stiffened shell with full confi-
dence. By utilization of equivalent model, the total CPU time
of this set of sampling points can be reduced from 159 to 48 h.
This time saving represents a crucial aspect to move from a
more costly optimization to a faster optimization loop.

4.3 Non-uniform optimum design of stiffened shells
under buckling constraint

In this section, optimum designs are obtained by considering
geometric imperfections in the optimization procedure. The
optimization formulation can be written as

Minimize : W
Subject t o : Pco≥ Pco0

σmax≤ σs

X l
i ≤X i≤X u

i ; i ¼ 1; 2;…; n

ð8Þ

where Pco is the collapse load,W is the structural weight, Pco0

is the collapse load of the initial design, σmax is the maximum
stress in the weld lands, σs is the yield stress, Xi is the ith
design variable, and are the lower and upper bounds of the
ith design variable, as given in Table 2. According to the load
condition, there are six independent sub-panels for the illus-
trative example.

Following the framework in Section 3, the original optimi-
zation can be substituted by a two-level optimization. In the
first level, the involved variables are the numbers of axial and
circumferential stiffener cells, the stiffener type of each

Table 3 Design space and optimum results for the first-level
optimization of hierarchical optimization I

Type Initial
design

Lower
bound

Upper
bound

Hierarchical
optimization
I

p1 2 1 4 2

p2 2 1 4 1

p3 2 1 4 2

p4 2 1 4 2

p5 2 1 4 4

p6 2 1 4 1

Na1 8 4 14 6

Nc1 8 6 16 7

Na2 8 6 16 8

Nc2 8 13 23 17

Na3 8 4 14 6

Nc3 8 6 16 8

Na4 8 4 14 6

Nc4 8 6 16 6

Na5 8 4 14 8

Nc5 8 6 16 16

Na6 8 6 16 9

Nc6 8 13 23 23

W [kg] 285 — — 266

Pco [kN] 7250 — — 7345

Table 4 Design space and optimum results for the second-level
optimization of hierarchical optimization I

Type Initial
design

Lower
bound

Upper
bound

Hierarchical optimization
I

ts [mm] 4.0 2.5 5.5 3.5

tr1 [mm] 6.0 3.0 9.0 5.5

tr2 [mm] 6.0 3.0 9.0 3.0

tr3 [mm] 6.0 3.0 9.0 6.3

tr4 [mm] 6.0 3.0 9.0 3.1

tr5 [mm] 6.0 3.0 9.0 4.8

tr6 [mm] 6.0 3.0 9.0 3.1

h [mm] 12.0 8.0 16.0 16.0

W [kg] 266 — — 240

Pco [kN] 7345 — —— 7252
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independent sub-panel. The total number of variables is 18,
and the design space of each variable is listed in Tables 3 .A
set of 360 sampling points is generated by the OLHS method,
and then RBF model is constructed based on the sampling
data. After that, MIGA is utilized to search the global opti-
mum design. To guarantee the convergence rate of optimiza-
tion, detailed model is employed in the outer updates, and the
stress constraint is also considered. The history of outer up-
dates for the first-level optimization is shown in Fig. 12. The
optimal values of variables for each independent sub-panel are
also given in Table 3 and Fig. 12. As can be seen, the triangle
grid stiffeners are used in the sub-panels under larger axial
load (e.g. sub-panels 1 and 3), while the orthogrid stiffeners
are employed in the ones under smaller axial load. This is due
to the fact that triangle grid stiffeners can provide higher spe-
cific stiffness compared to other stiffener types. However,
orthogrid stiffeners usually lead to a lower imperfection sen-
sitivity. In addition, it should be noted that the triangle grid
stiffeners are also used in the sub-panel 4, which can attract
more axial load for the sub-panels near 180° and reduce the

risk of buckling that occurs in the sub-panels near 0°. Due to
the similar reason, the cell numbers of sub-panels 2 and 6 are
relatively larger. The structural weight is reduced to 266 kg in
this level, and the collapse load predicted by the detailed mod-
el is 7345 kN.

In the second level, the design variables include skin thick-
ness, stiffener height and thickness, as listed in Table 4 and the
total number of variables is 8. Similarly, a set of 160 sampling
points is generated by the OLHS method, and another new
RBF model is then established. The history of outer updates
for the second-level optimization is also shown in Fig. 12,
together with the geometry of the optimum design. The stiff-
ener height takes a value of upper bound, while the skin thick-
ness deceases compared to the initial design. Similar to the
tendency observed in the stiffener type, the stiffener height of
these sub-panels under larger axial load (e.g. sub-panels 1, 3
and 5) are significantly larger than the ones under smaller
load. This can be attributed to the fact that geometric imper-
fections mainly occur at these regions, which may cause the
reduction of load-carrying capacity. The structural weight is
reduced to 240 kg in this level, and the collapse load predicted
by the detailed model is 7345 kN. Finally, a weight reduction

Fig. 12 Histories of the outer updates for the hierarchical optimization I

Fig. 13 Histories of the outer updates for the uniform optimization and
hierarchical optimization II

Table 5 Design space and optimum results for the uniform
optimization

Type Initial
design

Lower
bound

Upper
bound

Uniform
optimization

Na 8 4 14 7

Nc 8 6 16 9

ts [mm] 4.0 2.5 5.5 3.1

tr [mm] 6.0 3.0 9.0 5.2

h [mm] 12.0 8.0 16.0 15.0

W [kg] 285 — — 260

Pco [kN] 7250 — — 7320

Table 6 Design space and optimum results for the first-level
optimization of hierarchical optimization II

Type Initial
design

Lower
bound

Upper
bound

Hierarchical optimization
II

ts [mm] 4.0 2.5 5.5 3.5

tr1 [mm] 6.0 3.0 9.0 7.0

tr2 [mm] 6.0 3.0 9.0 5.2

tr3 [mm] 6.0 3.0 9.0 6.0

tr4 [mm] 6.0 3.0 9.0 6.0

tr5 [mm] 6.0 3.0 9.0 7.5

tr6 [mm] 6.0 3.0 9.0 4.2

h [mm] 12.0 8.0 16.0 14.3

W [kg] 285 — — 278

Pco [kN] 7250 — — 7261
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of 15.8% is achieved by the proposed hierarchical optimiza-
tion, and the total CPU time is 165 h.

4.4 Comparison with other optimization methodologies

For the purpose of comparison, uniform design optimization
is performed based on the detailed model, which is represen-
tative of current design of fuel tanks in launch vehicles. To be

specific, all the design variables of each sub-panel are im-
posed to be identical. Thus, only five variables are involved
in this optimization, including the skin thickness, stiffener
height and thickness, the numbers of axial and circumferential
stiffener cells. To be fair, a set of 100 sampling points is gen-
erated based on the detailed model by the OLHS method,
whose CPU time is almost the same as the total CPU time of
the proposed method. The history of outer updates for the
uniform design optimization is shown in Fig. 13, together with
the geometry of the optimum design. The variable values of
the optimum design are listed in Table 5. After this optimiza-
tion, only a weight reduction of 8.8% is achieved, while the
total CPU time is 161 h. As expected, the current design
method cannot provide variable stiffness in terms of non-
uniform loads, due to the super high dimension, and thus
usually leads to inefficient designs. By contrast, the proposed
hierarchical optimization enhances larger design flexibility to
fully explore the global load-carrying capacity, and improves
the potential of weight reduction for stiffened shells.

As another important contrast, the decomposition of the
design domain is then discussed. Therefore, a new optimiza-
tion named as hierarchical optimization II is performed, and
the variables in each level are exchanged in comparison with
the hierarchical optimization I. The samplingmethod and size,
surrogate model, optimization algorithm and convergence cri-
terion are identical with the ones in Section 4.3. The history of
outer updates for the hierarchical optimization II is also shown
in Fig. 13, together with the geometry of the optimum design.
The variable values of the optimum design in two levels are
listed in Tables 6 and 7, respectively. The weight reductions of
two levels are 7 kg and 9 kg, which are far less than the gain of
the hierarchical optimization I. This is because the design
space would be narrowed in an unreasonable way if the de-
tailed variables are involved in the upper level, since they
would be fixed in the lower level, which may affect the global
exploration of optimum design.

Table 7 Design space and optimum results for the second-level
optimization of hierarchical optimization II

Type Initial
design

Lower
bound

Upper
bound

Hierarchical
optimization
II

p1 2 1 4 2

p2 2 1 4 3

p3 2 1 4 2

p4 2 1 4 1

p5 2 1 4 2

p6 2 1 4 1

Na1 8 4 14 5

Nc1 8 6 16 10

Na2 8 4 14 5

Nc2 8 6 16 9

Na3 8 4 14 6

Nc3 8 6 16 11

Na4 8 6 16 8

Nc4 8 13 23 19

Na5 8 4 14 8

Nc5 8 6 16 13

Na6 8 6 16 11

Nc6 8 13 23 16

W [kg] 278 — — 269

Pco [kN] 7261 — — 7342

Fig. 14 Load versus end-
shortening curves of three
optimum designs and initial
design predicted by the detailed
model
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Finally, the load versus end-shortening curves of three op-
timum designs by different optimization methods are com-
pared in Fig. 14, together with the corresponding post-
buckling patterns. As is evident, a quasi-simultaneous buck-
ling pattern is observed for the optimum design of hierarchical
optimization I, since the buckling deformation occurs at sev-
eral sub-panels simultaneously, which represents a high load-
carrying efficiency. By contrast, the buckling deformation
mainly occurs at one or two sub-panels for other designs.
Among three optimizations, the proposed fast procedure can
obtain a better optimum design in an efficient manner.

5 Conclusions

For tailoring the non-uniform axial compression, a concept of
non-uniform stiffened shell is fully utilized to enhance the
potential of weight reduction, whose independent sub-panels
can be determined in terms of load symmetry and then de-
signed separately. With regard to the numerous design vari-
ables and high computational cost of post-buckling analysis,
an efficient equivalent analysis model is developed based on
the NIAH method. By utilization of the equivalent model, the
CPU time of a typical post-buckling analysis can be reduced
to 1/3 of the one by detailed model. The utilization of equiv-
alent model into post-buckling regime is validated when non-
uniform load, internal pressure and geometric imperfections
are considered together. The results of 100 sampling points
selected from the whole design space reveal that the equiva-
lent model can be confidently used to predict the collapse load
of fuel tanks in the post-buckling optimization.

Moreover, a fast procedure for the minimum weight design
of non-uniform stiffened shells under buckling constraint is
proposed, in which the hyper multi-dimensional problem is
decomposed into a hierarchical optimization with two levels.
The effectiveness of the decomposition of the design domain
is verified by a simple benchmark example.

Finally, a typical fuel tank of launch vehicle is utilized to
demonstrate the efficiency of the proposed fast procedure, and
detailed comparison with several other existing methodolo-
gies is made. Results indicate that the fast procedure can pro-
vide a larger weight reduction in an efficient manner.
Moreover, it should be emphasized that non-uniform stiffened
shells are very convenient for current manufacturing technol-
ogy, which are expected to be utilized in future launch
vehicles.
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