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Abstract Using computationally cheap low-fidelity (LF)mod-
el and more accurate but expensive high-fidelity (HF) model,
variable fidelity (VF)modelhasbeenwidelyused inengineering
design to replace the actual computationally expensive experi-
mentsor computer simulations.Tofurther extend theapplication
of VF to reliability-based design optimization (RBDO), a new
framework based on sequential linear programming (SLP) is
proposed in this paper. Combining the advantages of additive
scalingmethodandmultiplicative scalingmethod, ahybrid scal-
ing method based on least squares (LSHS) is developed. In
LSHSmethod, theVFmodel is introduced to replace the implicit
performance function inRBDObyusing theHF function values
and gradient values at all evaluated points around the current
design. With the failure probability and its gradient calculated
by Monte Carlo Simulation (MCS) at current design, SLP is
adopted to calculate the next design. A novel method which
considers the target reliability index and the influence domain
at the current design is also developed to determine the step size
in every sub-optimization problem. Two numerical examples
and the shape optimization problem of a curved beam are ana-
lyzed in order to demonstrate the performance of the proposed
methodology. The comparison results show that the proposed
method is very accurate and efficient.

Keywords Variable fidelity . Least squares . Optimization .

Reliability analysis .Monte Carlo Simulation

1 Introduction

Currently, traditional deterministic optimization method has
been widely applied to improve the performance of structures
in engineering design. Nevertheless, without considering any
uncertainties, the optimal design in deterministic optimization
may be sensitive to variations. The structure may be either
risky while the design has a low probability of constraint sat-
isfaction or uneconomic with the use of a high safety factor (Li
et al. 2013). Reliability-based design optimization (RBDO)
gives a solution to this problem by quantitatively considering
the uncertainties.

Many kinds of RBDO methods have been proposed, which
can be divided into double-loop methods, single-loop methods
and decoupling methods (Aoues and Chateauneuf 2010;
Valdebenito and Schueller 2010). Earlier RBDO methods em-
ploy a double-loop structure in which design optimization loop
and reliability analysis loop are nested (Yu et al. 1997; Youn
et al. 2003; Youn et al. 2005). The outer loop is the design
optimization loop where the design space is explored to obtain
the updated design. The inner loop is the reliability analysis
loop where the failure probability is calculated. For each itera-
tion in the design optimization loop, reliability analysis which
includes a number of performance function evaluations is need-
ed. Therefore the computational cost of double-loop methods is
usually very high. Single-loop methods (Kharmanda et al.
2002; Li et al. 2013) have only one loop where the reliability
analysis loop is substituted by its first order KKT necessary
optimality conditions. The efficiency of single-loop methods
is usually very high for linear and moderate nonlinear perfor-
mance functions. But for highly nonlinear problems, single-
loop methods may be divergent. Decoupled methods (Du
et al. 2008; Chen et al. 2013) separate the reliability analysis
loop from the design optimization loop, and then the RBDO
problem is converted to a sequence of deterministic
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optimization problems. Thus it can achieve a good balance
between accuracy and efficiency. The decoupled methods can
be divided into two categories: methods based on shifting vec-
tors (Du and Chen 2004; Chen et al. 2013; Huang et al. 2016)
and methods based on sequential approximate programming
(SAP) (Cheng et al. 2006; Yi et al. 2008; Chen et al. 2014; Li
et al. 2016). The former uses shifting vectors to convert the
probabilistic constraints to equivalent deterministic constraints.
The latter uses the Taylor expansion of failure probability
Pf(μ

k) at the current design to decompose the RBDO problems
into a sequence of deterministic sub-optimization problems.

In modern engineering practice, implicit performance func-
tions that are often encountered further increase the difficulty
of solving RBDO problem. To reduce the high computational
time, cost, and/or risk brought by real-life experiments, com-
puter simulations such as finite element analysis (FEA) and
computational fluid dynamics (CFD) have been widely used.
However, the direct callings of these simulations are still very
time-consuming. Therefore, surrogate models have been in-
troduced to approximate the original simulator in RBDO
(Crombecq et al. 2011). Youn and Choi (2004) adopted the
response surface method (RSM) to solve RBDO problem.
Cheng et al. (2006) used sequential approximate program-
ming strategy to solve reliability-based structural optimization
problem. Cheng and Li (2008) proposed the reliability analy-
sis method using artificial neural network (ANN) based ge-
netic algorithms. Bichon et al. (2008) proposed the efficient
global reliability analysis (EGRA) method that accurately
characterizes nonlinear implicit limit state functions through-
out the random variable space. Zhao et al. (2011) proposed a
dynamic Kriging method for design optimization. Echard
et al. (2011) combined Kriging model with Monte Carlo
Simulation to calculate failure probability. Wang and Wang
(2014) developed the maximum confidence enhancement
(MCE)-based sequential sampling approach for RBDO using
surrogate models. Chen et al. used local sampling method
with Kriging to improve the accuracy and efficiency of
RBDO (Chen et al. 2014; Li et al. 2015).

Though surrogate models have obvious advantages in solv-
ing RBDO problem, a number of computationally expensive
high-fidelity (HF) analyses are still needed (Sun et al. 2010). To
alleviate the high computational cost in HF analyses, an effi-
cient alternative termed as variable fidelity (VF) method is
proposed. In such approache, the computationally cheaper
low fidelity (LF) model is adopted to capture the behavior of
HF model over the entire design domain and some HF samples
are used to ensure the accuracy of approximation in important
regions (Haftka 1991). Thus, the accuracy of implicit con-
straints is insured using a great amount of LF data and a small
number of expensive HF data (Forrester and Keane 2009).

The VF method is developed by Haftka who proposed the
global–local approximation (GLA) method to combine the
inexact LF model and refined HF model (Haftka 1991).

Gano et al. applied variable fidelity methods in conjunction
with the double-loop method to reduce the computational cost
of RBDO (Gano et al. 2006). Kandasamy et al. used the var-
iable fidelity methods for the resistance optimization of a
waterjet propelled Delft catamaran (Kandasamy et al. 2013).
Simpson et al. presented a review of variable fidelity method
(Simpson et al. 2008).

Though VF method has been widely used in deterministic
design optimization, its application in RBDO is still limited.
In Gano’s method, PMA (Performance Measure Approach) is
used to solve RBDO problem, which is inefficient because of
its double-loop structure. Moreover, the adaptive hybrid scal-
ing method in Gano’s method fails to take fully use of existing
HF samples, which may lead to an inexact RBDO solution.

In this paper, the variable fidelity method is applied to solve
RBDO problem. A hybrid scaling method based on least
squares is proposed by using the HF function values and gra-
dient values at design points. Monte Carlo simulation is used
to calculate the failure probability and its gradient at current
design. Sequential linear programming (SLP) is adopted to
calculate the next design and the step size in every sub-
optimization problem is determined by the target reliability
index and the influence domain at the current design.

The remainder of this contribution is organized as follows:
a brief survey onVF-RBDOmethods is launched in Section 2,
followed by a detailed explanation of the proposed approach
in Section 3. Two mathematical examples and the shape opti-
mization problem of a curved beam are illustrated to demon-
strate the performance of proposed method in Section 4.
Finally, conclusions are drawn in Section 5.

2 Commonly used methods in VF- RBDO

In engineering application, the HF model is obtained through
computationally intensive numerical simulation or physical
experiments and the LF model can be obtained through em-
pirical equations, simplified theories or coarser models
(Simpson et al. 2008). Thus, compared to HFmodel, the com-
putational cost of LF model is much cheaper. Combining the
modeling efficiency in LF model and the modeling accuracy
in HF model, VF model can be constructed.

2.1 Description of VF-RBDO method

In VF-RBDO, the implicit performance function is replaced
by the VF model and the formulation is as follows:

find : μX
min : f μXð Þ
s:t: : P gV F Xð Þ≤0ð Þ−Φ −βtð Þ≤0

μL
X ≤μX ≤μ

U
X

ð1Þ
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Where X is the vector of random design variables, μX de-
note the mean of X. f(•) is the objective function. gVF(X) is the
VF performance function obtained from the LF model and
some HF samples. P(•) is the probability operator, βt denotes
the target reliability requirements. Φ(•) is the cumulative dis-
tribution function of the standard normal distribution.
Superscripts "L" and "U" denote the lower and upper limits.

2.2 Failure probability and its gradient calculation using
MCS

Failure probability calculation is critical in RBDO, in which
most probable point (MPP) based methods and numerical
simulation methods can be used. ThoughMPP based methods
is very efficient, the lack of accuracy limits its application in
VF-RBDO. Conversely, the numerical simulation methods
are usually very accurate, but their efficiency is very low be-
cause too many computationally expensive HF samples
should be directly called to conduct reliability analysis. If
the computationally affordable VFmodel is adopted to replace
the HF model, the computational cost in numerical simulation
methods can be significantly reduced.

As the most commonly used numerical simulation method,
Monte Carlo simulation (MCS) is achieved through realizing
random variables and determining whether a particular event
occurs for the simulation instance (Li et al. 2010). The ratio of
the failure number to the total number of samples is regarded
as the failure probability Pf(μ

k). In practical engineering, the
failure probability is usually very low, therefore only after
many simulations a reasonable failure probability can be
achieved, which means MCS is computationally expensive.
However, when combining with VFmodel, the computational
cost of MCS can be affordable. The gradient information
∂P f μkð Þ

∂μ for the failure probability Pf(μ
k) can be calculated as

follows:

∂P f μk
� �
∂μ

¼ ∂
∂μ

Z
g Xð Þ≤0

f X Xð ÞdX

¼
Z

g Xð Þ≤0

∂ f X Xð Þ
∂μ

dX

¼
Z

g Xð Þ≤0

∂ f X Xð Þ
∂μ

1

f X Xð Þ f X Xð ÞdX

¼ 1

N

XN
i¼1

I F X ið Þ
f X X ið Þ

∂ f X X ið Þ
∂μ

ð2Þ

Where X are the random design variables, fX(X) represents
the joint probability density function of X, N is the number of
test points in MCS. I F Xð Þ ¼ 1g Xð Þ≤0f 0g Xð Þ > 0 is an
indicator function.

The test points Xi, i=1, ⋅ ⋅⋅,N in Eq. (2) are the same as that
used for estimating the failure probability Pf(μ

k). In other

words, the calculation of gradient
∂P f μkð Þ

∂μ does not require

additional MCS runs, and it can be obtained while calculating
the failure probability Pf(μ

k). Details about the Eq. (2) are in
reference (Song et al. 2009).

2.3 Commonly used scaling method in variable-fidelity
model

The key of VF technique is to use the difference between a LF
model and a HFmodel at a few points to correct the LF model
at other points (Sun et al. 2010). To approximate the difference
accurately, many kinds of scaling methods are proposed,
among which the multiplicative scaling (Haftka 1991;
Chang et al. 1993) and additive scaling (Lewis and Nash
2000; Kandasamy et al. 2013) are most commonly used.

2.3.1 Multiplicative scaling method

To fully use the advantages of the LF model in global predic-
tion and the HF samples in local correction, Haftka proposed
the multiplicative scaling method (Haftka 1991). In this meth-
od, the ratio of HF function value to LF function value at a
given point xn is termed as the scaling factor. To approximate
the scaling factor at other points, the first-order Taylor expan-
sion is used as

^α xð Þ ¼ α xnð Þ þ ∇α xnð ÞT x−xnð Þ ð3Þ

Where α(xn) is the multiplicative scaling factor at xn. In
Eq. (3), the gradient information at current design xn can be
obtained using the following formulation:

∇α xnð Þ ¼

f l xnð Þ ∂ f h
∂x1

− f h xnð Þ ∂ f l
∂x1

f l xnð Þ2:
:
:

f l xnð Þ ∂ f h
∂xm

− f h xnð Þ ∂ f l
∂xm

f l xnð Þ2

2
666666666664

3
777777777775

ð4Þ

Using Eq. (3) and Eq. (4), the consistency at function value
and gradient value between the VF model and HF model at
current design xn can be guaranteed.

In multiplicative scaling method, the VF model fVF(x)
adopted to approximate the real HF model can be formulated
as

f V F xð Þ ¼ ^α xð Þ f l xð Þ ð5Þ
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2.3.2 Additive scaling method

In additive scaling method, the VF model is expressed as the
sum of the LF model and an additive scaling function. The
formulation of additive scaling method is as follows:

f V F xð Þ ¼ f l xð Þ þ γ xð Þ ð6Þ

Where γ(x) is the additive scaling factor which approxi-
mates the difference between the LFmodel and the HFmodel.
Similar to the multiplicative scaling method, to insure the
consistency in function value and gradient between the VF
model and HF model at current design xn, γ(x) is approximat-
ed as

^γ xð Þ ¼ γ xnð Þ þ ∇γ xnð ÞT x−xnð Þ ð7Þ

Among which, the gradient information at current design
xn can be obtained using following formulation

∇γ xnð Þ ¼ ∇ f h xnð Þ−∇ f l xnð Þ ð8Þ

3 Proposed VF-RBDO method using least squares
hybrid scaling

In this paper, a VF-SLP framework is proposed to solve
RBDO problem. VF model is introduced to approximate the
computationally expensive experiments or computer simula-
tions and SLP is adopted to decouple the complicated double-
loop structure of RBDO.

The key of VF technique is to use the difference between a
LF model and a HF model at a few points to correct the LF
model at other points. Therefore, reasonably choosing the HF
samples and scaling method is very important. The design
points which are critical in RBDO are selected to conduct
HF evaluation and a new scaling method using all evaluated
HF points around the current design is proposed to enhance
the accuracy and efficiency of VF model.

3.1 Least squares hybrid scaling method

In some cases, the multiplicative scaling method may perform
better than the additive scaling method, but in other cases the
additive scaling method may be the better one. To fully utilize
the advantages of both methods, Gano et al. proposed the
adaptive hybrid scaling method (AHS) (Gano et al. 2006).
Using a weight coefficient to adaptively combine the multipli-
cative scaling method and the additive scaling method, AHS
method maintains the Taylor series matching and thus retains
the convergence properties. In AHS method, the VF model
fVF(x) can be formulated as follows:

f V F xð Þ ¼ wα xð Þ f l xð Þ þ 1−wð Þ f l xð Þ þ γ xð Þð Þ ð9Þ

In Eq. (9), the multiplicative scaling factor α(x) and the
additive scaling factor γ(x) can be calculated using formula-
tions in Section 2.3.

The weight coefficient w is calculated using the previously
evaluated HF point, which can be formulated as follows:

w ¼
^

f h
�
x
�
− f l xð Þ þ γ xð Þð Þ

α xð Þ f l xð Þ− f l xð Þ þ γ xð Þð Þ ð10Þ

Using Eq. (9) and Eq. (10), the VF model can pass through
the current and previous design, therefore it has a higher ac-
curacy in the regions around these two points. However, in
Gano’s method, only these two points are utilized to construct
the VF model. If the optimal design lies far away from these
two points, a larger modeling error will arise, and then an
inexact optimum may be obtained (Seen in Fig. 1). In other
words, AHS method cannot guarantee the accuracy of VF
model in the region around the optimal design. If more eval-
uated HF samples around the current design are utilized, this
disadvantage can be overcome. Based on this idea, a new
scaling method using all the evaluated HF points at a small
region around the current design (the size determination of
this small region can be seen in Section 3.3) is proposed here.

Different from the weight coefficient calculation formula-
tion in Eq. (10), in the proposed method w is calculated by
solving a least square problem:

min
Xn
i¼1

f h xið Þ− wα xið Þ f l xið Þ þ 1−wð Þ f l xið Þ þ γ xið Þð Þð Þ½ �2

ð11Þ

Where n is the number of all the evaluated HF points
around the current design (e.g., n =3 in Fig. 1).
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Fig. 1 The comparison between AHS and LSHS method
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In Fig. 1, curve HF and LF denote the HF model and LF
model respectively. Curve VF1 is the constructed VF model
using the AHS method and Curve VF2 is the constructed VF
model using the LSHSmethod. x* is the optimal design and xi
is the design in the ith iteration in RBDO.

In the 6th iteration, the VF model is constructed using
current design x6 and previous design x5 in AHS method,
therefore it has a high accuracy in the region around x5 and
x6. However, without considering the previous iteration
point x4, the VF model VF1 is not accurate enough at the
optimal design x*, which lies far away from x5 and x6.
Unlike AHS method, more samples (such as x4) are used
to construct the VF model in proposed method. Therefore,
the VF model based on LSHS has a much smaller global
error in the region around the optimal design, which guar-
antees an accurate solution in RBDO (Seen in Fig. 1).

3.2 VF-RBDO using sequential linear programming

After the VF model using LSHS method is constructed
to approximate the implicit performance function in
RBDO, MCS is used to calculate the failure probability
and its gradient. Then sequential linear programming
(SLP) is adopted to calculate the next design. SLP is
selected here because it is efficient and easy to be im-
plemented, which only need the first derivatives for a
Taylor expansion (Okamoto et al. 2015). In this paper,
the first derivatives of failure probability can be obtained
using MCS.

In SLP approach, the original VF-RBDO problem is
decomposed into a sequence of sub-optimization problems.
Each sub-optimization problemwhich consists of approximat-
ed probabilistic constraints is solved in a reduced design
space. The formulation of VF-RBDO using sequential linear
programming can be described as:

for k ¼ 1; 2;…
find : μX
min : f μXð Þ
s:t: : P ĝ

k
Xð Þ≤0

� �
−Φ −βtð Þ≤0

μL
X ≤μ

Lk
X ≤μX ≤μ

Uk
X ≤μU

X

ð12Þ

3.3 Size of sub-optimization problem

To determine the reduced design space (termed as sub-
space in this paper) in each sub-optimization problem, a
new strategy using target reliability βt and influence
domain at the current design is proposed. βt is the re-
quired reliability level in U-space, therefore, the defini-
tion of subspace in SLP involves a transformation from

U-space to original design space. For the random vari-
able which follows Gaussian distribution, the transfor-
mation can be formulated as

−βt ≤u≤βt⇒−βt ≤
μ−μc

σ
≤βt⇒−βt*σþ μc≤μ≤βt*σ

þ μc ð13Þ

Where μc is the current design point.
For other distributed random variables, the transformation

formulation can be seen in Ref. (Song 2013).
The updated formulation for subspace calculation is as fol-

lows:

μLk
X ¼ max μL

X ;μ
LC
X −c*max βtð Þ*σ� �

μLk
X ¼ min μU

X ;μ
LC
X þ c*max βtð Þ*σ� � ð14Þ

In Eq. (14), the adjustment coefficient c is used to guaran-
tee that the βt circle which is crucial in reliability analysis is
contained in the sub-optimization process. In consideration
that different target reliability may be involved for multi-
constraint problem, the maximum reliability index βt is used
here.

To determine the coefficient c in Eq. (14), the possible
modeling error in VF model construction should be consid-
ered. The concept of influence domain at the current design is
proposed herein. Three situations are considered:

(1) If there is only one HF sample existed in the subspace of
SLP, the size of influence domain is determined only by
the current design. Thus c is a constant, which is set to
1.5 here.

(2) With the number of HF samples in the subspace of SLP
increasing, the approximation accuracy of VF model
around the current design is increasing. In this situation,
the size of influence domain at current design should be
determined by all the HF samples in this region and a
bigger c should be used here.

(3) With the difference between the VF function values and
HF function values at HF samples in the subspace of SLP
increasing, the approximation accuracy around the cur-
rent design decreases. Therefore the size of influence
domain at current design should be reduced and a smaller
c should be used.

Taking fully consideration of each situation, adjustment
coefficient c can be calculated as

c ¼ 1:5* 1þ 1
. 1

n
þ
Xn
i¼1

f tl xið Þ− f h xið Þk k
f h xið Þ

 ! !
ð15Þ
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It's important to note that, 1.5 is selected as amplification
coefficient for c because of the following reasons:

(1) A set of different coefficients for c have been tested using
several examples, good solutions can always be achieved
using 1.5.

(2) In Zhao’s paper”Response surface method using se-
quential sampling for reliability-based design optimi-
zation” (Zhao et al. 2009), the coefficient selection in
the sub-design space of sequential sampling and op-
timization is 1.2 ~ 1.5. 1.5 is used here to give a con-
servative solution.

Using Eq. (15), with the number of HF samples and model-
ing accuracy in the region around the current design increas-
ing, the size of influence domain at current design will in-
crease and a bigger design space will be used to solve the
sub-optimization problem in SLP.

3.4 Flowchart and procedures of the proposed method

The flowchart of the proposed VF-SLP framework using least
square hybrid scaling method is provided in Fig. 2. The pro-
cedures can be described as follows:

(1) Initialize the design variable μX
0 .

(2) Calculate the HF function value and HF gradient at the
current design. In this step, computationally expensive
numerical simulation or costly physical experiments are
performed to obtain HF information.

(3) Determine the size of design space for the sub-
optimization problem in VF-SLP framework. The meth-
od developed in Section 3.3 is used here.

(4) Scale the LF model to obtain the VF model, and then
replace the implicit performance function with the VF
model. In this step, proposed LSHS scaling method is
adopted.

(5) Calculate the failure probability and its gradient using
MCS, and then export the result to Eq. (12). Conduct
optimization to calculate the next design.

(6) If convergent, then stop. Else, k= k+1, go back to step
(2).

Y

N

Determining the design space

in sub-optimization problem

Calculating the HF function

value and HF gradient at the

current design

Current Design

Scaling the LF model to get

the VF model

Convergence?

End

k=k+1

Optimize

Calculating the failure

probability and its gradient

using MCS

Fig. 2 Flowchart of the OSV-RI method
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Fig. 3 Graph and optimal design of 1-D problem

Table 1 Summary of the optimization results for example 1 using the
first LF model

Methods Obj.
Value

Optimum Iteration HF HF
Gradient

Error β

STA 0.4843 0.6959 5 / / / 2.0035

ADD 0.5061 0.7114 5 5 5 0.0223 2.2661

MULTI 0.4836 0.6954 5 5 5 7.18e-4 1.9906

AHS 0.5124 0.7158 5 5 5 0.0286 2.3117

LSHS 0.4848 0.6963 5 5 5 5.75e-4 2.0144
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4 Application

In order to verify the accuracy and efficiency of the proposed
method, two numerical examples and the shape optimization
problem of a curved beam are tested and compared. The com-
parison methods are the additive scaling method (ADD), the
multiplicative scaling method (MULTI) and the adaptive hy-
brid scaling (AHS) method. The design results will be
assessed through the relative error ‖(d*−dA*)/dA*‖, where dA

*

is the standard solution (STA) by calling the actual perfor-
mance functions. All of these comparison methods are per-
formed in the proposed VF-SLP framework, the detailed im-
plementation process is as follows:

First, using various scaling methods (ADD, MULTI, AHS
and LSHS) to construct VF model. Then the VF model is
combined with MCS to calculate the failure probability and
its gradient. Last, SLP is used to calculate the next design,

where the proposed method in Section 3.3 is used to calculate
the size of sub-optimization problem.

4.1 Mathematical example 1

The 1-D test function shown in Fig. 3 (Forrester and Keane
2009; Han et al. 2013) is commonly used to demonstrate the
performance of VF methods. In this paper, this test function is
further applied to replace the performance function in RBDO.
The problem is given as

find : μ
min : f μð Þ ¼ μ2

s:t: : P g Xð Þ < 0ð Þ≤Φ −βtð Þ
gH xð Þ ¼ − 6x−2ð Þ2sin 12x−4ð Þ
gL1 xð Þ ¼ − 0:5 6x−2ð Þ2sin 12x−4ð Þ þ 10x

� �
gL2 xð Þ ¼ sin 12x−4ð Þ þ 0:4x−10
x∼N μi; 0:05

2
� �

;βt ¼ 2:0
0≤μ≤1;μ0 ¼ 0:6

ð16Þ

Fig. 3 gives the graph and optimal design of 1-D problem.
The blue curve is the HF model, the red curves LF1 and LF2
denote the LF models gL1(x) =− (0.5(6x−2)2 sin(12x−4) +
10x) and gL2(x) = sin(12x − 4) + 0.4x − 10 in Eq. (16)
respectively.

Table 1 lists the optimization results of 1-D problem using
the first LF model gL1(x) =− (0.5(6x−2)2 sin(12x−4)+10x).
The four methods mentioned above are used for com-
parison. “Obj. Value” is the objective function value at
the optimal design. “Optimum” means the optimal
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Fig. 4 Predicted graph and HF
points of example 2 using the first
LF model

Table 2 Summary of the optimization results for example 1 using the
second LF model

Methods Obj.
Value

Optimum Iteration HF HF
Gradient

Error β

STA 0.4843 0.6959 5 / / / 2.0035

ADD 0.4839 0.6956 4 4 4 4.31e-4 1.9945

MULTI 0.4807 0.6933 4 4 4 0.0037 1.9568

AHS 0.4967 0.7048 6 6 6 0.0128 2.1618

LSHS 0.4843 0.6959 5 5 5 0 2.0035
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design and “Iteration” denotes the number of design
iterations. “HF” is the number of high fidelity function
evaluation. “HF Gradient” stands for the total number of
high fidelity gradient calls. β is the reliability index
evaluated by MCS with a ten-million sample size.
“LSHS” means the proposed least square hybrid scaling
method.

It’s clear from Table 1 that all the five methods have the
same number of iterations, HF function calls and HF gradient
calls. The multiplicative scaling method and proposed LSHS
method almost converged to the optimal design. That’s be-
cause they both have a good approximation in the region
around the optimal design. Using only the current and the
previous design to construct the scaling function, the VFmod-
el from AHS method may have a bigger error in the critical
region near the optimal design, which leads to an inexact
optimal design.

Figure 4 shows the predicted graph and HF points of the
four sca l ing methods us ing the f i r s t LF model
gL1(x) =− (0.5(6x− 2)2 sin(12x− 4) + 10x). As can be seen
from this figure, the multiplicative scaling method and the

proposed least squares hybrid scaling method have a good
approximation in the region around the optimal design.
Therefore, they both have a good RBDO solution.

However, if the second LF model gL2(x) = sin(12x−4)+
0.4x−10 is used to construct VF model in RBDO, different
comparison results will arise.

Seen from Table 2, the additive scaling method and
the proposed LSHS method have better solutions than
the multiplicative scaling method and the adaptive hybrid
scaling method using gL2(x) = sin(12x − 4) + 0.4x − 10.
Without considering all the existing samples around the
current design, the approximation of AHS around the
optimal design is not accurate enough, thus it may result
in an inexact optimum.

It's worth noting that in LSHS method multiple points are
used to construct the VF model, which may slow down the
convergence process. For example, the proposed LSHS meth-
od has more iterations than the multiplicative scaling method
and the additive scaling method in Table 2. However, because
using multiple points could improve stability of the optimiza-
tion, the proposed LSHS method is more accurate.
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Fig. 5 Predicted graph and HF
points of example 1 using the
second LF model
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When the second low fidelity model is used, the predicted
graph and HF points of the 1-D test function using the four
methods are shown in Fig. 5.

Taking the optimization results using the two different LF
models into account, the RBDO solutions from the multipli-
cative scaling method and the additive scaling method are
sensitive to the LF model. Therefore, for some LF models,
the multiplicative scaling method may perform better, but
for other LFmodels, the additive scaling method may perform
better. Without considering all the HF samples around the
current design, the RBDO solution of AHS is not so accurate.
Using all the existing samples around the current design to
approximate the difference between the LF model and HF
model, the proposed LSHS method has a good accuracy at
the optimal design. Therefore, the proposed LSHS method is
a promising method to solve RBDO problems, which always
make an accurate and robust solution in this example.

4.2 Mathematical example 2

Another mathematical problem (Lee and Jung 2008; Chen
et al. 2014; Li et al. 2015) with highly nonlinear constraint is

tested to compare the performance of the four VF-RBDO
methods.

The problem is formulated as

find : μ ¼ μ1;μ2½ �T
min : f μð Þ ¼ μ1−3:7ð Þ2 þ μ2−4ð Þ2
s:t: : P gi Xð Þ < 0ð Þ≤Φ −βt

i

� �
; i ¼ 1; 2

g1 Xð Þ ¼ −X 1sin 4X 1ð Þ−1:1X 2sin 2X 2ð Þ
g2 Xð Þ ¼ X 1 þ X 2−3
0:0≤μ1≤3:7; 0:0≤μ2≤4:0
X j∼N μ j; 0:1

2
� �

; j ¼ 1; 2

βt
1 ¼ βt

2 ¼ 2:0; μ0 ¼ 2:97; 3:40½ �

ð17Þ

There are two probabilistic constraints in this example and
the first one is highly nonlinear. As shown in Fig. 6a, objective
function is a simple quadratic function denoted with the dotted
line and the optimal design is marked with a small “x”. The
shaded area is the feasible design domain. The contour lines in
Fig. 6b and the 3d graphics in Fig. 6c show the highly non-
linearity of the first probabilistic constraint. For the sake of
simplicity, the linear probabilistic constraint g2(X) is removed
in the VF-RBDO model.

Table 3 Summary of the
optimization results for example 2 Methods Obj. Value Optimum Iteration HF HF Gradient Error β

STA. 1.3258 (2.8421,3.2320) 12 / / / 1.9982

Add. 1.2809 (2.8564,3.2455) 7 7 7 0.0065 1.8099

Multi. 1.3855 (2.8091,3.2307) 11 11 11 0.0116 2.2250

AHS 1.4226 (2.8491,3.1642) 10 10 10 0.0211 2.3543

LSHS 1.3171 (2.8454,3.2340) 12 12 12 0.0013 1.9634
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A LF version of this problem is created by modifying the
first probabilistic constraint as follows:

gl1 Xð Þ ¼ −2sin 4x1ð Þ−2:2sin 2x2ð Þ−5 ð18Þ

Four different scaling methods integrated with the VF-SLP
framework are adopted to solve this problem and the compar-
ison results are summarized in Table 3. It is clear from the
table that the additive scaling method is the most efficient
one, which uses the smallest number of HF function and gra-
dient calls. However, it has a bigger error than proposed LSHS
method. The multiplicative scaling method is not suitable for
this example, which can’t find the optimal design. Without
considering all the HF samples around the optimal design,
AHS method is divergent.

To further demonstrate the performance of the proposed
LSHS method, the HF points and the final VF model using
the four methods are compared in Fig. 7. Seen from this fig-
ure, the VF model using additive scaling method and pro-
posed LSHS method is more accurate than other scaling
methods, therefore they both have a good RBDO solution.
Compared with LSHS method, the additive scaling method
is more accurate in the whole design space. But the accuracy
of LSHS method is a bit higher than that of additive scaling
method around the optimal design, which leads to a better
RBDO solution (Seen in Table 3).

4.3 Shape optimization problem of a curved beam

Shown in Fig. 8, the shape optimization problem of a curved
beam subjected to an applied force P=8000N is presented.

Unlike the curved beam with a rectangular cross section,
which is widely used to test the performance of VF method
(Balabanov and Venter 2004), the circular cross section is
used here.

Including the points with the highest stress, the lower left
portion of the hook (Termed as the curved beam in this paper)
is optimized here, which is divided into three sections and the
radiuses of each section ri are selected as the random design
variables. The optimization goal was to minimize the volume
of the curved beam, subject to probabilistic constraints on the
maximum stresses.

The problem was analyzed using a simple finite element
hook model (HF model) and a straight beam substitution (LF
model). The simplified model in UG and the grid in
Hyperworks are shown in Fig. 9.

The LF model is built using a straight beam which is di-
vided into the same number of sections as the curved beam in
Fig. 10. The length is chosen to be equal to the middle layer
radius of the curved beam.

The maximum stress of the low-fidelity analysis in each
section is calculated using the following formulation (the
shear stresses were not considered):

σA ¼ 32M

πd3
ð19Þ

In the above formulation, the bending moment M can be
calculated using the applied force P and its distance to the root
of each section.

The RBDO problem of the curved beam design is de-
scribed as follows:

find : μri ¼ μr1 ;μr2 ;μr3

� 	
min : V
s:t: : P σmax≥140ð Þ−Φ −βtð Þ≤0

ri∼N μri ; 0:1
� �

; 8≤μri ≤12
μ0

ri ¼ 10; 10; 10½ �;βt ¼ 3:0

ð20Þ

Fig. 8 The crane hook and the divided sections

Fig. 9 3D model and Grid of the crane hook

Fig. 10 The straight beam and divided sections
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Where σmax is the maximum stress in the structure.
Table 4 lists the optimization results for the four different

scaling methods. At the optimum, probabilistic constraints are
evaluated by MCS with a ten-million sample size. It is clear
from Table 4 that using additive scaling method or multipli-
cative scaling method alone to construct VF model leads to
relatively lager errors. Combining the two methods reason-
ably, the adaptive hybrid scaling method and proposed
LSHS method perform much better in terms of accuracy,
which both converge to the optimal design. However, the
number of HF function and gradient calls in proposed method
is much smaller than that of AHS method, which verifies the
high efficiency of LSHS. It’s worth noting that although AHS
reaches a higher reliability than LSHS method, it has a larger
objective function value (1365.5) and relative error (0.0017).
Therefore, the proposed LSHSmethod can provide sufficient-
ly exact RBDO solution with a small number of HF calls for
shape optimization of the curved beam.

5 Conclusion

In this paper, a VF-SLP framework is proposed to solve
RBDO problem. VF model is introduced to approximate the
implicit performance function and SLP is adopted to decouple
the complicated double-loop structure of RBDO.

Reasonably combining computationally cheap LF model
with more accurate but expensive high-fidelity model, vari-
able fidelity method has been widely adopted as the substitu-
tion of the actual black-box model in engineering applications.
To further extend its application in RBDO, a hybrid scaling
method based on least squares is developed in this paper.
Using the HF function values and gradient values at design
points, the VF model is constructed by solving a least square
problem. Monte Carlo simulation is used to calculate the fail-
ure probability and its gradient. Then SLP is adopted to cal-
culate the next design and the step size in every sub-
optimization problem is determined by target reliability index
and the influence domain at the current design.

The VF-SLP framework developed in this paper is demon-
strated on three examples: a commonly used 1-D problem, a
highly nonlinear 2-D problem and the shape optimization
problem of a curved beam. Four different scaling methods:

the additive scaling method, the multiplicative scaling meth-
od, the adaptive hybrid scaling method and the proposed
LSHS method are compared in this framework. The compar-
ison results show the high accuracy and efficiency of the pro-
posed method.

In future, to take full advantage of the surrogate modelling
technique and VF approach, using the surrogate model to
construct the VF model and searching appropriate sampling
strategy will be the next stage of our research.
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