
RESEARCH PAPER

Sensitivity reanalysis of vibration problem using combined
approximations method

Wenjie Zuo1,2 & Ke Huang2 & Jiantao Bai2 & Guikai Guo2

Received: 3 May 2016 /Revised: 17 August 2016 /Accepted: 5 September 2016 /Published online: 16 September 2016
# Springer-Verlag Berlin Heidelberg 2016

Abstract Sensitivity is indispensable to structural modifica-
tion and optimization. This paper focuses on the analytical
sensitivity reanalysis for vibration problem in the framework
of combined approximations (CA) method. The sensitivity
reanalysis formulations of eigenvalues and eigenvectors are
derived from the vibration equation reduced by CA method,
where the eigenvector sensitivity is solved by Nelson’s meth-
od. Numerical examples demonstrate the accuracy and effi-
ciency of the proposed reanalysis method. Especially, this
method can greatly improve the efficiency of sensitivity anal-
ysis and can accelerate the gradient-based structural optimiza-
tion constrained with frequencies and modal shapes.
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1 Introduction

Repetitive analysis is usually needed when the structure is
modified and optimized. One of the main obstacle of repetitive
analysis is the high computational cost in the large scale prob-
lems solution. Reanalysis technology, which aims to evaluate
the structural response for changed structures, such as dis-
placements, stresses, frequencies and so on, without solving
the complete set of modified equations, came into being from

the 1970s (Arora 1976; Phansalkar 1974). Many approximate
(Kirsch and Rubinstein 1972) and exact (Level et al. 1996)
reanalysis methods were proposed to analyze structures which
are modified due to changes in design and optimization.
Approximate methods are more efficient and popular.
Combined approximations (CA) method proposed by Kirsch
is one of the effective approximate methods for solving static
displacement equations (Kirsch 2000, 2003b). Responses of
the original structures are used in the solution procedures, and
then the computational efficiency is improved compared to the
repetitive analysis.

Based on CA method, extended CA methods were pro-
posed to solve the structural static reanalysis. A hybrid
Fox and CA method combined the merits of Fox’s poly-
nomial fitting reanalysis and CA reanalysis was sug-
gested, which had the advantage of globe-local approxi-
mation (Zuo et al. 2012). To determine the number of
basis vectors of CA method, an adaptive technique is used
(Sun et al. 2014). Based on the symmetric successive
over-relaxation and corresponding sparse raw, Wang
et al. improved the efficiency of CA method on GPU
platform (Huang et al. 2014; Wang et al. 2013).

Research of vibration reanalysis methods have been
discussed since the early 2000s (Chen et al. 2000;
Kirsch and Bogomolni 2007). Kirsch firstly transplanted
the CA approach to solve eigenproblems (Kirsch 2003a),
where approximation results can be obtained by solving
smaller eigenproblems in a reduced Krylov subspace
composed of several approximation vectors. CA method
could not give enough accuracy in many large modifica-
tion cases of structural design. To improve the accuracy of
the eigenvalues reanalysis of large modifications of struc-
tural parameters, combining CA and Rayleigh quotient,
Chen developed an extended CA method (Chen and
Yang 2000). Then Epsilon algorithm was then applied in
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the eigenproblem reanalysis associated with the Neumann
series expansion (Chen et al. 2006). A modified combined
approximations method for reanalysis of dynamic prob-
lems with many dominant mode shapes was discussed
(Zhang et al. 2009). Using a suitable frequency-shift
method, the frequency-shift combined approximations ap-
proach allowed to calculate higher modes accurately (Xu
et al. 2011). Combined with CA method and Newmark-β
method, an adaptive reanalysis algorithm was suggested
for dynamic analysis (Gao et al. 2013). Then, with the
multi-GPU acceleration (He et al. 2015), real large-scale
structural design problem can be reanalyzed and the vehi-
cle design cycle was reduced (Wang et al. 2016).

In structural design process, the sensitivity, which can
provide search direction, is indispensable to the engineer.
Based on reanalysis of displacements, efficient sensitivity
of displacement was first presented by Kirsch (Kirsch
1994). A unified approach for accurate approximations
of displacement derivatives with respect to design vari-
ables was then presented (Kirsch and Papalambros
2001). Currently, analytical sensitivity reanalysis of static
displacement was investigated by using Taylor series ex-
pansion and CA method to improve the efficiency (Zuo
et al. 2016). Finite-difference derivatives of static, vibra-
tion and dynamic response were given by Kirsch (Kirsch
and Bogomolni 2005; Kirsch et al. 2007). Topology opti-
mization for specified eigenfrequency was accelerated by
using CA method and corresponding frequency sensitivity
analysis (Bogomolni 2010). Reanalysis and sensitivity re-
analysis by CA method was summarized by Kirsch in his
article (Kirsch 2010). However, rather less attention has
been paid to the analytical sensitivity reanalysis of vibra-
tion problem, which is also essential information in many
flexible structural optimizations.

In this study, a novel sensitivity reanalysis method of vi-
bration problem is proposed to acquire the derivatives of the
eigenvalues and eigenvectors. In this method, only a much
smaller eigenproblem and its derivative problem are needed
to be calculated. The formulas of sensitivity reanalysis of vi-
bration problem are expressed in Section 2, and then three
numerical examples of 8-bar truss structure, truss grid and a
monocoque bus frame are demonstrated for the accuracy in
Section 3. Finally, efficiency consideration and conclusion are
summarized in Section 4.

2 Sensitivity reanalysis formulations

In this paper, sensitivity reanalysis of vibration problem is
proposed in the framework of CA method. Therefore, the
reanalysis of eigenvalue and eigenvector is firstly introduced
here from CA method.

2.1 Kirsch’s reanalysis of vibration problem

Given an initial design with stiffness matrix K0 and mass
matrix M0. The corresponding eigenvector r0 and eigen-
value λ0 are calculated by solving the set of initial equa-
tions

K0r0 ¼ λ0M0r0 ð1Þ

where K0 is given from the initial analysis in the
decomposed form

K0 ¼ UT
0U0 ð2Þ

and U0 is an upper triangular matrix. λ0 =ω0
2, ω0 is the

circle free-vibration frequency.
Assuming there is a change in the design, then correspond-

ing changes in the stiffness matrix and mass matrix can be
expressed respectively

K ¼ K0 þΔK; M ¼ M0 þΔM ð3Þ
Then the modified equations are given by

Kr ¼ λMr ð4Þ
For new eigenpairs λ and r, the CA method can obtain
them efficiently and accurately. Calculation of r in (4)
by the CA method involves the following steps (Kirsch
2003a):

(a) Calculate the basis vectors by steps of iteration. The
detailed explanation has been demonstrated in CA
method. Here we directly give the form of the basis
vectors

r1 ¼ λ0K
−1
0 Mr0 ð5Þ

For k= 2 to s

rk ¼ −Brk−1 ð6Þ

where s is the number of basis vector which is much
smaller than the structural degrees of freedom
(DoFs), and B =K0

− 1ΔK. Notice that we have ac-
quired the decomposed form of K0 in process of
solving the original equations, so the calculations of
basis vectors involve only forward and back substi-
tutions of (6).

(b) Calculate the new eigenvector r. Assume r can be
approximated by the linear combination of s pre-
se lec ted l inear ly independent bas is vectors
r1, r2,⋯, rs, i.e.

r ¼ y1r1 þ y2r2 þ⋯þ ysrs ¼ rBy ð7Þ
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where rB ¼ r1; r2; ⋯; rs½ � and y=[y1,y2,⋯,ys]
T.

Now substitute (7) into (4) and pre-multiply rB
T

rTBKrBy ¼ rTBλMrBy ð8Þ
With the notation

KR ¼ rTBKrB;MR ¼ rTBMrB ð9Þ
(8) is reduced as a s× s eigenproblem

KRy ¼ λMRy ð10Þ
This small-scale equation can be efficiently solved by

Jacobi method. And then substituting the obtained λ and y
into (7), r is yielded.

2.2 The proposed sensitivity reanalysis of vibration
problem

In the following, we derive the sensitivity of eigenvector r
with respect to the design variable xi. Differentiating (7)
directly with respect to xi gives the first-order derivative
equations at the modified design

∂r
∂xi

¼ ∂rB
∂xi

yþ rB
∂y
∂xi

ð11Þ

In order to acquire ∂r/∂xi, we should firstly calculate ∂rB/
∂xi and ∂y/∂xi. The stiffness matrixK is usually explicit func-
tions of the design variables. K0, r0 and λ0 are constant for
arbitrary change of design variable xi, so ∂r1/∂xi can be
expressed as

∂r1
∂xi

¼ K−1
0 λ0

∂M
∂xi

r0 ð12Þ

For k=2 to s

∂rk
∂xi

¼ −K−1
0

∂ΔK
∂xi

rk−1−K−1
0 ΔK

∂rk−1
∂xi

¼ −K−1
0

∂ΔK
∂xi

rk−1 þΔK
∂rk−1
∂xi

� �
ð13Þ

Accordingly, we obtain

∂rB
∂xi

¼ ∂r1
∂xi

;
∂r2
∂xi

; ⋯;
∂rs
∂xi

� �
ð14Þ

Additionally, ∂y/∂xi is the derivative of the eigenvector from
the reduced eigenproblem (10). Since we have calculated λ
and y, ∂y/∂xi can be solved by using Nelson method (Nelson
1976). Rewrite (10) as

KR‐λMRð Þy ¼ 0 ð15Þ
Besides, y and MR satisfy the following normal equation

yTMRy¼1 ð16Þ
Differentiate (15) and (16) directly with respect to xi and rear-
range them as

KR‐λMRð Þ ∂y
∂xi

¼ −
∂KR

∂xi
−
∂λ
∂xi

MR−λ
∂MR

∂xi

� �
y ð17Þ

yTMR
∂y
∂xi

¼ −
1

2
yT

∂MR

∂xi
y ð18Þ

Table 1 Eigenvalue and eigenvector sensitivities of 8-bar truss structure

Variables ∂λ1/∂xi ∂u14y/∂xi ∂λ2/∂xi ∂u24y/∂xi

Exact
(×103)

Appr.
(×103)

Error
(%)

Exact
(×10−3)

Appr.
(×10−3)

Error
(%)

Exact
(×103)

Appr.
(×103)

Error
(%)

Exact
(×10−4)

Appr.
(×10−4)

Error
(%)

x1 −15.48 −15.48 0.0 7.940 7.935 0.1 −28.82 −28.82 0.0 358.9 359.0 0.0

x2 −20.79 −20.79 0.0 −19.84 −19.73 0.6 −23.49 −23.51 0.1 −199.7 −198.1 0.8

x3 −2.365 −2.359 0.3 −3.576 −3.536 1.1 −2.745 −2.748 0.1 −44.30 −43.85 1.0

x4 −1.851 −1.850 0.1 2.537 2.545 0.3 −3.224 −3.223 0.0 8.705 8.445 3.0

x5 −10.42 −10.43 0.1 −19.86 −19.93 0.4 −48.18 −48.15 0.1 −227.0 −231.6 2.0

x6 −7.289 −7.295 0.1 8.939 8.890 0.5 −48.12 −48.12 0.0 390.8 391.8 0.3

x7 −2.583 −2.586 0.1 5.312 5.250 1.2 −9.630 −9.634 0.0 8.984 9.637 7.3

x8 −2.786 −2.783 0.1 −4.751 −4.721 0.6 −7.171 −7.174 0.0 −61.76 −61.08 1.1

u1
4y and u2

4y denote modal displacements of the 1st and 2nd order at the 4th node in the y direction, respectively

Fig. 1 8-bar truss structure
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Premultiply (17) by yT, and noting (15) and (16), we obtains
the derivative of eigenvalue

∂λ
∂xi

¼ yT
∂KR

∂xi
−λ

∂MR

∂xi

� �
y ð19Þ

Noting (9), one can obtain the derivative of reduced matrixKR

and MR, respectively

∂KR

∂xi
¼ ∂rTB

∂xi
KrB þ rTB

∂K
∂xi

rB þ rTBK
∂rB
∂xi

ð20Þ

∂MR

∂xi
¼ ∂rTB

∂xi
MrB þ rTB

∂M
∂xi

rB þ rTBM
∂rB
∂xi

ð21Þ

Because y= [y1, y2,⋯, ys]
T is obtained in (10), we select the

maximum element of vector y, for example yk. Then, intro-
ducing the notation

R¼−
∂KR

∂xi
−
∂λ
∂xi

MR−λ
∂MR

∂xi

� �
y ð22Þ

we let the elements of matrixKR ‐λMR andR are, respectively

KR‐λMRð Þki ¼ 0; KR‐λMRð Þik ¼ 0; i ¼ 1; 2;⋯; s; i≠k
KR‐λMRð Þkk ¼ 1; Rk ¼ 0

ð23Þ
Solve (17) to obtain vector v, and

∂y
∂xi

¼ vþ cy ð24Þ

where c is an unknown parameter which can be determine by
substituting (24) into (18)

c ¼ −yT
1

2

∂MR

∂xi
yþMRv

� �
ð25Þ

In summary, the DoFs of the reduced (17) is much smaller
than that of the corresponding equation of complete structure,
so it is efficient to calculate ∂y/∂xi by the Nelson method.

3 Numerical examples

Three examples are used to demonstrate the efficiency and
accuracy of the proposed sensitivity reanalysis method in ap-
plication of structural modifications.

3.1 8-bar truss structure

A 8-bar truss structure is shown in Fig. 1, where
l= 36cm, elastic modulus is 72,000 MPa, and density
is 2700 kg/m3. Design variables are the cross-sectional

area of bar members, i.e. x ¼ x1; x2;½ ⋯; x8�T . The

initial cross-sectional areas are x0 ¼ 10;½ 10; 10; 10; 10;

10; 10; 10�T whereas the arbitrarily modified cross-
sectional areas are listed in vector x ¼ 11;½ 10;

8; 9; 10; 11; 10 ; 10�T . Three basis vectors are used to
approximately solve the modified structure. The

Table 2 First order eigenvalue and eigenvector sensitivities of truss grid structure

Variables ∂λ1/∂xi ∂u11y/∂xi

Exact (×104) Approximate method (×104) Exact (×101) Approximate method (×101)

2 basic vector Error (%) 3 basic vector Error (%) 2 basic vector Error (%) 3 basic vector Error (%)

x1 −2.565 −2.565 0.0 −2.565 0.0 −48.02 −47.94 0 −48.01 0.0

x2 −55.89 −55.89 0.0 −55.89 0.0 −131.7 −132.0 0.2 −131.8 0.1

x3 −16.28 −16.28 0.0 −16.28 0.0 −23.57 −23.56 0 −23.51 0.0

x4 −10.54 −10.54 0.0 −10.54 0.0 4.741 5.108 7.7 4.812 1.5

x5 −3.975 −3.975 0.0 −3.975 0.0 10.38 10.33 0.5 10.38 0

x6 −1.167 −1.167 0.0 −1.167 0.0 14.13 14.18 0.4 14.03 0.7

u1
1y denotes the modal displacement of the 1st order at the 1st node in the y direction

Fig. 2 6-groups truss grid structure
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approximate and accurate eigenvalue and eigenvector
sensitivities are compared in Table 1. To concisely pres-
ent the results, u1

4y and u2
4y are selected to list in

Table 1, which denote modal displacements of the 1st
and 2nd orders at the 4th node in the y direction, re-
spectively. It can be seen that the reanalysis error of
eigenvalue sensitivity is less than 1%. For the eigenvec-
tor sensitivity, the accuracy of the 1st order is higher
than that of the 2nd order. However, the accuracy of
eigenvector sensitivity is lower than that of eigenvalue
sensitivity. Therefore, the proposed method can provide
highly accurate frequency sensitivity for structural opti-
mization with the constraint of frequencies. Next, the
efficiency of this method is further investigated by
large-scale structures.

3.2 Truss grid

A truss grid with six groups is shown in Fig. 2, whose elastic
modulus is E=2.1×105MPa and density is 7.85×10− 9t/mm3.
It consists of 906 bars, 259 nodes and 518 DOFs. All these
906 bar members are classified into six groups and each bar
which belongs to the same group has the identical cross-
sectional area, so there are six design variables x ¼
x1; x2;½ ⋯; x6�T for this structure. The initial and modified

design variables are x0 ¼ 120;½ 160; 100; 80; 60; 40�T and

x ¼ 123;½ 158:5; 103:5; 77:5; 59; 38:5�T , respectively. We
choose the first order eigenvalue λ1 and the u1

1y component of
the corresponding eigenvector u1 with respect to six design
variables to concisely demonstrate the results, as listed in
Table 2. For eigenvalue sensitivity, all the approximate solu-
tion is equal to the exact solution. The accuracy of eigenvector
sensitivity increases with the number of basis vector. In the
case of 3 basis vector, the error of eigenvector sensitivity is
reduced to 1.5%, which can be accepted in engineering de-
sign. Computational cost spent on the sensitivity reanalysis of
λ1 and u1 with respect to six design variables is 3.2 s, while
that of exact analysis is 15.6 s. The proposed approximate
method has improved the efficiency by almost 5 times, com-
pared with the exact method.

3.3 Bus frame

A monocoque bus frame, as shown in Fig. 3, is used as an
example to demonstrate the effectiveness of the proposed
method for real large-scale structure. This bus frame has 172
nodes, 1032 DoFs and 333 thin-walled box beam elements
which are grouped into 12 components. The thin-walled box
cross section of each component has three design variables
height h, breadth b and thickness t, as marked in Fig. 4. The
material is Q235 steel with elastic modulus 2.05×105 MPa,
poisson ratio 0.27 and density 7.85×10− 9 t/mm3. The initial

Fig. 4 Thin-walled box cross
section and its design variables

Fig. 3 Monocoque bus frame

Sensitivity reanalysis of vibration problem 1403



and modified cross-sectional sizes of three components are
listed in Table 3. The first 20 orders eigenvectors of the initial
bus frame is selected as the basic vectors. In this numerical
example, we calculate the sensitivities of eigenvalues and ei-
genvectors for the first two orders with respect to the cross-
sectional variables of the ceiling component (denoted as
b1, h1, t1) and the lower floor component (denoted as
b2, h2, t2). In the design of bus body structure, the vibration
of driver’s position should be controlled to satisfy the demand
of comfort. Accordingly, the first two order eigenvector sen-
sitivities ∂u1z/∂xi and ∂u2z/∂xi in the z direction at the driver’s
position are calculated and listed in Table 4. The maximum
error is 13.0%, which may be completely accepted at the con-
ceptual design stage of bus frame. During the structural opti-
mization, move limit technology is extensively used to calcu-
late the step size of design variables, so as to control the
magnitude of design modification. The design variables ap-
proach to the optimal solution step by step, and each step can
belong to small modification (Thomas et al. 2002).

Besides, the average time spent on the exact analysis is
52s, while the approximate method only needs 14s, which
saves 73.1% of computational cost. There are 12 compo-
nents in the bus frame, meanwhile each component has 3
design variables. During the structural optimization, more
than 200 iterations often occur. If that, the sensitivity
analysis will cost 200 × 52 s (about 3 h) for the exact
analysis, while it needs only 200 × 14 s (about 45 min)
by using the proposed method. The efficiency of optimi-
zation may be obviously improved.

4 Conclusion

This paper proposes a sensitivity reanalysis of vibration prob-
lem in the framework of CA method. Three numerical exam-
ples verify the accuracy and efficiency of the presented meth-
od. For the eigenvector sensitivity, the accuracy of the 1st
order is higher than that of the 2nd order. Also, the accuracy
of eigenvector sensitivity increases with the number of basis
vector. However, the accuracy of eigenvector sensitivity is
lower than that of eigenvalue sensitivity. Additionally, the
proposed approximate method has greatly improved the effi-
ciency, compared with the exact method. In terms of the ac-
curacy of sensitivity reanalysis, truss structure is superior to
frame structure. It is because that each bar element in truss
structure has only one design variable, while each box beam
element in frame structure has three. Therefore, the accuracy
of sensitivity reanalysis is determined by both modification
and the number of design variables.

The proposed method can be applied in any structural op-
timization problem constrained with frequency or modal
shape responses. Sensitivity calculation occupies a large part
of the optimization process. Using the proposed method, al-
most three quarters of calculating time can be reduced. During
the process of structural optimization, exact analysis and ap-
proximate reanalysis should be alternately used to calculate
the responses and its derivatives, where exact solution can
provide the initial values for approximate reanalysis. In this
way, the accumulated reanalysis error can be truncated and
independent of the iteration number of structural optimization.

Table 4 Eigenvalue and eigenvector sensitivities of bus frame

Variables ∂λ1/∂xi ∂u1z/∂xi ∂λ2/∂xi ∂u2z/∂xi

Exact Appr. Error (%) Exact Appr. Error (%) Exact Appr. Error (%) Exact Appr. Error (%)

b1 11.46 11.44 0.2 1.498 × 10−4 1.383 × 10−4 7.6 4.28 4.271 0.2 −2.900 × 10−3 −2.900 × 10−3 0.0

h1 13.58 13.55 0.2 1.339 × 10−4 1.295 × 10−4 3.3 9.236 9.212 0.3 −3.200 × 10−3 −3.200 × 10−3 0.0

t1 −91.85 −92.72 0.9 2.300 × 10−3 2.600 × 10−3 13.0 −129.7 −128.7 0.8 2.180 × 10−2 2.390 × 10−2 9.6

b2 4.349 4.33 0.4 2.827 × 10−5 2.643 × 10−5 6.5 −2.08 −2.101 1.0 −1.634 × 10−7 −1.700 × 10−7 3.9

h2 4.656 4.638 0.4 6.198 × 10−8 5.747 × 10−8 7.2 −1.275 −1.294 1.5 5.905 × 10−4 6.659 × 10−4 12.7

t2 −11.32 −12.13 7.2 2.681 × 10−6 2.370 × 10−6 11.6 −107.4 −108.5 1.0 −6.278 × 10−6 −6.407 × 10−6 2.1

Table 3 Comparisons between
the initial and modified cross-
sectional sizes

Component name Cross-sectional sizes (mm)

Initial Modified

Breadth Height Thickness Breadth Height Thickness

Ceiling 70 80 2 69 79 1.95

Upper floor 100 90 4 101 91 4.05

Lower floor 85 100 4.5 86 101 4.55
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